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Abstract 
Numerical models are widely used to characterize the vehicle dynamics in order to control the active suspension process. 

However, little information is available on the evaluation of performance when the model parameters do not match real vehicle 

configurations. Obtaining estimates of the influence of these factors on the system control requires statistical analysis, which 

generates stochastic data on the issue under consideration. A sensitivity analysis of the test data is one the most successful 

approaches to this type of problem. A Monte Carlo simulation with uncertainty parameters for mass, front and rear stiffness and 

damping was used with design of experiments analysis to evaluate the performance of three methods of active suspension control 

(PID, MPC and LQR). In this study a sensitivity analysis was developed to determine the relevant factors and the cross-

correlation effects of their features. The methodology is applied to a model of a passenger car, which is excited by an asymmetric 

speed bump and uneven road profile. The changes in the behavior of the main parameters of each controller were observed and 

evaluated as improved for the PID and MPC controllers and worsened for the LQR controller when compared to the designed 

condition. 
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1. INTRODUCTION 

Suspension control has been the focus of many studies to 

improve the dynamic behavior of vehicles aimed at 

increasing automotive safety and comfort. The application 

of active or semi-active suspension control has expanded 

and it is used to improve ride comfort, by isolating the 

chassis from road excitations, and to guarantee the road 

holding characteristics. With the aim of reducing the motion 

of the sprung mass, active control is used to store, dissipate 

or even generate energy, whereas semi-active control only 

dissipates energy [1]. As examples, some researchers [2, 3] 

have used suspension control to reduce the vibration of the 

vehicle passengers. The model considers the dynamics of 

the person with reference to the head acceleration. The 

method employed was linear H∞ control, which was more 

effective than a single controlled vehicle model. Also, the 

application of adaptive strategies has been used to improve 

the control methods. Specifically, [4] compares different 

controllers, such as proportional-integral-derivative (PID) 

and linear quadratic regulator (LQR), with a proposed 

method using feedback error learning (FEL) on a quarter 

vehicle model. This method employs a fuzzy neural network 

with LQR control to optimize the suspension system. The 

results indicate better conditions for ride comfort, steering 

and stability of the vehicle dynamics. In models applied in 

previous research, preview active suspension control was 

used to improve performance based on measurements of 

road irregularities [5, 6]. For instance, [7] evaluates two 

types of prediction in the controller: a look-ahead preview 

with information on the irregularities of the track ahead of 

the vehicle; and a wheelbase preview, to improve the 

performance of the rear suspension based on information 

obtained from the front wheels. Suspension control was 

simulated based on the optimal control theory for a half-car 

model. The results indicate that better performance of the 
active suspension can be obtained with a combination of the 

two methods, wheelbase and look-ahead previews. Thus, 

suspension control is important to vehicle engineering and 

some of the techniques available in this regard are listed in 

Table 1, [8-14]. 

 

Table 1: Suspension control methods described in the 

literature 

Literature Control 

concept 

Model Control Year 

[8] LQ theory Full 

vehicle 

Semi-

active 

2013 

[9] LPV theory Quarter 

car 

Semi-

active 

2008 

[10] MPC Half car Semi-

active 

2006 

[11] Mixed H2 

and H∞ 

Full 

vehicle 

Semi-

active 

2010 

[12] Fault-

tolerant 

robust H∞ 

Full 

vehicle 

Active 2015 

[13] PID Quarter 

car 

Active 2012 

[14] Modal non-

linear 

skyhook 

Model 

free 

Semi-

active 

2007 
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The simulations in the cited studies use a quarter-car (single 

corner), half-car or full-car model as a base model, with 2, 4 

and 7 degrees of freedom (dof), respectively. As another 

example of this type of modelling, on analyzing a complete 

heavy commercial vehicle, in [15] a semi-active suspension 

control was simulated using a multibody model with the 

cabin and trailer models from modal skyhook control. 

Therefore, there are several approaches to controlling the 

vehicle suspension; however, most of them require an 

accurate plant model. Thus, one of the challenges in 

suspension control is tuning the model parameters. In many 

studies today, the main challenge is dealing with the model 

uncertainties, seeking online compensation for unknown 

nonlinearities through adaptive control [16, 17]. 

Nevertheless, in the commercial vehicle context, traditional 

methods based on a vehicle model are still frequently 

applied. Thus, when developing a control technique, an 

understanding of the model parameters and their sensitivity 

is required to obtain a robust controller setup. 

 

In this context, this article reports a study on the influence of 

the model parameters on the suspension control 

performance, where numerical experiments were conducted 

to obtain a statistical understanding of the system behavior. 

A Monte Carlo simulation and design of experiments (DoE) 

method were employed in this analysis. The vehicle model 

has seven degrees of freedom and is controlled by three 

types of controllers: proportional-integral-derivative (PID), 

model prediction control (MPC) and linear quadratic 

regulator (LQR) methods. 

 

2. MATHEMATICAL FORMULATION 

In the area of numerical simulation, models with seven dof 

have proven valuable for predicting the dynamics of 

vehicles. For example, Fig. 1 illustrates a vehicle with a 

sprung mass (ms) and four unsprung masses (m1, m2, m3 

and m4) from the wheels. The scheme also represents the 

suspension system with stiffness (ki) and damping (ci) for 

corners i = 1, 2, 3, 4. Tire stiffness and damping of the 

wheels are described by kt  and ct , respectively. 

 

 
Fig 1: Illustration of vehicle model with seven dof and its 

dimensions 

 

2.1 Vehicle Dynamics 

The equation of motion, derived from this seven dof model, 

represents the vehicle motions of pitch, bounce and roll and 

the vertical movement of the wheels. The differential 

equation solution generates the time response for the vertical 

movement of the sprung mass (z), angular displacement 

around the x-axis (θx) and the y-axis (θy ) and the vertical 

movement of the unsprung mass (x1, x2, x3 and x4). 

According to this model, the control force of the active 

suspension is attributed to input excitation  u(t)  and the 

other force,  f(t) , is the road excitation force. Thus, the 

equation of motion is written as: 

 

 𝑀 .  𝑥  +  𝐶 .  𝑥  +  𝐾 .  𝑥 =  𝑓(𝑡) +  𝑢(𝑡) , (1) 

 

where, 

 x =  z   θy    θx    x1    x2   x3   x4 , and  x   and  x   are the 

first and second time derivates of  x , 
 M = diag ms    Jy    Jx    m1    m2    m3   m4   is the mass 

matrix, 

 

 

 

 

 C =

 
 
 
 
 
 
 

c11 c12 c13 −c1 −c2 −c3 −c4

c21 c22 c23 c1. d3 c2. d3 −c3. d4 −c4. d4

c31 c32 c33 −c1. d1 c2. d2 −c3. d1 c4. d2

−c1 c1. d3 −c1. d1 ct + c1 0 0 0
−c2 c2. d3 c2. d2 0 ct + c2 0 0
−c3 −c3. d4 −c3. d1 0 0 ct + c3 0
−c4 −c4. d4 c4. d2 0 0 0 ct + c4  

 
 
 
 
 
 

 is the damping matrix, 

 

 K =

 
 
 
 
 
 
 

k11 k12 k13 −k1 −k2 −k3 −k4

k21 k22 k23 k1. d3 k2. d3 −k3. d4 −k4. d4

k31 k32 k33 −k1. d1 k2. d2 −k3 . d1 k4. d2

−k1 k1 . d3 −k1. d1 kt + k1 0 0 0
−k2 k2 . d3 k2. d2 0 kt + k2 0 0
−k3 −k3. d4 −k3. d1 0 0 kt + k3 0
−k4 −k4. d4 k4. d2 0 0 0 kt + k4 

 
 
 
 
 
 

 is the stiffness matrix, 
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 f(t) =
 0   0   0   kt . xt1 + ct . x t1    kt . xt2 + ct . x t2     kt . xt3 +
ct.xt3    kt.xt4+ct.xt4T is the vector of excitation forces on 

the wheels and  u(t)  is the control force of the suspension, 

with  xti  being the base excitation from road irregularities 

for suspensions 1, 2, 3 and 4. 

 

The matrix elements are: 

 

𝑐11 =  𝑐𝑖
4
1 , 

𝑐12 = 𝑐21 = −𝑐1 . 𝑑3 − 𝑐2 . 𝑑3 + 𝑐3. 𝑑4 + 𝑐4 . 𝑑4, 
𝑐13 = 𝑐31 = 𝑐1. 𝑑1 − 𝑐2 . 𝑑2 + 𝑐3. 𝑑1 − 𝑐4 . 𝑑2, 
𝑐22 = 𝑐1. 𝑑3

2 + 𝑐2. 𝑑3
2 + 𝑐3. 𝑑4

2 + 𝑐4. 𝑑4
2, 

𝑐23 = 𝑐32 = −𝑐1 . 𝑑1. 𝑑3 + 𝑐2. 𝑑2 . 𝑑3 + 𝑐3. 𝑑1 . 𝑑4 −
𝑐4 . 𝑑2 . 𝑑4, 
𝑐33 = 𝑐1. 𝑑1

2 + 𝑐2. 𝑑2
2 + 𝑐3. 𝑑1

2 + 𝑐4. 𝑑2
2. 

(2) 

 

𝑘11 =  𝑘𝑖
4
1 , 

𝑘12 = 𝑘21 = −𝑘1 . 𝑑3 − 𝑘2. 𝑑3 + 𝑘3 . 𝑑4 + 𝑘4 . 𝑑4, 
𝑘13 = 𝑘31 = 𝑘1. 𝑑1 − 𝑘2 . 𝑑2 + 𝑘3 . 𝑑1 − 𝑘4. 𝑑2, 
𝑘22 = 𝑘1 . 𝑑3

2 + 𝑘2. 𝑑3
2 + 𝑘3. 𝑑4

2 + 𝑘4 . 𝑑4
2, 

𝑘23 = 𝑘32 = −𝑘1 . 𝑑1. 𝑑3 + 𝑘2. 𝑑2 . 𝑑3 + 𝑘3 . 𝑑1. 𝑑4 −
𝑘4. 𝑑2 . 𝑑4, 
𝑘33 = 𝑘1 . 𝑑1

2 + 𝑘2. 𝑑2
2 + 𝑘3. 𝑑1

2 + 𝑘4 . 𝑑2
2. 

(3) 

 

The magnitude of the torque on the x-axis (Mx) and y-axis 

(My) of the sprung mass is found by a geometric 

transformation matrix (T) from suspension forces: 

 

 
𝑀𝑥

𝑀𝑦
 =  

𝑑1 −𝑑2 𝑑1 −𝑑2

−𝑑3 −𝑑3 𝑑4 𝑑4
  

𝑓1

𝑓2

𝑓3

𝑓4

 =  𝑇 .  

𝑓1

𝑓2

𝑓3

𝑓4

 , 

(4) 

 

where, f1, f2,  f3,  f4 are the suspension forces at the vehicle 

corners (sprung mass). 

 

The values used in the numerical simulations of a full 

vehicle excited by a transient excitation from vehicle tire 

contact to evaluate the influence of the active suspension on 

the vibration are shown in the Table 2. 

 

Table 2: Seven-dof car parameters 

Variable Symbol Value 

Sprung mass 𝑚𝑠 678.00kg 

Front vehicle unsprung 

mass 
𝑚1, 𝑚2 31.50kg 

Rear vehicle unsprung 

mass 
𝑚3, 𝑚4 44.50kg 

Mass moment of 

inertia x-axis 
𝐽𝑥  850kg.m² 

Mass moment of 

inertia y-axis 
𝐽𝑦  2.40x10

3
kg.m² 

Front suspension 

stiffness 
𝑘1, 𝑘2 1.69x10

4
N/m 

Front suspension 

damping coefficient 
𝑐1, 𝑐2 1.55x10

3
N.s/m 

Rear suspension 

stiffness 
𝑘3, 𝑘4 1.90x10

4
N/m 

Rear suspension 

damping coefficient 
𝑐3, 𝑐4 3.14x10

3
N.s/m 

Tire stiffness 𝑘𝑡  1.90x10
5
N/m 

Tire damping 

coefficient 
𝑐𝑡  0.00 

 

2.2 Vehicle Decoupled Controller 

A decoupled controller is based on a quarter car model, 

which considers two vibration dof and it sets out a sprung 

mass (ms) and unsprung mass (mus ) motion (Fig. 2). The 

idea is to control independently each suspension with this 

model and select the optimal simulated parameters to find 

ways to reduce the vibration in the whole vehicle. To 

simulate the results for the control of the 7-dof vehicle, four 

2-dof controls are used simultaneously (one for each 

suspension). This strategy is a good way to reduce the 

processing time and model complexity of the controller. 

 

 
Fig 2: Quarter car model. 

 

Similarly to the 7-dof model, the motion equation of the 2-

dof model is written as 

 

 
𝑚𝑠 0
0 𝑚𝑢𝑠

 .  
𝑥 𝑠
𝑥 𝑢𝑠

 +  
𝑐 −𝑐
−𝑐 𝑐 + 𝑐𝑡

 .  
𝑥 𝑠
𝑥 𝑢𝑠

 +

 
𝑘 −𝑘
−𝑘 𝑘 + 𝑘𝑡

 .  
𝑥𝑠

𝑥𝑢𝑠
 =  

𝑢(𝑡)

−𝑢 𝑡 + 𝑓(𝑡)
 , 

(5) 

 

where c and ct  are the suspension and tire damping 

coefficients, respectively, k and kt  are the suspension and 

tire stiffness, respectively, u t  is the controller force, and 

f t  is the external excitation force on the tire. The numbers 

of dof are xs  and xus  for the displacement of the sprung 

mass and unsprung mass, respectively. The quarter car 

parameters are shown in Table 3. 

 

Table 3: quarter car parameters 

Variable Symbol Front vehicle Rear vehicle 

Sprung mass 𝑚𝑠 169.50kg 169.50kg 

Unsprung 

mass 
𝑚𝑢𝑠  31.50kg 44.50kg 

Suspension 

damping 

coefficient 

𝑐 1.55x10
3
Ns/m 3.14x10

3
Ns/m 
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Tire damping 

coefficient 
𝑐𝑡  0.00 0.00 

Suspension 

stiffness 
𝑘 1.69x10

4
N/m 1.90x10

4
 

Tire stiffness 𝑘𝑡  1.90x10
5
N/m 1.90x10

5
N/m 

 

3. CONTROLLER METHODS 

The control force, u t , is calculated using one of the 

controller algorithms. The system response from the 

external excitation force f t  and control force u t  is the 

input to the controller. In this paper, the three algorithms 

used are (a) a PID control, (b) an explicit model predictive 

control (MPC) and (c) a linear quadratic regulator (LQR), 

which are written in the Matlab program based on a desired 

signal (d∗ t ), according to the formulations and conditions 

described in the following sections. In this case, the desired 

signal, sprung mass vibration, is d∗ t = 0. 

 

3.1 PID control 

The proportional-integral-derivative (PID) control is 

described by a force determined as 

 

𝑢 𝑡 = 𝐾.  𝑒 𝑡 + 𝑇𝑑 .
𝑑𝑒  𝑡 

𝑑𝑡
+

1

𝑇𝑖
.  𝑒 𝜏 . 𝑑𝜏

𝑡

0
 . (6) 

 

where, e t  is the control error between the system response 

(d) and the reference signal or set point (d∗). In relation to 

the controller constants, K is a proportional gain, Td  a time 

derivative and Ti  a time integral. In the discrete form we 

have the following: 

 

𝑢 𝑘 =

𝐾𝑝 . 𝑒 𝑘 + 𝐾𝑑 .
𝑒 𝑘 −𝑒 𝑘−1 

∆𝑡
+

                +𝐾𝑖 .  𝑒 𝑛 . ∆𝑡𝑘
𝑛=1 , 

(7) 

𝑒 𝑘 = 𝑑∗ 𝑘 − 𝑑[𝑘]. (8) 

 

where, Kp = K, Kd = K. Td  and Ki =
K

Ti
 are the gains of the 

proportional, derivative and integral terms. In the 

simulations, the numerical values for the constants are 

Kp = 10000, Kd = 8000 and Ki = 4000. 

 

3.2 Explicit Model Predictive Control 

The model predictive control (MPC) is a control method 

commonly employed by researchers and engineers for 

academic and industrial research and development, mainly 

in advanced process control. The unconstrained MPC 

method presented here is based on [18]. Rewriting the 

motion equation of the 2-dof system in a state space form 

gives the state equation (9) and output equation (10): 

 

 𝑞 4𝑥1 =  
𝑥 2𝑥1

𝑥 2𝑥1
 =

 
𝑂2𝑥2 𝐼2𝑥2

−𝑀2𝑥2
−1 . 𝐾2𝑥2 −𝑀2𝑥2

−1 . 𝐶2𝑥2
 .  

𝑥2𝑥1

𝑥 2𝑥1
 +

(9) 

 
02𝑥1

𝑀2𝑥2
−1 . 𝐿2𝑥1

 .  𝑢1𝑥1   , 

 𝑑 =  𝐶𝑠𝑠 .  𝜙 +  𝐷𝑠𝑠 .  𝑢 , (10) 

 

where, O2x2 =  
0 0
0 0

  and O2x1 =  
0
0
  are the zero matrix 

and vector, respectively, L =  1 0 T  is the actuator 

placement,  Css   is the output matrix and  Dss   is the direct 

transition matrix. By representing as a function of state and 

input matrix, respectively: 

 

𝐴4𝑥4 =  
𝑂2𝑥2 𝐼2𝑥2

−𝑀2𝑥2
−1 . 𝐾2𝑥2 −𝑀2𝑥2

−1 . 𝐶2𝑥2
   and   

𝐵4𝑥1 =  
02𝑥1

𝑀2𝑥2
−1 . 𝐿2𝑥1

 , 

(11) 

 

the first equation is written as: 

 

 𝑞 4𝑥1 =  𝐴4𝑥4 .  𝑞4𝑥1 +  𝐵4𝑥1 .  𝑢1𝑥1 . (12) 

 

The discrete time equation can then be expressed, sampled 

at equal intervals ∆t, with Dss = [0], as: 

 

 𝑞[𝑘 + 1|𝑘] =  𝛷 .  𝑞[𝑘|𝑘 − 1] +  𝛤𝑢  .  𝑢[𝑘|𝑘 −
1] +𝛤𝑒.𝑒[𝑘|𝑘], 

(13) 

 𝑑[𝑘|𝑘 − 1] =  𝐶𝑠𝑠 .  𝑞[𝑘|𝑘 − 1] . (14) 

 

And 

 

 Φ4x4 = eA.∆t =  
 A.∆t n

n!

∞
n=0  is the matrix exponential. For 

small time steps, eA.∆t ≅ I4x4 + A4x4. ∆t, where I4x4 is the 

identity matrix; 

 

 Γu = A−1.  eA.∆t − 1 . B is a constant (4x1) vector; 
 Γe  is a constant estimator gain vector (4x1); and 

e k k = d∗ k − d k k − 1], which d∗[k] is the desired 

output signal. 

 

To define the force control for each time instant, a control 

objective function is written as 

 

𝐽𝑀𝑃𝐶 =
1

2
 𝜓 𝑘 − 𝜓∗[𝑘] 𝑇 . 𝑄.  𝜓 𝑘 − 𝜓∗ 𝑘  +

1

2
𝑢𝑇 𝑘 . 𝑅. 𝑢 𝑘 , 

(15) 

 

where, 

 

ψ k =  dT k + 1 k      dT k + 2 k     …     dT k + p k  
T
  

 

and 

 

ψ∗ k =
[d∗T k + 1 k      d∗T k + 2 k     …     d∗T k + p k  ]T  are 

(px1) vectors. p is the number of step-ahead predictions of 

the output signal, known as the prediction horizon. 
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Based on minimizing equation (15), the optimal predictive 

control force is given by 

 

𝑢 𝑘 =
 𝐻𝑇 . 𝑄𝑀𝑃𝐶 . 𝐻 +
𝑅𝑀𝑃𝐶−1.𝐻𝑇.𝑄𝑀𝑃𝐶.𝑌𝑧.𝑞𝑘𝑘−1+𝑌𝑒.𝑒[𝑘|𝑘], 

(16) 

 

The elements of matrix H (pxm) are given by hi =
C. Φi−1. Γu  (1x1) and written as equation (17), where m is 

the control horizon, step-ahead prediction of the force. 

 

𝐻 =

 
 
 
 
ℎ1 0 ⋯ 0
ℎ2 ℎ1 ⋯ 0

⋮ ⋮
ℎ𝑝 ℎ𝑝−1 ⋯ ℎ𝑝−𝑚+1 

 
 
 
. 

(17) 

 

And 

 

𝑌𝑧 =   𝐶. 𝛷 𝑇       𝐶. 𝛷2 𝑇      ⋯      𝐶. 𝛷𝑝 𝑇 𝑇  a matrix 
(𝑝𝑥4), 
𝑌𝑒 =

   𝐶. 𝛤𝑒  
𝑇       𝐶.  𝐼 +

𝛷.𝛤𝑒𝑇     ⋯     𝐶.𝑘=1𝑝𝛷𝑘−1.𝛤𝑒𝑇 𝑇 a vector (𝑝𝑥1), 

𝑄𝑀𝑃𝐶 =  

𝑞 ⋯ 0

⋮ ⋮
0 ⋯ 𝑞 

  a matrix (𝑝𝑥𝑝), for 2-dof 

problem, 𝑞 =  
1 0
0 0

 , 

𝑅𝑀𝑃𝐶 = 𝜆.  
1 ⋯ 0
⋮ ⋮
0 ⋯ 1

  a matrix ( 𝑝 − 𝑚 + 1  𝑥  𝑝 −

𝑚+1). 
 

λ is a weighting on the rate of change of the inputs. For 

small penalties, the controller tends to give higher values 

and is less robust, while for large penalties it becomes a 

more robust controller but with a slow response [19]. The 

configuration values of the controller for the simulations 

consist of a state prediction horizon of p = 100, control 

horizon of m = 20 and weighting of λ = 5x10−4. 

 

3.3 Linear Quadratic Regulator Control 

The linear quadratic regulator (LQR) controller is one of the 

optimal control techniques used in engineering design and 

applications. The algorithm chooses weighting factors as a 

matrix of a linear state-feedback gain [20]. Mathematically, 

a LQR is defined as a cost function by 

 

𝐽𝐿𝑄𝑅 =    𝑞 𝑇 .  𝑄𝐿𝑄𝑅  .  𝑞 +  𝑢 𝑇 .  𝑅𝐿𝑄𝑅 .  𝑢  𝑑𝑡, (18) 

 

where, QLQR  (n x n) and RLQR  (r x r) are a positive-definite 

Hermitian matrix, and a performance index is described by 

 

𝐽𝐿𝑄𝑅 =   𝐾𝐿𝑄𝑅 𝑞, 𝑢  . 𝑑𝑡, (19) 

 

where, 

𝑐ℎ𝑜𝑜𝑠𝑒 𝐾𝐿𝑄𝑅  𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽𝐿𝑄𝑅 =

   𝑞 𝑇 .  𝑄𝐿𝑄𝑅  .  𝑞 +  𝑢 𝑇 .  𝑅𝐿𝑄𝑅  .  𝑢  𝑑𝑡. 

(20) 

 

The optimal controller force, for any initial state, is given as 

 

 𝑢 𝑡  = − 𝐾𝐿𝑄𝑅  .  𝑞 . (21) 

 

For the optimization problem the following expression is 

chosen, where P is a symmetric and positive-definite matrix. 

 

𝑞𝑇 .   𝑄 +  𝐾𝐿𝑄𝑅  
𝑇

.  𝑅 .  𝐾𝐿𝑄𝑅   .  𝑞 =  

= −2.  𝑞 𝑇 .  𝑃 .  𝑞  . 

(22) 

 

For the negative real parts of the eigenvalues of  A −
 B .  KLQR  , the system is asymptotically stable and thus the 

first term is zero, q ∞ → 0. Therefore, 

 

𝐽𝐿𝑄𝑅 =  𝑞(0) 𝑇 .  𝑃 .  𝑞(0) . (23) 

 

In order to minimize JLQR , where q(0) is a constant vector, 

the matrix  P  should be minimized with respect to KLQR : 
∂P

∂KLQR
= 0. Hence, 

 𝐾𝐿𝑄𝑅  =  𝑅 −1.  𝐵 𝑇 .  𝑃 . (24) 

 

The expression in equation (24) gives the static LQR gain 

matrix and the matrix  P  is obtained by a backward 

numerical solution of the algebraic Riccati equation, using 

standard numerical tools in linear algebra: 

 

𝐴𝑇 . 𝑃 + 𝑃. 𝐴 − 𝑃. 𝐵. 𝑅−1. 𝐵𝑇 . 𝑃 + 𝑄 = 0. (25) 

 

The input matrix is assumed as Q = 1x105.  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  

and R = 2.5x10−4.  
1 0
0 1

 . 

 

4. ROAD EXCITATION FORCES 

The roughness of a road is considered a source of external 

excitation of the vehicle with, for instance, forces acting on 

the tire. In this simulation, an asymmetrical excitation is 

used for the passage of the right wheels of a vehicle over a 

speed bump (case 1) and a vehicle passing over an uneven 

road profile (case 2), as seen in Fig. 3. The longitudinal 

speed of the vehicle is constant at 20km/h. The bump model, 

case 1, is a sinusoidal profile with a wavelength of 2. l =
3.0m and height of h = 0.080m. The (right) frontal wheel 

travels a distance of 0.5m before the excitation starts. To 

represent the general road excitation in case 2, a white noise 

signal is filtered through a low-pass first-order filter. The 

cutoff frequency is fc = fo
′ . v, where fo

′  [cycle/m] is a cutoff 

spatial frequency and v [m/s] is the constant velocity of the 
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vehicle. The power spectral density (PSD) of the road 

displacement (Sr) is given by equation (26), [21]: 

 

𝑆𝑟 𝑓
′ = 𝑆𝑜 .  

1/𝑓 ′ 2

1+ 𝑓0
′ /𝑓′ 

2 . 
(26) 

 

The parameter So  is a roughness magnitude and it is 

calculated using the signal standard deviation σ as So =
 σ. fo

′  2. The f ′ [cycles/m] is the spatial frequency, a 

division between frequency and velocity, f ′ = f/v. 

 

The road excitation frequency in the range of 0.11Hz is 

given by So = 1.25x10−2 and fo
′ = 0.02cycle/m at a speed 

of 20km/h. 

 

 
Fig 3: Profile of the speed bump (case 1) and uneven road 

excitation (case 2) 

 

5. RESULTS AND DISCUSSIONS 

This section reports the vehicle response in cases 1 and 2 in 

the dynamic simulation of 7 dof and using three different 

control methods. A delay time of 10ms in the control force 

was employed in the numerical integration using the 

Newmark integrator with a sample rate of 1000Hz. The data 

collected were analyzed using the vibration displacement of 

the vehicle center of gravity (CG) and the integral squared 

error (ISE) of the controllers. Additionally, a sensitivity 

analysis was carried out to observe the interdependence and 

correlation between the controller parameters. For these 

evaluations, a design of experiments was employed with the 

Monte Carlo simulation. 

 

5.1 Vehicle Response from 7-dof Model 

The focus of the active suspension, in this case, is to provide 

vibration control and improve the internal comfort by 

reducing the oscillatory movements of the sprung mass. Fig. 

4 shows the displacement of the vehicle center of gravity 

(CG) – bounce (heave) movement – on passing over the 

right side bump (case 1) and compares how the different 

controllers act. This illustrates the variation that can be 

generated in the controlled system, where the vehicle 

response with passive suspension has a higher vibration 

peak, while the controllers reduce this amplitude. The PID 

and MPC controls have similar behaviors, decreasing the 

overshoot to almost a third and shortening the settling time 

by half. In general, the response with the LQR control was 

of lower amplitude, but it had a low decay ratio. 

 

 
Fig 4: Displacement of vehicle center of gravity or bounce 

during passage over bump for different control methods 

 

In order to analyze a random excitation response for each 

controller, an uneven road profile was applied to the 7-dof 

model. The road profile spectrum (power spectrum density) 

is provided in Fig. 5 and the road classification provided by 

ISO 8608 lies between letters “A” and “H”. For this 

simulation, the PSD profile operates at levels “C” and “D”, 

between an average and poorly paved road profile [22]. 

 

At the end of this simulation of the random profile 

excitation, the vehicle CG displacements in Fig. 6, 

controlled by these methods, are noticeably smoother and 

have lower amplitude compared with the passive 

suspension. Once again, the vibration attenuations of the 

PID and MPC controllers were found to be similar. 

 

Interestingly, the performance of the controllers is analyzed 

with the integral squared error (ISE) as an index given by 

 

𝐼𝑆𝐸 =  𝑒2 𝑡 . 𝑑𝑡
𝑇

0
, (27) 

 

in which e t  is the error between the desired and actual 

output values. 

 

The ISE observed as a result of cases 1 and 2 in Table 4 

shows attenuations of over 70%, when compared with the 

passive suspension. Based on these results, the three control 

techniques investigated in this study achieved valuable 

dynamic control, attenuating the sprung mass vibration. 

 

It is important to note that these results are specific to the 

quarter car model used in these simulations. Thus, 

application to cases other than the values of the 2-dof model 

parameters employed here may lead to different responses, 

resulting from variations in the more sensitive parameters, 

limiting the effectiveness of the controllers. 

Table 4: Comparisons between different control methods 

considering the integral squared error (ISE) 
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ISE Speed 

bump 

(𝒙𝟏𝟎−𝟔) 

Attenuati

on 

Uneven 

road 

(𝒙𝟏𝟎−𝟑) 

Attenuati

on 

W/o 

control 

79.16 – 21.97 – 

PID 

control 

9.35 88.2% 3.71 83.1% 

LQR 

control 

9.81 87.6% 5.57 74.6% 

MPC 

control 

6.51 91.8% 2.88 86.9% 

 

5.2 Sensitivity of the Model Parameters 

Since the uncertainties associated with the vehicle are real, a 

non-adaptive controller method may be sensitive to 

variations in the system characteristics. For instance, the 

sprung mass and the position of the CG are far from being 

constant values. Under such conditions, the controller 

performance can be inconsistent, as observed in simulation 

tests. Thus, the aim of this study was to apply a generic 

methodology to evaluate the controller, in an environment 

with a high level of uncertainty, via a numerical simulation 

using the Monte Carlo method and design of experiment 

(DoE) tools, sometimes called the numerical design of 

experiments (NDoE), instead of a combination of costly 

numerical modelling and numerous experiments [23]. In 

recent years, DoE has been recognized as an important tool 

for validation and system characterization, applying 

statistical approaches to experimental design and analysis. 

The behavior of an input parameter and its effect on a 

response can be investigated separately, and interactions 

between different factors that affect the system output can 

be highlighted. 

 

 
Fig 5: Power spectrum density for the uneven road profile 

 

 
Fig 6: Displacement of the vehicle center of gravity or heave for the random road profile with different control methods 

 

 

The Monte Carlo method is applied to compute a stochastic 

simulation with seven dof of vehicle vibration with PID, 

LQR and MPC controllers. The simulation employs the 

application of random numbers, which are normally 

distributed values for the front and rear stiffness, front and 

rear damping coefficients and sprung mass (Table 5). In this 

way, sampling experiments, associated with the uncertain 

behavior of the system, can be generated. In order to gain a 

better understanding of the effect of variations in the system 

characteristics on the performance of an active suspension 

controller, the design of experiments provides an important 

method to identify the critical input parameters. In this case, 

a 25 full-factorial design was applied with 10 replications 

for the parameters described in Table 5. 

Table 5: Mean and standard deviation of two levels of 

Monte Carlo inputs 
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Factor Variable Mean 

Level 1 

Mean 

Level 2 

Standard 

Deviation 

(a) Sprung 

mass 

(kg) 

678.0 1078.0 100.0 

(b) Front 

stiffness 

(N/m) 

13,700.0 16,878.0 1,500.0 

(c) Rear 

stiffness 

(N/m) 

15,810.0 19,000.0 1,500.0 

(d) Front 

damping 

(Ns/m) 

1,300.0 1,554.0 150.0 

(e) Rear 

damping 

(Ns/m) 

2,700.0 3,144.0 150.0 

 

The DoE evaluated with two levels receives lower (-1) and 

higher (+1) values for each parameter and the statistical 

correlation is calculated. The parameter sensitivity can be 

obtained by linear regression in the form of: 

 

𝑌 = 𝑋. 𝛽 + 𝜖, (28) 

 

where, X is the DoE matrix from Table 6 (see Appendix for 

table of results), β are the coefficients of the surface lines, ϵ 

is the regression error and Y is the ISE value from the 

controlled suspension output signals. 

 

Table 6: DoE matrix (-1) represents the lower level and 

(+1) the higher level of the parameters 

 Sprun

g 

mass 

(𝒎𝒔) 

Front 

stiffnes

s 

(𝒌𝟏 =
𝒌𝟐) 

Rear 

stiffnes

s 

(𝒌𝟑 =
𝒌𝟒) 

Front 

dampin

g 

(𝒄𝟏 =
𝒄𝟐) 

Rear 

dampin

g 

(𝒄𝟑 =
𝒄𝟒) 

Test

s 

𝒂 𝒃 𝒄 𝒅 𝒆 

1 -1 -1 -1 -1 -1 

2 -1 -1 -1 -1 +1 

3 -1 -1 -1 +1 -1 

4 -1 -1 -1 +1 +1 

5 -1 -1 +1 -1 -1 

6 -1 -1 +1 -1 +1 

7 -1 -1 +1 +1 -1 

8 -1 -1 +1 +1 +1 

9 -1 +1 -1 -1 -1 

10 -1 +1 -1 -1 +1 

11 -1 +1 -1 +1 -1 

12 -1 +1 -1 +1 +1 

13 -1 +1 +1 -1 -1 

14 -1 +1 +1 -1 +1 

15 -1 +1 +1 +1 -1 

16 -1 +1 +1 +1 +1 

17 +1 -1 -1 -1 -1 

18 +1 -1 -1 -1 +1 

19 +1 -1 -1 +1 -1 

20 +1 -1 -1 +1 +1 

21 +1 -1 +1 -1 -1 

22 +1 -1 +1 -1 +1 

23 +1 -1 +1 +1 -1 

24 +1 -1 +1 +1 +1 

25 +1 +1 -1 -1 -1 

26 +1 +1 -1 -1 +1 

27 +1 +1 -1 +1 -1 

28 +1 +1 -1 +1 +1 

29 +1 +1 +1 -1 -1 

30 +1 +1 +1 -1 +1 

31 +1 +1 +1 +1 -1 

32 +1 +1 +1 +1 +1 

 

Testing with every combination of the five factors shown in 

Table 6 required simulation with 32 conditions. The total 

number of simulations for 10 replications is 320 runs. The 

results of the t-statistical analysis for a two-tail distribution, 

the beta values determined (linear regression coefficients) 

and the p-values for each parameter and its cross-

correlation, are given in Table 7 (see Appendix for table of 

results). The controller parameters were found to have a 

very significant impact on the performance, with a p-value 

of less than α = 5% (95% of the confidence interval for β j). 

This sensitivity parameter can be defined as the average 

response to the factor, changing between low and high 

levels. This is summarized by the statement: 

 

 null hypothesis 𝐻𝑜 :   𝛽 𝑗 = 0 

 and alternative hypothesis, 𝐻𝑎 :   𝛽 𝑗 ≠ 0 

(29) 

 

where, Ho  is rejected if  to  > t
 
α

2
,n−k−1 

, otherwise the null 

hypothesis is accepted. n is the number of observations and 

k the number of variables. 

 

It is clear from Table 7 that for each controller the most 

sensitive parameters differ. Front stiffness (b) and rear 

damping (e) had significant effects in terms of the ISE value 

for the PID control, while sprung mass (a), front stiffness (b) 

and rear damping (e) were important for the MPC control, 

and sprung mass (a) for the LQR control. In addition, this 

study permits the quantification of parameter interactions in 

cross product terms, as found for the sprung mass and front 

stiffness of the PID and LQR controls. Other parameters 

show no or little interaction. 

 

 

 

 

 

 

 

 

Table 7: Linear regression t-tests for PID, MPC and LQR controllers in case 2. Significance for p-value < 0.05 
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 PID MPC LQR 

Variable 𝜷 𝒋 x 𝟏𝟎𝟑 p-value 𝜷 𝒋 x 𝟏𝟎𝟑 p-value 𝜷 𝒋 x 𝟏𝟎𝟑 p-value 

Mean 2.5486 0 2.1904 0 7.1459 0 

𝑎 -0.1073 0.1021 -0.1804 0.0006 -0.4952 0.0116 

𝑏 0.2036 0.0020 0.1512 0.0040 0.3001 0.1248 

𝑐 0.0803 0.2207 0.0777 0.1367 0.1157 0.5532 

𝑑 -0.0134 0.8379 -0.0233 0.6544 -0.1620 0.4067 

𝑒 0.1550 0.0184 0.1143 0.0290 0.3258 0.0957 

𝑎. 𝑏 -0.1550 0.0184 -0.0975 0.0621 -0.3927 0.0449 

𝑎. 𝑐 -0.0092 0.8877 0.0264 0.6123 0.0196 0.9200 

𝑎. 𝑑 0.0134 0.8376 0.0238 0.6483 0.1426 0.4652 

𝑎. 𝑒 0.0290 0.6579 0.0380 0.4663 0.1948 0.3186 

𝑏. 𝑐 0.0140 0.8302 0.0061 0.9063 0.0673 0.7302 

𝑏. 𝑑 -0.0976 0.1366 -0.0690 0.1861 -0.2554 0.1911 

𝑏. 𝑒 0.1070 0.1028 0.0799 0.1263 0.3765 0.0544 

𝑐. 𝑑 0.0450 0.4921 0.0216 0.6789 -0.0053 0.9784 

𝑐. 𝑒 0.0793 0.2261 0.0473 0.3645 0.1439 0.4611 

𝑑. 𝑒 -0.0366 0.5758 -0.0347 0.5057 -0.0782 0.6888 

𝑎. 𝑏. 𝑐 -0.0957 0.1446 -0.0513 0.3255 -0.2062 0.2910 

𝑎. 𝑏. 𝑑 0.0400 0.5414 0.0380 0.4663 0.1986 0.3093 

𝑎. 𝑏. 𝑒 -0.0063 0.9232 -0.0014 0.9791 -0.1858 0.3413 

𝑏. 𝑐. 𝑑 0.0293 0.6549 0.0487 0.3503 0.2127 0.2762 

𝑏. 𝑐. 𝑒 0.0986 0.1329 0.0619 0.2356 0.3058 0.1178 

𝑐. 𝑑. 𝑒 0.0357 0.5854 0.0385 0.4602 0.1222 0.5314 

𝑑. 𝑒. 𝑎 0.0455 0.4877 0.0019 0.9709 -0.0255 0.8961 

𝑑. 𝑒. 𝑏 -0.0067 0.9186 0.0028 0.9570 0.0204 0.9168 

𝑐. 𝑑. 𝑎 0.0599 0.3608 0.0510 0.3283 0.2071 0.2890 

𝑒. 𝑎. 𝑐 -0.0302 0.6451 -0.0251 0.6297 -0.1153 0.5545 

𝑎. 𝑏. 𝑐. 𝑑 -0.0268 0.6819 -0.0244 0.6396 -0.0775 0.6911 

𝑎. 𝑏. 𝑐. 𝑒 -0.0700 0.2856 -0.0343 0.5103 -0.1196 0.5399 

𝑏. 𝑐. 𝑑. 𝑒 -0.0610 0.3517 -0.0255 0.6247 -0.0644 0.7413 

𝑐. 𝑑. 𝑒. 𝑎 -0.0297 0.6503 -0.0409 0.4332 -0.2541 0.1935 

𝑑. 𝑒. 𝑎. 𝑏 0.0208 0.7508 0.0451 0.3870 0.0365 0.8515 

𝑎. 𝑏. 𝑐. 𝑑. 𝑒 0.0221 0.7352 0.0176 0.7363 0.0871 0.6554 

 

 

In the interaction plots in Fig. 7 to 9, the factor 

interdependence can be observed. The main diagonal 

represents the factor influence on the ISE values with a ±σ 

curve (one standard deviation). For the PID controller (Fig. 

7), the main factor effects can be observed for (b) and (e), 

both showing an increase in ISE for higher values of the 

parameter. Similarly, the highest gradients found for MPC 

(Fig. 8) are for the factors (a) with a negative slope and (b) 

and (e) with positive slopes, and for LQR (Fig. 9) for factor 

(a) with a negative slope. The main interaction between 

factors occurs for variables (a) and (b), in the case of the 

PID and LQR controllers, and no apparent interactions are 

observed for the MPC controller. 

 

Fig. 10 shows the factor level plots comparing the 

distributions of the ISE between two controller parameters. 

The column distribution (cyan square) illustrates the ISE 

variation from minimum and maximum values for each 

combination of factors. In all cases, there is a large variation 

in the values, indicating that the parameters with high 

uncertainty provoke changes in the controller performance. 

Conversely, for the PID and MPC controllers the 

distribution generally lies below that of the control without 

the random parameters, so that the vibration attenuation was 

significantly higher than the original controller design. In 

contrast to the LQR controller, the ISE distribution changes 

scale significantly between the minimum value and the 

uncontrolled condition. Therefore, the higher vibration 

amplitude from some samples controlled by the LQR 

method indicates that it did not improve the suspension 

performance. 
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Fig 7: Interaction plot for ISE for the PID controller 

 

 
Fig 8: Interaction plot for ISE for the MPC controller 

 

 
Fig 9: Interaction plot for ISE for the LQR controller 

 

 
Fig 10: ISE distribution for interaction between parameters 

 

Based on these results, the maximum attenuation of the 

sprung mass vibration using different controllers can be 

reduced or increased because of the uncertain and variable 

values attributed to the controller model parameters. 

However, the changes in the performance of the suspension 

controller are more pronounced only for specific parameters, 

indicating the need for further engineering research to 

investigate them. 

 

6. CONCLUSION 

When using a conventional control method to control the 

active suspension of a vehicle, considerable caution needs to 

be taken due to the effects associated with the model 

parameters. This paper presented a methodology and 

analyzes the relation between active suspension control and 

DoE, in order to provide a better understanding of the 

impact and interactions of the controller parameters with 

regard to the performance dynamics of the vehicle. The 

methodology is applied in a Monte Carlo simulation, which 

allows random factors to be established for statistical 

analysis. The method was applied on the uneven road profile 

(case 2), and the numerical simulations regarding the ISE 

values of the CG displacement were carried out to evaluate 

and compare three types of controllers: PID, MPC and LQR. 

As a result, the main effects and their interactions were 

identified. The sensitivity study using linear regression 

identified groups of factors for each controller, highlighting 

parameters with the strongest influence on the performance 

variation. These variations were found to have a random 

distribution, increasing or reducing the ISE value of the 

designed condition. In the extreme cases, the associated 

vibration attenuation in the sprung mass is greater than that 

of a passive suspension. This quantitative procedure for 

evaluating the controller provides a way for model analysis 
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to be carried out and supports predictions regarding the 

behavior of the system dynamics. However, as reported 

herein, this is dependent on the control method chosen, as 

the variables of a 2-dof model are more sensitive to changes. 

It emerged, in general, that the sprung mass, front stiffness 

and rear damping have the greatest influence on the 

controllers investigated. However, it is significant that for 

the LQR method the attenuation observed is sometimes poor 

due to the model parameter uncertainty. 
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