
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 65

A SURVEY ON TEST CASE SELECTION AND PRIORITIZATION

TECHNIQUES

Kiran Jammalamadaka
1

1
Research Scholar, Computer science K L University, Andhra Pradesh, India

Abstract
One of the expectations from Agile software development is to reduce the cost of the project as the Agile development

methodology focuses on delivering the right product and eliminating the waste. However, with shorter project cycles, smaller and

agile teams the cost is not going down [3]. This emphasis the focus to re look at the phases in the software product development

and one such area is regression testing. Regression testing is one of the most expensive yet important phase in software

development, hence cannot be completely ignored, however can be reduced or minimized without compromising on the quality of

the product. Researchers used several techniques to reduce and prioritize the test cases. In this paper we have presented various

techniques presented to test case selection and prioritization.

Keywords: Regression testing, Test case reduction, Test case Selection, Test Case Prioritization, Test Suite

--***--

1. INTRODUCTION

Regression testing is testing of already tested component or

system, following a few code changes to ensure that new

implementation or defect fixes do not break the existing

functionality[5].The purpose of the regression testing is to

give the confidence about the product, as the existing

functionality works as expected and not hampered due to the

changes made to the existing software, in order to

implementing the new features. Ideally untouched areas

need not be tested and only modified areas to be tested, with

this approach. It has become more complex due to the trends

like component-based development as a small change in the

component leads to an entire testing of the module [4].

Often teams end up in executing all the test cases for all the

changes.

This phenomenon is more likely to happen in the agile

development and has become more complex as for every

iteration a new set of test cases will be added, and test effort

increases cumulatively. As for every iteration, an increment

will be developed, tested and delivered, here the testing

includes validation of existing functionality is not broken

and new features are working as per the expectation.

The amount of regression suite is directly proportional to the

amount of time which in turn cost, more number of test

cases to be executed needs more time. Therefore, several

methods and techniques have been studied with an objective

to optimize or reduce the size of the test suite.

In this process of study, test suite optimization has been

classified into three categories test case reduction, test case

selection and test case prioritization [4].

1.1 Test Case Reduction

In agile, testing gets involved in the early stages of

development and evolves along with the development, as

and when the increment gets implemented and its

immediately tested. However, in this process a few test

cases may get repeated. Test case is a called redundant when

the objectives of the testcase are same, this can be compared

to code refactoring, during this activity a few test cases can

be merged into one testcase or delete the sub tests from the

super test. This activity is a permanent activity not for the

temporary session or iteration or release, this refactoring

will be done at the overall test suite level.

1.2 Test Case Selection

Unlike the above, test case selection is not a permanent

activity, its dynamic in nature and a few test cases will be

selected from the test suite after understanding the change

went into the code, static code analysis is required to

understand the change and its implications. By definition

Let‟s assume a program P and its changed to P1, the

problem is the identify the subset of the test cases T1 from

the overall test suite T to test thoroughly the P1 wit out

compromising the quality.

1.3 Test Case Prioritization

Test case prioritization determines the order of the test cases

to be executed, like after selecting the subset of test cases T1

from the suite T, test prioritization determines in which

order the test cases need to be executed to uncover the

defects early so that developers can fix the defects early. If a

potential test case which is capable of uncovering a major

defect executed at the end of the regression cycle and it

uncovers a major defect, at the that time developers may not

get time to fix and which may lead to slip the release date.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 66

2. REGRESSION TEST SUITE SELECTION

TECHNIQUES

Test case selection techniques are intended to reduce the

number of test cases without compromising the quality. The

objective of the test suite selection is to identify the most

fault uncovering test cases from the given test suite in the

modified program as well.

Let‟s assume a program P and a modified program P1 and a

test suite T and subset of test suite is T1.T1 should be able

to detect the errors on the program P1,however, if a new test

cases are needed to test the output of the program then T1

should include the newly written program, the existing test

cases should test the un modified part of the program.

Owing to cost, running all tests approach can not be taken as

a preferred approach, Same with the Random select

approach, as no guarantee that this approach can uncover the

defects from the program as the selection of test cases are

random.

With respect to the above, having a selection technique

would be a better approach.

Hence, having a test case selection technique will help in

reducing the cost.

Rothaermel and Harrold [6] have formally defined the

regression test selection problem as follows:

“Let P be an application program and P′ be a modified

version of P.

Let T be the test suite developed initially for testing P. An

RTS technique aims to select a subset of test cases T1 and T

to be executed on P1, such that every error detected when

P1 is executed with T is also detected when P1 is executed

with T1”

2.1 Metrics to Measure the Efficiency of Regression

Test Selections

Regression Test selection has become very popular and

attracted many authors from the last decade, a large number

of RTS techniques have been introduced which we will

discuss in detail in the later part of the paper.

To evaluate the effectiveness of different RTS techniques

Rothaermel and Harrold have proposed a set of metrics [7].

2.1.1 Execution Trace of a Test Case

When a program gets executed a set of statements get

executed and the set of lines are called code traces, similarly

when a test case get executed on a program a set of code

statements get executed and those can be captured using

instrumenting the code, So this metric insists that modified

code should be in the set of test case trace, otherwise the

RTS selection is not accurate.

2.1.2 Fault-Revealing Test Cases

The selected test case should be fault revealing, of the

modified program. When the selected test case executed on

a modified program, the test case should uncover the error

and cause the program to fail.

2.1.3 Modification-Revealing and Traversing Test

Cases

The selected test case should be able to reveal the

modification done to program by providing a different

output, original program and modified programs should give

different results for the same test case selected. Similarly,

the selected test case should traverse through the modified

code of the program.

2.1.4 Inclusive, Precise and Safe Regression Test

Cases

Another metrics are Inclusive, precise and safe, inclusive is

about how extent RTS technique selected the testcase

related to the change and how safe each of the selected test

case as any missed test case may lead to a failure of the

program. And how optimized the RTS is it should not pick

which are irrelevant to the modified program.

2.2 Classification of RTS Techniques

Swarnendu Biswas and Rajib Mall [8] have classified the

several proposed RTS techniques in the following

1. Dataflow analysis-based techniques

2. Slicing-based techniques

3. Module level Firewall-based techniques

4. Differencing-based approaches

5. Control flow analysis-based techniques

2.2.1 Dataflow Analysis-Based Techniques

Many researchers proposed techniques fall under this

category, basically it uses the „definition –use‟ variables.

These variables can be used in two different ways one to

compute operation like multiplication etc., and other is for

direction or the execution path. Harrold[7] and sofa have

done some work this and they proposed a RTS technique

that can be applied to multiple programs, for they

individually trace the program change to select test case and

they repeat till all the changes have been covered.

Critical Evaluation

The major challenge here is these techniques cannot control

the dependency among the elements of the program, hence

its these techniques are unsafe to use.

2.2.2 Slicing-Based Techniques

Slicing based RTS techniques have been proposed by

Agrawal [9], the objective of these techniques is to select a

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 67

set of test cases executed on a modified program gives a

different output.

It‟s basically about comparing the expanded programs in

case of any internal calls to the procedure version of the two

programs, the schematic differences between these two

programs will be analyzed to find the regression techniques

There are 4 slicing techniques,

1. Execution slice

2. Dynamic slice

3. relevant slice

4. approximate relevance slice

These techniques have been explained in detail in the

Agrawal article [9].

Critical Evaluation

These RTS techniques are precise as they exclude the test

cases which produces a different output. However,

Rothermel and Harlold [6] slicing techniques are not safe

when the changes are due to deletion of code statements.

2.2.3 Module Level Firewall-Based Techniques

Fire wall is a virtual boundary that helps testing to limit the

effected or modified modules, Leung and white [10] defined

firewall as the set of all modified modules in a program

along with those modules which interact with the modified

modules.

The firewall technique is based on the data and control

dependency among various modules of a program.

These techniques use a call graph to represent the control

flow of a program, Module M1 is called ancestor of M2, if

there exists a path in the call graph from Module M1 to M2,

and M2 is called as descendant of the modified modules.

Both direct ancestors and the direct descendants of the

modified modules are also included in the defining the

firewall to cover all the modified modules. The effected

modules can be identified by using test coverage

information.

Critical Evaluation

Firewall techniques are efficient because the technique

considers only modified modules in the firewall, and

narrows down the source code analysis to greater extent,

However these techniques are not safe as it does not select

testcases from outside the firewall and that may execute the

affected modules with in the firewall[10]

2.2.4 Differencing-Based Approaches

Differencing-based approaches as name suggested, these are

dependent on the differences between the programs, original

program and the modified program [11],These techniques

can be classified into two major classes

2.2.4.1 Modified Code Entity-Based Technique

In this technique, A program code is decomposed into

functional and nonfunctional code.

A functional code entity is executable like function or a

statement and nonfunctional code is not executable like

global variables or a macro, the test coverage information is

analyzed to determine the set of executables that are touched

by each test case.

2.2.4.2 Textual Differences-Based Technique

This technique does not use intermediate representation of

the programming, in this technique program is converted to

a differential i.e. canonical form before comparison. After

modification of the program should also follow the same

syntactic and formatting guidelines, this technique compares

the canonical form of the original and modified programs

Critical Evaluation

It is safe technique as the affected code drove the selection

of the test cases, however it is imprecise, if the code changes

are arbitrary. As it compares the differences between the

syntax, so there could be chances of getting repeated test

cases or unwanted test cases

2.2.5 Control Flow Analysis-Based Techniques

A few techniques have been proposed which analyze the

control flow of the input programs for selecting the

regression test cases they are of the below types

2.2.5.1 Cluster Identification Technique

Laski and Szermer [12] have proposed the cluster

identification technique. Cluster is a block which has a

single entry and exit that changes from one version to

another version.

Cluster uses control dependence information of original and

modified procedure to find a cluster.

2.2.5.2 Graph Walk-Based Technique

Rothermel and harrold [6] have proposed graph walk-based

technique which is based on the traversal of control flow

graphs of original and modified program. In this CFGs G

and G1 for program P and P1are constructed.

Then by instrumenting P, the execution trace of each test

case t, ET(p(T)) is recorded by depth first traversal.

This technique observers the program statements along with

identically labelled edges of G and G1 are equivalent or not.

The non-identical nodes are identified as dangerous edges.

Form the test suite all the test cases which can execute the

dangerous edges will be selected.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 68

2.2.5.3 DFA Model-Based Approach

Ball [14] has proposed DFA model, it constructs DFA M

from CFG G based on the below conditions:

1. Each node v in G corresponds to two states V1 and V2 of

M where v1 and v2 is connected by transition of basic block

associated with v in G

2. The set of edges in G constitutes the state transition in M

these two conditions ensure that the DFA accepts all

possible paths of G. It uses intersection graph to represent

CFG. It is based on the reach ability of edges in the

intersection graph.it considers the edge coverage criteria for

test case selection.

Critical Evaluation

These techniques are safe. However, these techniques are

not driven by the modification of the program rather

execution of the cluster and more over it is more expensive

in terms of computation

3. REGRESSION TEST SUITE

PRIORITIZATION TECHNIQUES

Test case prioritization does not minimize or filter the test

cases, the test engineer executes all the given test cases in

the order given by the prioritization technique or approach.

Once the selection of the test case have been done, then

need to identify the order of the test cases to be executed,

the order is important as defect needs to be uncovered as

soon as possible in order give more time to analyze the

defect and fix from the developers, uncovering defects at the

end of the testing may lead to unnecessary pressure on the

developer adding to that for various reason testing may need

to stop at any point of time by that time defects should get

uncovered as much as possible.

The first formal definition of the prioritization problem and

metrics were provided by Rothermel et al. and Elbaum et al.

And Kamna and Yudhvir singh have mentioned a novel

classification “3CMDHO” of test case prioritization

techniques[14].

3.1 Cost Based Techniques

These techniques are cost based techniques, this includes the

cost of analysis and prioritization. Many researchers have

proposed many techniques [15,16]

When the basic metric APFD applied to the model, it has

two limitations [17],the proposed model considers all the

faults to be equally severe, and it assumes the every costs

the same resource. Elbaum extended the basic metric APFD

to APFDc so that the metric can consider not only the rate of

fault detection but also the severity of detected faults and

their expenses [16].

Yoo and Harman [15] studied test suite minimization, their

multi objective approach is relevant to cost based approach.

Although time constraints impact will be different on these

techniques, it is always advisable to use some prioritization

techniques

3.2 Distribution Based Approach

These techniques reduce and prioritize the test cases on the

basis of profiles of the test cases in the multi-dimensional

profile space. [14].

Test cases can be classified into classes having the similar

profiles as per the properties. The grouping can help

whether there are any redundant test cases, and may suggest

some extreme or rare conditions that may cause failure, and

uncommon usage behaviors can also be indicated. In the

given class anyone of the test case is sufficient to execute,

however later points are about unusual behaviors and

conditions, so the test cases can be given high precedence so

that fault can be uncovered early.

3.3 History Based Approach

Sherriff et al. proposed a matrix analysis called singular

value decompositions [18], this prioritization depends on

three elements: Association clusters, relationship between

test cases and files and a modification vector. In order to fix

a defect, often a few files get modified together, this

approach cluster those files into same association cluster,

and each file is also associated with the test cases that effect.

And a system modification is represented as a vector in

which the value indicates a particular file has been modified

or not. This helps in assigning a priority to testcases which

are associated with the clustered files.

3.4 Requirement Based approach

Srikanth et al. proposed [19] the requirement based test case

prioritization approach, Test cases are mapped to the

software requirements that are tested by the testers and then

prioritize the requirements considering various factors like

complexity, customer assigned priority etc. And weights

will be calculated for each test case and re order them to

initiate the order of execution, highest weight will be

executed first. And another simple approach for test case

prioritization which was proposed earlier by establishing the

traceability matrix between the test cases and their

requirements.

3.5 Coverage Based Approach

The goal of the test case prioritization is to achieve a higher

fault detection rate with in less time to maximize the impact.

This will be observed red by the metric structural coverage.

This technique is to increase the chances of uncovering

faults early by maximizing the coverage for each test case.

Here coverage refers to code coverage.

Rothermel et al. proposed Fault exposing potential-total and

Fault exposing potential- additional

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 69

The branch total approach prioritizes the test cases refers to

the number of branches covered by the test case, and branch

additional number of branches covered by individual test

cases, same with statement -total and statement additional

approaches.

The fault exposing potential is a metric measured using a

program mutation, a seeded change will be introduced and

create a new modified program and this mutant will be

killed or uncovered by the testcase, by revealing the

difference between the original and modified program. The

score will be total mutants uncovered by total mutants

introduced.

Li et al. applied various meta heuristics for a test case

prioritization [20], they have considered hill climbing

algorithm, genetic algorithm, a greedy algorithm, and

additional greedy algorithm and compared with random

prioritization. They concluded that additional greedy

algorithms most efficient in general and they have measured

the efficiency based on APBC average percentage of block

coverage instead of Average percentage of fault detection.

4. CONCLUSION

In this paper, we presented the work done in the areas of test

case selection and prioritization with brief explanation of

each technique, this paper also describes that test case

selection and prioritization are closely related and provides a

holistic view of available techniques in the literature. It is

also clear that so much research has been done on this topic

and still researchers are interested in taking the techniques to

the next level by incorporating latest techniques.

Regression testing is very expensive, and many techniques

have been proposed for reducing the cost of regression

testing. And many researchers proposed many different

techniques and the challenge is to select the most cost-

effective technique for a regression testing session. And a

further works needs to be done in choosing the test cost

effective test selection and prioritization techniques using

latest techniques, and Adaptive test prioritization strategies

are one of them.

REFERENCES

[1] https://www.utest.com/articles/reducing-the-cost-of-

regression-testing-in-agile-development

[2] Marwah Alian , Dima Suleiman, Adnan Shaout Test

Case Reduction Techniques – Survey (IJACSA)

International Journal of Advanced Computer Science

and Applications, Vol. 7, No. 5, 2016

[3] https://www.justinmind.com/blog/reducing-software-

development-lifecycle-costs-5-top-tips/

[4] http://www0.cs.ucl.ac.uk/staff/M.Harman/stvr-shin-

survey.pdf

[5] http://glossary.istqb.org/search/regression%20testing

[6] G. Rothermel and M. Harrold. Selecting tests and

identifying test coverage requirements for modified

software. In Proceedings of the International

Symposium on Software Testing and Analysis, pages

169–184, August 1994.

[7] G. Rothermel and M. Harrold. Analyzing regression

test selection techniques. IEEE Transactions on

Software Engineering, 22(8):529–551, August 1996.

[8] Swarnendu Biswas and Rajib Mall,Regression Test

Selection Techniques: A Survey,Informatica 35

(2011) 289–321

[9] H Agrawal,J Horgan,E Krauser, and S.London

"Incremental regression testing",in IEEE

International conference on Software

Maintenance,1993.

[10] H. Leung and L. White. A study of integration testing

and software regression at the integration level.In

Proceedings of the Conference on Software

Maintenance,pages 290–300, November 1990.

[11] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A

system for selective regression testing. In

Proceedingsof the 16th International Conference on

Software Engineering, pages 211–222, May 1994.

[12] J. Laski and W. Szermer. Identification of program

modifications and its applications in software

maintenance. In Proceedings of the Conference on

Software Maintenance, pages 282–290, November

1992.

[13] T. Ball. On the limit of control flow analysis for

regression test selection. In ISSTA ‟98: Proceedings

of the 1998 ACM SIGSOFT international

symposium on Software testing and analysis, pages

134–142, 1998

[14] Kamna Solanki,Yudhvir Sing,"Novel Classification

of Test Case Prioritization Techniques",International

Jaournal of Computer Applications-August 2014.

[15] Yoo S, Harman M. Pareto efficient multi-objective

test case selection. Proceedings of International

Symposium on Software Testing and Analysis

(ISSTA 2007), ACM Press, 2007; 140–150.

[16] Elbaum SG, Malishevsky AG, Rothermel G.

Incorporating varying test costs and fault severities

into test caseprioritization. Proceedings of the

International Conference on Software Engineering

(ICSE 2001), ACM Press, 2001; 329–338.

[17] S. Yoo , M. Harman, Regression testing

minimization, selection and prioritization: a survey,

Software Testing, Verification & Reliability, v.22

n.2, p.67-120, March 2012 [doi>10.1002/stv.430]

[18] Sherriff M, Lake M, Williams L. Prioritization of

regression tests using singular value decomposition

with empirical change records. Proceedings of the

The 18th IEEE International Symposium on Software

Reliability (ISSRE 2007), IEEE Computer Society:

Washington, DC, USA, 2007; 81–90.

[19] Hema Srikanth, Laurie Williams, Jason Osborne,

"System Test Case Prioritization of New and

Regression Test Cases," in 4th International

Symposium on Empirical Software Engineering,

2005, pp. 62-71.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0712009 Received: 22-10-2018, Accepted: 01-12-2018, Published: 24-12-2018

Volume: 07 Issue: 12 | Dec-2018, Available @ www.ijret.org 70

[20] Li Z, Harman M, Hierons RM. Search Algorithms for

Regression Test Case Prioritization. IEEE

Transactions on Software Engineering 2007;

33(4):225–237.

BIOGRAPHIE

Kiran Jammalamadaka, received his MCA from Acharya

Nagarjuna University, India. He is currently associated with

GE India as a Software Manager. His interests include

Software engineering, Agile->Scrum and automated

debugging.

