
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 36

A SURVEY ON CLOUD STORAGE – IMPACT OF STORAGE ON THE

PERFORMANCE

Prapti Panigrahi
1
, Jyotirmayee Rautaray

2

1
BTech, Computer Science and Engineering, College of Engineering and Technology, Bhubaneswar, Odisha, India

2
Sr.Lecturer, Computer Science and Engineering, College of Engineering and Technology, Bhubaneswar, Odisha,

India

Abstract
Cloud Computing refers to the idea of using computing power as a utility. It is implemented by a connected network of remote

servers, accessed via the internet, for processing, storing and managing data. The cloud computing model allows for pay-by-use

and thus avoids usage of personal computers or local servers. Cloud Computing is an emerging technology, gradually gaining

prominence in academia as well as commercial enterprises. Storing and micromanaging data is an integral part of any

application. Using cloud storage provides various benefits over traditional storage- enabling the user to remotely access/store

their data anywhere and from any device, on-demand scalability of applications based on usage. In case of disasters, cloud

storage can help in very quick recovery of data. Bandwidth usage can also be reduced, by sharing access-links instead of the

complete files. Understanding the importance of storage mechanism and realizing that in a properly developed architecture can

improve the efficiency of application by leaps and bounds. Many different types of storage architectures have been developed over

time. Various commercial organizations have also come up with tailor-made storage mechanisms, suiting their specific

requirements. Selecting amongst the many available storage architectures is a very complex task as well as a very important one.

The storage mechanism plays a huge role in determining its overall performance. This work aims to assist the reader in proper

selection of architecture based on the types of operation the user of the architecture intends to have in his/her application.

Keywords: Cloud Storage, Virtualization, OpenStack

--***--

1. INTRODUCTION

In 1950‟s, time sharing was first introduced, bringing the

concept of sharing resources among applications. Later

sometime in late 1960‟s, ARPANET was introduced that

linked around four computers spread across the globe via

internet. In the next few years, „client-server‟ systems were

developed, which allowed access of data over a local

network. It was 1999, that Salesforce.com became the first

company to launch a service which allowed applications to

be available over a website. This form of hosting

applications was known as hosting on cloud. NASA‟s

OpenNebula [1], in 2008 was the first open-source software

for various types of cloud (private, hybrid) implementation.

In the last decade, many other corporate and open-source

cloud platforms like Amazon Web Services, Google File

Systems, Microsoft Azure, OpenStack, Apache Hadoop

distribution etc. started coming up and revolutionized the

way computing/storage was carried out.

All the above mentioned cloud platforms can be classified

among the following three categories: private, public, or

private and public (hybrid). Services such as Amazon Web

Services, Windows Azure etc. are public clouds - open for

the use of general public. But many organizations deploy a

cloud using open source platforms like OpenStack or

Hadoop, to be used for internal purposes only, known as

private cloud. A hybrid cloud is used so that internal

confidential data can be stored in private cloud, while other

data are stored in the public section.

These services (public cloud, private cloud, hybrid cloud)

have been possible because of virtualization. Virtualization

is a software that manipulates hardware to provide the

cloud-computing service [15]. Virtualization means creating

virtual or logical version of any resource (could be operating

system, server, storage etc). Storage Virtualization is a

technology that enables many logical storage devices from

one single physical storage. With remote access to storage

devices also feasible now, a new form of enterprise-

Infrastructure as a service (IaaS) has been developed. Here

the client instead of investing on its own storage, can simply

„lease‟ the storage devices from a provider. This also allows

the client to be free from any form of maintenance issues.

While this methodology works for small scale applications,

many service providers prefer to develop their own storage

architecture for various reasons – security worries,

customizable structure for improved performance, higher

flexibility, using existing hardware and much more.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 37

Creating storage on the cloud – private or public, is

inevitable for better scaling and results. For corporates

having offices across the globe, this becomes even more

necessary for better resource utilization. Using cloud storage

would enable them to access any data from any part of the

world while also allowing them to use unused resources

from any of their offices. Thus, it also becomes very cost

effective.

There are other benefits of cloud storage as well apart from

the possibility of remote access/store of data. In case of

natural disaster or power cut in some region, the data does

not get lost because of replication policies. In fact, with

modern techniques complete data can be recovered very

fast.

High-scalability can also be ensured as nodes (read more

storage space) can be easily added to the existing structure

on demand. Bandwidth usage can also be optimized as

sharing the data concerns sharing only access links. The

complete data need not be transferred and only the relevant

information can be accessed using the shared link.

Thus, it is safe to say that cloud storage, with such varied

benefits, is definitely a very exciting technology. To make

proper selection of cloud storage architecture, in this work, a

logical flow is maintained and the end section lists a general

algorithm that will assist in making an appropriate choice.

This section is followed by the famous CAP (Consistency-

Availability-Partition Tolerance) theorem, which states the

tradeoff needed amongst these three parameters for any

storage architecture. Then the report explores some famous

storage architectures, implemented by major corporates, and

a few open-source architectures which might be replicated

by other service providers as well

The next section describes about various types of operation

that an application might require to do on any storage

architecture. This classification helps later in selection of

storage architecture.

The penultimate section considers the various classifications

described in an earlier section and determines which

architecture would be suitable for the particular type of

operation. In the end, a few real-life applications are

considered, classified into various types of operations and

then a storage architecture is determined.

2. CAP THEOREM (CONSISTENCY-

AVAILABILITY-PARTITION TOLERANCE)

Any service is expected to give the user a continuous and

accurate response. So as the applications move to the cloud,

they need to ensure the user experience is not deteriorated.

But as failure of servers is a normal case within cloud

storage, the experience is not guaranteed. An interesting

tradeoff among the desired properties of a storage system

was highlighted by Eric Brewer.

Eric Brewer of UC Berkley, in his keynote speech [2] at the

ACM Symposium on the Principles of Distributed

Computing (PODC), 2000 gave the idea of the Cap

Theorem. It was later in 2002, Gilbert and Lynch of MIT,

proved his claims to be correct and CAP theorem came into

existence. In this Theorem, he states the relation between

three of the most desirable properties, namely, Consistency,

Availability and Partition-Tolerance. In any network shared-

data system, out of these three properties only two can be

possible. Having all three simultaneously is not feasible [3].

Consistency: Consistency requires the change in data to be

reflected across all data nodes immediately. The change

must be visible atomically. At any point in time, different

storage nodes should not be possessing different versions of

data. Any discrepancy could lead to inaccurate information

delivered to the user application.

Availability: The data should always be accessible. At

every point of time, the request by the application should be

responded with success or failure. The key test of

availability occurs during its most busy period. As the

server/node is most loaded during its busy time, the

probability of failure is maximum.

Partition-Tolerance: Partition-Tolerance means that the

system should continue its processes despite failure of

nodes. Even if a partition is created between network

sources, or one or more nodes fail, or proper communication

is not possible between one or more subsystems, the process

going on should not be interrupted [4]. The processing

should continue in both the sub-groups in case of a partition.

Now according to the theorem, only two of these properties

can be accommodated at one time (Figure 1).

Fig 1: CAP theorem

Many applications require data storage in database form

(could be for recommendation systems, frequent querying

may be required etc). The two famous models of database

storage, ACID (Atomicity –Consistency- Isolation-

Durability) (relational databases) and BASE (Basically

Available, soft State, eventual consistency) (NOSQL).

These models also agree with the CAP theorem, in the sense

that the selected properties are such that availability and

consistency do not occur at the same time [3].

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 38

Most architectures these days, go for eventual consistency or

eventual availability, in case of distributed systems. These

terms mean that the system will be consistent or available

but not at that instant. Although it is taken care using the

architectures that the process is not interrupted.

3. MAJOR ARCHITECTURES OF CLOUD

STORAGE

As discussed earlier, storage of data in cloud computing is

very important. The latency in accessing and storing data,

considerably impact the performance of the system. In other

words, proper storage architecture can improve the

performance of application many folds.

There are many different types of storage architectures

currently being deployed for various types of applications.

Some of these are used for internal purposes of the

organization whereas some are used in the form of IaaS

(Infrastructure as a Service). Amazon S3, Google Drive

Storage, Dropbox etc are all examples of IaaS. Since there is

a commercial value associated with their architectures,

detailed description about them is not available.

However, a considerable amount of information is available

about Dynamo/GFS, storage architectures for some internal

purposes of Amazon and Google respectively. New

technologies such as RAMCloud, Megastore are also

elaborated in this section. Besides a few open-source

architectures such as HDFS and OpenStack are discussed as

well. While dynamo is primarily used for storing databases

and other form of data having small size (~1 MB), GFS

works well with even broader types of data (though it is

optimized for storage of large files). Megastore is designed

for interactive applications and RAMCloud increases access

rate significantly in trade-off to availability. This section

gives a detailed description about each of these storage

paradigms.

The purpose to discuss these technologies, at logical-

hardware-access level, is that the mechanism of

implementation is very important to understand, for

selection of architecture for any type of application. With a

better understanding of these technologies, determining the

storage architectures for some different type of classification

(which are not included here) will also be easier.

After describing these technologies, next will be

classification of different types of operation, followed by

selection of one of these architectures for each operation.

Table 1 describes the features (from CAP) provided by

various storage architectures. It is important to choose

proper structure, based on the requirements of the

application to be deployed. This table in brief describes

about the priorities of each storage architecture.

Table 1: CAP theorem among architectures

Name of

Architecture

Consistency Availability Partition-

Tolerance

Dynamo ✅ ✅

GFS ✅ ✅

RAMCloud ✅ ✅

Megastore ✅ ✅

4. DYNAMO/OPENSTACK

Dynamo was designed by Amazon for having an always

„write‟ structure to support its e-commerce operation:

www.amazon.com . Owing to the CAP theorem, dynamo

sacrifices consistency across various back-ups. Object

versioning is the collision resolution technique used in

Dynamo [5].

Since Amazon is an ever expanding and growing firm, with

data for each user also increasing with each passing day, the

storage architecture deployed should be highly scalable.

Reliability is another factor considered very seriously in

dynamo‟s structure. Failure is treated as a norm in dynamo‟s

architecture instead of a special case. Dynamo uses a single

key structure, which meets requirements of many

applications. Dynamodb is a NoSQL database service

providing very high scalability built on dynamo structure

[6]. The key target is applications with very small object

sizes (~ 1MB) [5].

Consistent hashing is used for replication and partition of

data [7] while eventual consistency is attained through

object versioning [8]. Gossip protocol propagates

information when a failure is detected and membership

protocol is changed. Dynamo also uses a carefully designed

mix of stateless (A service that compiles results from other

services) and stateful (These type of services generate their

own results using some well-defined logic) services.

Security issues, such as authentication and authorization are

not considered here as the use of storage structure is

expected for internal purposes.

Figure 2 below gives a brief view into how the amazon

platform functions. Whenever a request is made by the

client, many stateful services combine to generate address of

the stored data. This address is passed on to another server

which directs the request to the appropriate date store. The

stateless services in the data warehouse then redirect the

information to the desired storage service (S3 or Dynamo)

[5].

http://www.amazon.com/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 39

Fig 2: Amazon's platform

Applications have a major say in conflict resolution. They

can choose to merge all records or keep the latest version

depending on the need of application. No write is ever

ignored, whatever internal failures might occur.

Data Access: get (key) and put (key) are used to access or

insert values corresponding to key.

Partition Algorithm: A modified version of consistent

hashing is used. Each node is placed multiple times in a

logical ring (known as virtual nodes). The benefits being in

case of failure, work distributed across the system fairly.

Similarly on introduction of new node, data transfer almost

equally from each node. Figure 3 shows a logical ring with

each node replicated thrice. [5]

Fig 3: The Logical Ring for Replication

Replication: Each key k is assigned a main coordinator and

key is replicated a fixed (N) number of times (based on

service-level agreement) in a clockwise manner across the

logical ring. Due to presence of virtual nodes, special care is

taken to ensure that N different replicas are created.

Data Versioning: Data versioning is done using vectors [8].

A vector is maintained for each record and is updated

whenever a write is done. If the first write is done by a node

Sx, the vector is written to be D1[(Sx, 1)]. If the node Sx is

the coordinator, and the next write is also done by Sx, it is

updated to be D2[(Sx, 2)]. If for some reason during the next

update, Sx was down, and Sy makes an update, vector clock

is updated to be D3[(Sx, 2), (Sy, 1)]. If the vector size

increases beyond a pre-specified limit, the vector is

truncated based on time-stamps.

Failure Handling and Replica synchronization: Dynamo

uses merkle trees [9], with hashes as leaves of keys [5]. This

is done to reduce the amount of data transfer when checking

for replica consistency. The structure can be tuned to always

accept reads, or always accept writes.

The above structure is the basic layout and many different

logical modifications can be implemented to tune the

architecture as per requirement. In depth detail is accessible

in [5]. OpenStack is an open-source cloud structure, with

one of its instance swift having a structure very similar to

dynamo, but based on BLOB and container-wise storage.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 40

5. GFS (GOOGLE FILE SYSTEMS)/HDFS

(HADOOP DISTRIBUTED FILE SYSTEMS)

GFS was implemented to match the continuous scaling

needs at Google. This structure was designed to meet the

storage needs of higher-size files. Another assumption made

during design was that most of the data was to be appended

rather than overwritten. GFS trades consistency for easier

implementation of the system. Atomic append is also

supported to reduce synchronization problems [10].

Here again, similar to dynamo, failure is treated as a normal

case instead of an exception. Also optimization in the

structure has been carried out with respect to larger file

sizes, though smaller file sizes are supported as well. The

expected workload is large sequential read/write. Several

read/write maybe taking place simultaneously, even on the

same file.

The basic architecture compromises of a single master and

several chunk-servers. The servers can be accesses by

multiple users at a time. Files are split into several chunks of

pre-determined size. The size should be selected optimally,

a very small size increases the storage overhead of metadata.

A 64-bit handle is used to identify the chunk servers.

Reliability is ensured by replicating data across multiple

chunk-servers depending on SLA‟s.

Master server does not store data, it keeps track of status of

chunk-servers and data on chunkservers using meta-data.

The meta-data has information about garbage collection,

lease, access controls etc. The state is updated using

heartbeat communication (to and fro pings) with each

chunk-server.

Whenever a client needs to read or write data, it approaches

the master to know which chunk server should be contacted.

For some time this information is cached in the client, as

generally there are subsequent operations on the same

chunk-server. This is done so as to reduce the workload of

master and improving latency. Figure 4 explains the

complete process of data access/write.

Fig 4: GFS

Data Access: Usual file operations such as create, open,

read, close, write and delete are supported. Additional

features such as snapshot (creating a local image) and record

append (multiple atomic simultaneous write) were also

introduced. Record append is useful in merging different

works with very less synchronization overhead.

Replica Placement: The number of replicas are decided by

service level agreements. The replica chunk servers are

stored across different racks, to ensure that even when a

complete rack is offline or unavailable due to some sort of

damage, the operations on data are still possible. The

placement of replicas across racks is determined by master

and priority is given to ensure maximize availability and

reliability. The master logs and checkpoints are replicated

on many other machines. Thus even if the master goes

down, the system stays available.

In case of a complete failure or permanent damage, as soon

as the number of replicas reach a number less than desired,

the master clones a chunk-server in high priority to ensure

data loss or unavailability does not occur.

Whenever a request is made by one of the clients, the master

grants a chunk lease to one of the replicas called primary

[10]. All the writes/reads are managed by the primary until

the lease expires (a timeout).

While the control flow takes place via the primary, the data

flow is more carefully chosen. Data is pushed linearly across

replicas [10]. Each machine forwards the data „closest‟ to it.

This is done so as to maximize the bandwidth usage. As

soon as the chunk server receives data, it also starts

forwarding it to other replicas (as shown in Figure 5).

Now Google uses a new system, colossus, details about

which are not publically available. HDFS is an open source

storage structure with similar topology.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 41

Fig 5: Control and Data Flow [10]

6. RAMCloud

Traditionally, DRAM was used only for caching.

RAMCloud uses an entirely different structure. Here the

primary storage is the DRAM and backup is done on disks.

The main advantage of using a RAMCloud would be much

lower latency (100x-1000x) and way better throughput [11].

One of the key feature it must support is automatic

scalability to thousands of storage servers.

There is a possibility of achieving 5-10micro sec latency,

which cannot be supported by existing switches and

network. Still a major improvement in access speed is

observed using RAMCloud. Though one drawback is in case

of a system crash, data becomes unavailable for some time

(1-2 sec) as data is to be recovered from backup disks [12].

The hardware for RAMCloud is made of hundreds and

thousands of servers in a datacenter (each with capacity of

24-64 GB) divided into multiple clusters. Each cluster has a

master and a backup. The backup stores replicas of other

masters on disks or flash drives. Also each cluster has a

dedicated coordinator to store location of objects and

network addresses. The client can cache the memory address

provided by coordinator, and then does not need to interact

with it. In case of failures or crash, the client requests for

new location of the data, and caches it.

Recovery of data is fastened using a log-structured storage.

At every write request, data is logged and stored into a

buffer. When the buffer is full, data is transferred to the

back-up files. In case of crash, the only risk is to the data

stored in the buffer. Though alternatives like separate power

back-up etc can be used to counter this. For recovery,

several masters are allocated. Each recovery master

generates the hash table from log-structured data which is

later merged. The key to fast recovery is utilizing the scale

of the RAMCloud cluster.

RAMCloud is not the most efficient structure for storing

files with large sizes, disks store these in a much better way

[11]. A key-value type structure is best supported by

RAMCloud [12]. The data could be a collection of

innumerable tables containing innumerable objects (~ 1

MB)

Consistency is given the priority over availability. When a

master fails, it stops servicing requests. If a coordinator

fails, special care is taken that during the process only one

of the coordinator stays active i.e. just after recovery as well

both standby coordinator and the main one are not active at

the same time.

7. MEGASTORE

This architecture is best suitable for services requiring some

form of interaction with its clients. Megastore was designed

to merge the scalability of NoSQL data store and

convenience of RDBMS [13]. While NoSQL is high

scalable, the relational databases provide convenience in

building applications with its unique set of features. In brief

it provides fully serial-izable ACID semantics across regions

at very low latencies, which would be the perfect way to

support interactive applications [13].

Partition of data is carried out, and each partition is

replicated separately. Each partition independently provides

the ACID semantics. A tolerable latency limit is set by the

user, and all MySQL features that can scale within the limit

are provided.

The data is to be replicated over wide regions for latency

and availability constraints to be satisfied. Paxos algorithm

is used, a consensus based algorithm [14]. Simply, a

majority of replicas should be active during any write

operation, which can be later propagated to other servers.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 42

Reads, usually can be carried out on any replica, with no

need to have inter- replica communication. A coordinator

service is designed, having servers at all data centers. The

coordinator keeps track if the requested data is fully updated

or not in that particular data center.

A modified master ideology is used for write operations.

Instead of masters, „leaders‟ are chosen for each log-

position. The writes at each log position is managed by a

replica which is expected to coordinate with the leader of

the previous log-position (to validate if previous write was

successful or not) [13]. Paxos is run for each log-position

separately. Generally the leader assigns the closest replica to

be the „master‟ for any write operation.

Read-only replicas are also made, for cheaper storage. They

do not take part in consensus but store the snapshot of the

data for access. There is also a concept of witness replica

that take part in consensus, stores write-log but not indexes

or entity. They are effectively used as tie-breakers.

In megastore availability is given preference over

consistency. But with latency time usually comparatively

lesser than access interval, the data is transferred across

replicas efficiently and appears to be consistent.

8. CLASSIFICATION OF DIFFERENT TYPES

OF OPERATIONS ON STORAGE

This sections broadly lists the various operations that may

be carried out on our storage structure. Every application

generally requires a combination of these operations,

determining which is very important for designing/ selecting

an efficient storage architecture.

Small Read/Write

In these type of operations, the data size is generally very

small (maybe a few MB‟s). Applications requiring storing

user data for later use is an example. Google stores data of

each user- browsing history, locations visited, interests etc.

This data is later used for recommendations and targeted

advertisements. All of these writes can classify as small

writes. Most of the databases stored and maintained would

also qualify within this category.

Large Read/Write

Any data that exceeds the above mentioned size-range can

be classified within this category. Backups, Logs, or any

other general form of data will require long sequential

read/write operations. Such data is very rarely overwritten.

Guaranteed Write

Some applications may require the data to be always

written, irrespective of failures or consistency. E-commerce

websites like amazon, flipkart, ebay etc would want to store

information about all the searches carried out by the user,

for better user experience. These type of applications require

that data is stored at least in one of the replica, even though

all other systems are down. The system may be inconsistent

for some duration but that does not affect the application

performance by a huge margin.

Fast Access

While every application needs fast access, some might need

to thousands of queries to be replied with very low latency

(Traditional databases like MySQL cannot scale). This form

of access might be very useful where applications need to

process data-intensive graph like algorithms (parallel

processing not possible, current request depends on the

previous one).

Highly Consistent

Data availability is not a big concern. More important is the

accuracy of the data delivered. Applications like ticketing

and hotel booking would require correct data given to the

user at any time. Display of wrong quantity of available

tickets could lead to serious issues. Even during peak hours,

latency is acceptable but lack of consistency is not.

Highly Interactive

Applications like email, maps, collaborative applications

like online docs etc need high user interaction. Response in

such cases must be quick, consistent and always available.

But this does not fit in well with the CAP theorem. A special

type of structure must be developed, which is always

available and appears consistent.

9. SELECTION- OF STORAGE

ARCHITECTURE ON BASIS OF

PERFORMANCE PARAMETERS

Here listed are some possible storage structures for each

type of operation. Corresponding to each type of usage, an

architecture has been suggested from amongst the ones

described already. Though other alternatives might also be

available for storage.

Small Read/Write

Database oriented architectures like Dynamo would be

perfect for such applications. They are highly decentralized,

thus proper workload distribution. Data access is possible

simply using the key. For randomized data (not key based),

Google File Systems can be used but no special optimization

is carried out for small writes. For randomized data,

RAMCloud will serve better purpose with its superior speed.

Availability maybe poorer than other architectures (for

RAMCloud), but might still be good enough for randomized

data (as recovery rate is fast).

Large Read/Write

Architecture similar to Google File System would be a

fitting choice in such a case. The whole system has been

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 43

designed specially assuming large sequential read and write.

The complete concept of caching addresses of memory has

been introduced for longer operations on the memory.

Guaranteed Write

RAMCloud is not the good choice for such requirement as

in case of the main memory crash (DRAM crash), data will

not be written. Dynamo fits as a perfect choice here, as even

on failure or crash of a node, the node adjacent to it in the

logical ring is expected to store the data temporarily.

Amazon itself developed dynamo keeping this particular

feature as the priority for its e-commerce platform.

Megastore can also be used, for this purpose, but an

unnecessary latency of managing relations might be added

in such a case (If the stored data is to be NoSQL type).

Fast Access

RAMCloud is the ultimate choice in this case. In fact with

better technology available for network switches and

routers, the current latency can also be improved by a

considerable margin. DRAM supports 10-1000x faster

access than conventional disks. For huge files, still Google

file system has to be used as data location will have to be

accessed each time, irrespective of the data being sequential

or not.

Highly Consistent

RAMCloud explicitly ensures consistency over availability.

With access to data only through DRAM (data cannot be

accessed/written from/to backup disks). This more or less

ensures that data available will always be consistent.

Megastore can also be a decent choice. Firstly because it

provides better availability and secondly as generally the

data is stored/accessed from the nearby replica, the data is

usually consistent. Even if that is not the case, coordinator

ensures consistent data in trade off to latency due to access

from the next nearer replica.

Highly Interactive

Megastore has been developed by Google especially for this

purpose. Usually interactive services would need to store

data using relational database features. With storage and

access mechanism arranged so that nearest replica to be

used, the latency will be low – very important for interactive

services (user cannot be left waiting for long). Also ability

to store relational data is provided individually in each data

center is a major asset for these types of application.

Table 2 summarizes the complete discussion described in

the section.

Table 2: Recommended Storage Architecture Based on

Type of Operation.

Type of Operation
Recommended Storage

Architecture

Small Read/Write Dynamo

Large Read/Write GFS

Guaranteed Write Dynamo / Megastore

Fast Access RAMCloud

Highly Consistent RAMCloud

Highly Interactive Megastore

10. EXAMPLES OF STORAGE

ARCHITECTURE SELECTION ON BASIS OF

APPLICATION

Online Shopping/ E-commerce

Dynamo is developed specifically for e-commerce platform.

It generally requires small writes (user preferences to be

saved). Also key based reads will be needed for any item

searched. Dynamo is based on an always-write philosophy,

much needed for recommendation systems of the platform.

Ticketing

High level of consistency is expected in the data here.

Though availability can be compromised a little, but most of

the times, user needs to be able to access the data.

RAMCloud can be deployed for such services as it provides

very high consistency. Though structures like Megastore can

be useful as well for services offering different kinds of

packages and combinations (All nearby locations, tourist

places can be stored in MySQL local tables).

Email/Blog/Map

All of these applications are interactive applications. A blog

may be contributed by many writers whereas a map can be

explored by the user in any way he wants. Megastore

ensures quick response to the user irrespective of replication

is complete or not. Within collaborative works, the

contributing user sees the update immediately while other

users may experience some acceptable amount of latency.

Netflix/Youtube

Netflix traditionally uses a SQL structure implemented on

Google File system like architecture. One of the columns in

each entry contains the video stored as an object. This

makes it easier to search videos and also suggest related

content (using tags stored in one of the columns). Also the

access rate of old videos is very low, thus Google File

System‟s assumption of very low over-write/read fits well.

For popular videos, to manage the excess workload a special

system known as content delivery network is used.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 44

NoSQL Data for Data Mining

RAMCloud can be a good choice here, as data to be stored

generally have no common link. Also when looking for

some patterns, data will need to be accessed again and

again. Faster access of RAMCloud will be an added bonus.

Data Archival

This kind of data is generally continuous and huge in size.

Most of this data is rarely accessed and rarely overwritten.

Storage architecture like Google File System will be perfect

for such roles. The disk storage here is specially optimized

for large files.

Table 3 below categorizes the variety of operations expected

for each application and the recommended storage

architecture for each application.

Table 3: Recommended Storage Architectures for Different

Applications

Application Types of

operations

expected

Recommended

Storage

Architecture

Online-

Shopping/E-

commerce

Small

read/write

Dynamo

Ticketing High

Consistency

RAMCloud

Email/Blog/Map High

Interactivity

Megastore

Netflix/ Youtube Large Files

with

inconsistent

number of

accesses

GFS

NoSQL for data

mining

Fast and

Random

Access

RAMCloud

Data Archival Large

read/write

GFS

One simple methodology is to be used for determining the

architecture. Firstly, the application needs to be analyzed

and the type of operations that will be performed on the

memory must be decided, as done in the previous section.

Then prioritization should be carried out amongst the

selected operations. Based on the few high priority

operations, the storage architecture can be decided but also

that the other operations are within acceptable latencies

should be ensured. Post this, initial server capacities need to

be decided based on the expected workload.

Thus, using the simple procedure described above, proper

selection can be made and the best possible performance of

the service can thus be obtained.

11. CONCLUSION

Usage of cloud has been growing rapidly due to its

scalability, availability and backup benefits. It is inevitable

to move applications on cloud for service providers as the

application grows and thus it was important to understand

what different type of storage structures are possible.

All service providers try to ensure that the selected

architecture is the best suited for their application. As seen

above, many corporates even develop their own

architectures, so as to make the optimum use of their

hardware resources and they are able to deliver the best

possible performance. To select/design a storage structure

for any application, different factors must be taken into

consideration and then according to their priority, a storage

architecture has to be finalized.

Storage is an inseparable part of any application and also

makes a deep impact on performance of final product.

Hence proper analyzing and research must be done before

concluding to a particular architecture.

REFERENCES

[1] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K.

Nagin, I. Llorente, R. Montero, Y. Wolfsthal, E.

Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich

and F. Galan, "The Reservoir model and architecture

for open federated cloud computing", IBM Journal of

Research and Development, vol. 53, no. 4, pp. 4:1-

4:11, 2009.

[2] E. BREWER, PODC-keynote.

[3] E. Brewer, "CAP twelve years later: How the "rules"

have changed", Computer, vol. 45, no. 2, pp. 23-29,

2012.

[4] M. Stonebraker, ""Errors in Database Systems,

Eventual Consistency, and the CAP Theorem",

Communications of the ACM, 2010.

[5] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall and W. Vogels,

“Dynamo: amazon’s highly available key-value

store” , ACM SIGOPS symposium on Operating

systems principles (SOSP '07), vol. 21, pp. 205-

220, 2007.

[6] "AWS Documentation", Amazon Web Services, Inc.,

[Online]. Available:

http://aws.amazon.com/documentation/.

[7] Karger, D., Lehman, E., Leighton, T., Panigrahy, R.,

Levine, M., and Lewin, D. 1997. Consistent hashing

and random trees: distributed caching protocols for

relieving hot spots on the World Wide Web. In

Proceedings of the Twenty-Ninth Annual ACM

Symposium on theory of Computing (El Paso, Texas,

United States, May 04 - 06, 1997). STOC '97. ACM

Press, New York, NY, 654-663.

[8] Lamport, L. Time, clocks, and the ordering of events

in a distributed system. ACM Communications,

21(7), pp. 558- 565, 1978.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

https://doi.org/10.15623/ijret.2018.0710007 Received: 06-08-2018, Accepted: 17-09-2018, Published: 08-10-2018

Volume: 07 Issue: 10 | Oct-2018, Available @ www.ijret.org 45

[9] Merkle, R. A digital signature based on a

conventional encryption function. Proceedings of

CRYPTO, pages 369– 378. Springer-Verlag, 1988.

[10] S. Ghemawat, H. Gobioff and S. Leung, "The

Google file system", ACM SIGOPS Operating

Systems Review, vol. 37, no. 5, p. 29, 2003.

[11] J. Ousterhout, G. Parulkar, M. Rosenblum, S.

Rumble, E. Stratmann, R. Stutsman, P. Agrawal, D.

Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S.

Mitra, A. Narayanan and D. Ongaro, ”The case for

RAMCloud”, Communications of the ACM, vol. 54,

no. 7, p. 121, 2011.

[12] D. Ongaro, S. Rumble, R. Stutsman, J. Ousterhout

and M. Rosenblum, “Fast crash recovery in

RAMCloud”, SOSP ‟11, pp. 29-41, 2011.

[13] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,

J. Larson, J. L´eon, Y. Li, A. Lloyd and V.

Yushprakh, "Megastore: Providing Scalable, Highly

Available Storage for Interactive Services", 2016.

[14] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos

and primary-backup replication. Technical Report

MSR-TR 2009-63, Microsoft Research, 2009.

[15] "Virtualization in Cloud Computing", J Inform Tech

Soft Engg, vol. 04, no. 02, 2014.

