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Abstract 
ANSI/AGMA 2003-B97, ISO 10300 standards and a new contact stress model are used to estimate and compare contact stresses 

in some theoretical straight bevel gear pairs. The contact stress expressions in the different gear standards and new model are 

formatted to highlight the similarity and differences. The power range of 10 to 15,000 kW, backend modules of 2.5 to 25 mm and 

backend pitch velocities of 4.58 to 25.37 m/s are covered. The results indicate that the percentage differences between the new 

contact stress and AGMA models are in the range of 2.22% to 7.40%. These differences are small but can mean significant 

improvement in the pitting life expectancy of the gears since life and contact stress is related by a power law of approximately 9th 

degree. For example, a 5% decrease in contact stress could mean a pitting life increase of about 50%. The percentage differences 

between the new and ISO 10300 models contact stresses are in the range of -6.57% to 67.34%. These are large differences, 

indicating that much shorter pitting life should be expected based on the ISO model. The differences from The ISO 10300 

standards may be attributed to the use of the mid facewidth cone radius in its contact stress model while the new model and 

AGMA standards use the backend cone radius which is larger than the mid facewidth cone radius. Another contributing factor to 

the differences is that the load service factor values evaluated from ISO methods are generally higher than those of the new model 

values which are based largely on AGMA methods. Since the ANSI/AGMA standards yield results that are considered to be 

conservative and the new contact stress model gives values that are marginally lower than the AGMA predictions, the new contact 

stress model deserves some serious considerations. 

 

----------------------------------------------------------------------***-------------------------------------------------------------------- 

1. INTRODUCTION 

Straight bevel gears have teeth cut on the frustum of a cone, 

therefore a gear pair must have a common apex for them to 

roll without sliding. This ensures that the pitch surfaces of 

two meshing straight bevel gears are proportional to the 

distance from the common apex. Because the pitch surfaces 

of bevel gears are conical, the tooth profile at the front end 

or toe is smaller in size and shape than that at the backend or 

heel, the larger end of bevel gears. The maximum gear ratio 

for bevel gear speed reducers is 10 and 5 for speed 

increasers [1]. Bevel gears are normally made as matched 

sets as they are generally not interchangeable. The teeth of 

most bevel gears are crowned in the axial and radial 

directions during manufacture [2]. Crowning modifies the 

surface profiles so that the teeth have convex surfaces along 

the face width. It allows gears to accommodate deflections 

and tooth variations and prevent concentration of contact 

stress at the edges of the gear teeth. Most bevel gears are 

made from case-carburized steels [1]. 

 

Contact stress standards for straight bevel gears are based on 

similar concepts of Hertz contact stress, equivalent spur gear 

and rated load modification. The German physicist, Henry 

Hertz developed expressions for the stresses created when 

curved frictionless surfaces are loaded in normal contact in 

1881. The Hertz contact stress model was first applied in 

gearing technology by Buckingham [3].  He developed an 

equation for gear pitting resistance which has been adopted 

and modified by national and international standard 

organizations such as American Gear Manufacturers 

Association (AGMA) and International Standardization 

Organization (ISO) in gear design technology. Other 

commonly used standards are Deutsches Institut fur 

Normung (DIN), and Japanese Industrial Standards (JIS) but 

the most popular standards are the ISO and AGMA 

standards [4]. ANSI/AGMA 2003-B97 [5], is a popular 

bevel gear design standard in the United States and provides 

a conservative means of estimating the contact and bending 

stresses in straight, zero, and spiral bevel gears [2].  ISO 

10300 standards [6] provide guidance on the estimation of 

the contact and bending stress capacities of bevel gears [6, 

7]. 

 

Perhaps due to the geometric complexities of bevel gears, 

the concept of equivalent spur gears was developed. Simply, 

an equivalent spur gear of a bevel gear is one that is 

proportioned such that it has the same load capacity as the 

bevel gear. Bevel gear teeth are cut on conical surfaces and 

have a spherical geometry, so the involute tooth profile 

should be developed on a spherical surface to ensure 

conjugate action. Since the projection of bevel gear teeth on 

the surface of a sphere would indeed be a difficult and time-
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consuming problem, it is necessary practically, to 

approximate bevel gear tooth profile as accurately as 

possible. The “Tredgold’s approximation” is commonly 

accepted and it uses the cone tangent to the sphere at the 

pitch point on the backend of the bevel gear to define the 

pitch radius of an equivalent spur gear. The basic shape of a 

bevel gear tooth is almost the same as that of this spur gear 

[8, 9, 10]. The Tredgold’s approximation is almost 

universally used and as long as the bevel gear has 8 or more 

teeth, it is accurate enough for practical purposes [11]. 

Therefore, the manufacturing dimensions of a bevel gear are 

based on the bevel gear backend module which is largely 

standardized. 

 

It is known in practice that actual load on gears are higher 

than the rated or nominal values. The increase in load is 

attributed to tolerances on gear and housing sizes, 

manufacturing imperfections, errors in assembling and 

installation, unbalanced rotating and or reciprocating 

masses, internal vibrations, etc. [12, 13]. In order to address 

this situation, AGMA and ISO gear design approaches apply 

a series of modification factors to approximate actual load 

and actual strengths in gear design [14, 15]. Differences in 

the approaches manifest in the number of applied 

modification factors and their evaluation methods. 

Consequently, numerical results from these standards can 

differ considerably [16]. 

 

In theory, any gear standard may produce a satisfactory 

design of a gearset, however, globalization of the economy 

and technology now demands that successful designs in the 

market place must be competitive in price. Specialized gear 

designs must of necessity be conducted in compliance with 

relevant standards and when customers prefer a particular 

standard or code, the client’s desire must be honored. A 

working knowledge of more than one gear standard is 

desirable today, especially if the product is aimed at 

international market [15]. Therefore, it is important to 

understand the similarities and differences between the 

standards of interests in design applications. 

 

According to Bergseth [17], AGMA and ISO standards for 

surface durability calculations are generally time consuming 

and can be difficult. ISO 6336 standards require much more 

design detail than AGMA standards, which tend to have 

fewer modification factors and thus simpler. When the 

ratings of identical cylindrical gearsets by AGMA 6011 

(1998) and ISO 6336 (1996) are compared, substantial 

differences are found. The durability rating for thru-

hardened steel gears is approximately the same from the two 

standards, but the durability rating of carburized steel gears 

by ISO 6336 standard is higher than that of AGMA 

standard. The bending strength rating by ISO 6336 standard 

is generally higher than that of AGMA standards [18]. A 

study by KISSsoft [16] shows that safety factors calculated 

for some bevel gearsets differ considerably depending on the 

rating standard (AGMA 2003 or ISO 10300) used. Also, 

their results show that contact stresses for small straight 

bevel gears were higher for ISO standard than AGMA 

estimates but lower for larger gears. The differences were 

attributed to values of design factors such as load 

distribution, size, and crowning. Consequently, “AGMA 

2003 and ISO 10300 yield results that cannot be compared” 

[16]. From the above, rating standards of AGMA and ISO 

can yield different results for the same design situation and 

it can be confusing when the results are compared. 

Therefore, it is important for now that a gear designer 

understands at least one standard and consistently use it 

while being familiar with some other standards. 

 

In a study by Osakue and Anetor [19], comparison of 

contact stresses from ASNI/AGMA 2003-B97 standards and 

a new straight bevel gear contact stress model for low power 

(<10 kW) was made. It was found that the new contact stress 

model results were marginally lower than the AGMA 

values. In a similar but different study, contact stress 

estimates from ISO 10300 and the new contact stress model 

were compared [20]. It was found that the new contact stress 

model results were significantly lower than the ISO values. 

The experience from the aforementioned studies naturally 

leads to inquiring what the results might be for medium and 

higher kilowatts bevel gear drives. In this study, contact 

stresses based on AGMA 2003-B97 [5], ISO 10300 [6] and 

the new contact stress model for some theoretical straight 

bevel gear pairs in the power range of 10 to 15,000 kW are 

estimated and compared. The contact stress expressions for 

the standards and new model are formatted to bring out 

similarity and differences. The new contact stress model 

uses ANSI/AGMA methods for evaluating load influence 

modification factors because they are simpler. 

 

2. BEVEL GEAR LOADS 

In the design analysis of bevel gears, the load is commonly 

assumed to be applied at the mid-face width. The resultant 

forces actually act somewhere between the midpoint and the 

backend of the tooth width [10]. This means the force 

components used in design analysis are slightly over-rated. 

It should be noted that the complexities of the tooth profile 

of bevel gears make precise analysis rather very complicated 

and such a conservative approach is justified. 

 

Fig. 1a depicts a bevel gear under load with the three 

components of the contact force shown at the mid-plane 

pitch point. Fig. 1b shows the transverse plane at the mid-

plane pitch point which is obtained by looking in the 

direction of the shaft axis. The pitch diameter of the bevel 

gear at this point is indicated. This plane may be called the 

transverse kinetic plane since the operating tangential and 

radial force components on the physical bevel gear are 

defined on this plane. The axial kinetic plane is not shown 

but contains the tangential and axial force components. The 

tangential force is the driving force, the radial and axial 

forces are generated due to the gear pressure angle and the 

cone pitch angle for bevel gears. 
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a) 3D force representation       b) Transverse plane forces 

 

Fig 1: Bevel gear force components 

 

 

Referring to Fig. 1: 

tF transmitted or tangential force (N) 

rF radial force (N) 

aF axial force (N) 

mr mid facewidth pitch radius (mm) 

 

The torque load on the pinion is: 

 

1

3
1

1

1030

N

P
T




           (1) 

 

The actual gear ratio for a gearset is: 

 

1

2

T

T
 =

1

2

2

1

z

z

N

N
         (2) 

 

P transmitted power (kW) 

T transmitted torque (Nm) 

N rotational speed (rpm) 

z number of teeth 

 actual gear ratio 

1 Subscript for pinion 

2 Subscript for gear 

 

Please note that there are three (3) terms or sub equations in 

Eq. (2): equations (2a), (2b), and (2c) from left to right. All 

other equations with multiple terms should be interpreted, 

similarly. 

The transmitted force is: 

 

2

3
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1

3
1 102102
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t
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r
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



      (3) 

 

In bevel gears, the radial distance to a point on the cone 

from the shaft axis in the transverse plane is a linear 

function of the distance of that point from the apex of the 

cone.  Therefore: 

 

2
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1

3
1 102102

e

b

e
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d
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d
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
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
       (4) 

 

bK bevel load factor 

ed backend pitch diameter (mm) 

 

From Fig. 2a and by similar traingles: 
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L

L
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e

ee
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e
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(5) 

 

mL mid facewidth cone distance (mm) 

eL backend cone distance (mm) 

m mid facewidth module (mm) 

em backend module (mm) 
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The other forces are: 

 

cos

t
n

F
F              (6) 

 

 costantr FF     sintanta FF        (7) 

 

3. SPUR GEAR GEOMETRIC EQUIVALENCE 

Fig. 2a shows the axial plane of a straight bevel gear while 

Fig. 2b shows the transverse plane at the backend. The basic 

physical gear size parameters are shown in these figures, 

except the module. Figs. 3a and 3b show the geometrically 

equivalent or virtual spur of a bevel gear. The tooth profile 

of a spur gear lies in the transverse plane. Similarly, the 

tooth profile of the virtual spur gear for a bevel gear lies in 

the transverse plane. It should be noted that the virtual spur 

gear pitch circle radius maps onto the backend cone radius 

of the physical bevel gear, not the tooth mid-width cone 

radius where operating forces are evaluated. Conceptually, it 

is important to separate the physical bevel gear from the 

virtual spur gear to avoid confusion in the kinetic 

relationship between the two objects. 

 

In Figs. 2 and 3: 

er general backend pitch radius (mm) 

ed general backend pitch diameter (mm) 

od general backend outside diameter (mm) 

rd general backend root diameter (mm) 

b general facewidth (mm) 

 general pitch angle (deg.) 

tr virtual spur gear general pitch radius (mm) 

 

 
a) Axial plane      b) Transverse plane 

 

Fig 2: Physical bevel Gear 
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a) Axial plane          b) Transverse plane 

 

Fig 3: Virtual spur Gear 

 

 

The basic parameters of the virtual spur gears are: 

 

cos

e
t

r
r 

, 

 

 coscos

2 ee
t

dr
d 

             

(8) 

 

bbt 

                   

(9) 

 

td virtual spur gear general pitch diameter (mm) 

tb virtual spur gear general facewidth (mm) 

 

4. GEAR TOOTH FORM AND MODIFICATIONS 

A gear tooth form in the involute gear system is 

characterized by the pressure angle and Osakue and Anetor 

[12] defined a geometric parameter, called contact stress 

tooth form factor, that accounts for standard gear pressure 

angle and pi (π) which relates to the contact patch area. This 

parameter is expressed as: 

 

t

fK
 2sin

2
                    (10) 

 

fK contact stress tooth form factor 

t transverse pressure angle 

 

4.1 Tooth Profile Modified Gear 

The trend in the gear industry is the increasing use of tooth 

profile modified gears in power transmission for better 

performance and other areas and attempts to standardize 

correction factors is in progress [10]. This appears to be a 

viable economic approach to increasing the power density of 

gearboxes and reducing noise at higher operating speeds. 

Though several techniques are available, addendum 

modification and crowning are the more popular currently. 

Addendum modification is a treatment performed on gear 

teeth that can lengthen or shorten the proportion of the 

addendum portion of the gear tooth during manufacturing. 

Addendum modified gears can have a working pressure 

angle different from that of the standard profile. The 

working pressure angle is obtained as [10]: 

 

21

x tans2
invinv

zz

t
twt







           

(11) 

 

wt working transverse pressure angle 

xs residual profile modification factor 

 

where: 

 

)rad(taninv  
            

(12) 

 

 general pressure angle 

 

And 

 

21x xxs            (13) 

 

x tooth profile modification factor 

 

Explicitly modifying pitting resistance capacity expressions 

for tooth profile correction is needful. It may be defined as: 
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wt

t
pK





tan

tan
              (14) 

 

pK contact stress profile modification factor 

pK  can be deduced from the zone factor model of ISO 

(please see Eqs. (B2) and (B7) in Appendix B). The 

parameter appears 
pK  as a numerator in contact stress 

capacity models as may be verified in Eqs. (15), (23), and 

(28). Note that 
xs  may be zero or different from zero. When 

xs  is zero, the transverse pressure angle of the gearset is un-

affected by profile modification. If 
xs  is non-zero and 

positive in value, the transverse pressure angle is increased 

and the contact stress reduced because 
pK  is below unity. If 

xs  is non-zero and negative in value, the transverse is 

decreased and 
pK  is above unity, resulting in increased 

contact stress.  For standard profile gears or when 
xs  is 

zero, 
pK  is unity. 

 

4.2 Crowned Gear Teeth 

The tooth flanks of standard or uncrowned bevel gears are 

flat in the axial direction but can be modified by profile and 

or lead crowning [2, 3, 21]. In profile crowning, the tooth 

flanks are modified into curved faces in the axial direction 

by barreling. Therefore, the thickness of the tooth at the 

center is more than at the ends and this prevents contact at 

the ends of the gear tooth during meshing. When crowning 

is done in the transverse plane, it is called lead crowning, 

but this often involves a reduction of root tooth thickness, 

weakening the gear in bending resistance. Sometimes both 

profile and lead crowing are combined. Crowning reduces 

the need to accurately align the axes of mating gears to be 

exactly parallel [3] and reduces gear noise. It decreases the 

sensitivity of gearsets to misalignment and errors in 

manufacturing and assembly, reducing the uneven stress 

distribution along the gear face width. 

 

However, crowning produces localized contact [3] that 

makes the contact patch more elliptical than rectangular. 

This may lead to increased contact stress that can reduce 

gear durability. A variant of tooth crowning is tip relief 

which is an axial modification largely limited to the tip 

corners of the gear tooth. It is not as effective as crowing, 

but nonetheless prevents edge contacts at the ends of gear 

teeth [22]. ANSI/AGMA 2003-A86 [23] suggest a crowning 

factor of 1.0 for uncrowned teeth and 1.5 for crowned teeth 

for straight bevel gears contact stress estimates. ISO 10030 

has an expression that can be used to estimate crowning 

effect in spiral bevel gears [7] which has been applied to 

straight bevel gears [19]. 

 

The combined influence of standard gear tooth profile, 

profile modification, and crowing may be captured by the 

parameter: 

xpfH KKKK             (15) 

 

HK involute gear contact stress factor 

xK tooth crowing or ellipticity factor 

 

The parameter 
HK  quantifies the influence of standard gear 

profile and its modifications on the contact stress of plain 

cylinders in normal contact (the original Hertz formulation) 

when the plain cylinders have diameters equal to pitch 

diameters of the meshing gear pairs. 

 

4.3 Service Load Factor Estimate 

The service load factor was introduced as an aggregated 

design parameter to account for significant load influence 

factors in gear design [12]. It seeks to adjust the rated load 

to the value of the actual load expected in service. The 

service load factor is a magnification factor and takes care of 

load excitations beyond the rated value that are reoccurring 

in nature, not the peak load which occurs only occasionally. 

It is estimated using a multiplicative rule as shown in Eq. 

(16?) below. 

 

crmvas KKKKKK             (16) 

 

sK service load factor 

aK application or external overload factor 

vK internal overload or dynamic factor 

mK mounting or mesh overload factor 

rK rim flexibility load factor 

cK contact quality factor 

 

The service load factor components evaluation methods are 

based on experience and experimental data. Thus, it 

represents attempts to match the predictions of theoretical 

gear design models with practical results. Consequently, it 

transforms theoretical gear design models into engineering 

models. Please refer to the Appendix A for more discussions 

on the component parameters in Eq. (16). The service load 

factor has been incorporated in the contact stress formulas 

given below for ease of computation and comparisons. Due 

to the number of factors and evaluation methods adopted by 

different gear standards, the numerical values predicted can 

be very different for the same design situation. 

 

4.4 Equivalent Gear Ratio 

Bevel gear meshes must be considered in pairs because the 

pitch cone angles are restricted by the gear ratio [24]. In 

conventional configuration of bevel gearsets, the shaft angle 

is: 
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210                 (17) 

 

o  
shaft angle (deg.) 

 pitch angle of pinion (deg.) 

 

With reference to [25] and when 090o , the cone pitch 

angles are obtained as: 
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When 
00 18090  o  [26], it can be shown that: 
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The virtual or equivalent gear ratio of a straight bevel 

gearset [19] is: 

 

2

1

cos

cos




 e             (20) 

 

e virtual gear ratio 

 

Please note that equations (17) and (20) do not apply to 

crown bevel gears where 
0

2 90 . 

 

5. DIFFERENT CONTACT STRESS MODELS 

ANSI/AGMA 2003-B97 [5] standard provides contact and 

bending stress expressions for straight, zero, and spiral bevel 

gears. The contact stress expression for straight bevel gears 

is: 
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Where: 
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),min( 21 bbb                (22c) 

 

H maximum Hertz contact stress (MPa) 

KZ bevel gear factor 

EZ material elasticity coefficient (Pam0.5) 

IZ AGMA pitting geometric factor 

cE Composite elastic modulus (GPa) 

E elastic modulus (GPa) 

 Poison’s ratio 

21 ,bb facewidth of pinion, gear (mm) 

 

The 
KZ  factor adjusts the contact stress so as to allow the 

rating of bevel, spur and helical gears with the same 

allowable contact stress numbers for any material [8]. It has 

a value of 0.634 for AGMA 2003-A86 bevel gear standards. 

The “ZI” in AGMA formula is adjusted for conically 

inclined and tapered teeth, load shearing, location of the 

most critical load and standard practice [8]. Other factors 

incorporated are the relative radius of curvature and gear 

inertia [1]. Analytical evaluation of this parameter is 

complicated [27], so AGMA provides charts and graphs 

based on results from numerical methods and 

experimentation. A problem with the use of charts and 

graphs is reading error, especially at low values of pinion 

teeth number. If care is not taken at such low pinion teeth 

numbers, considerable error may be introduced to the 

estimated contact stress values. 

 

5.1 ISO Models 

Bevel gear design standards are defined in ISO 10300 [6] 

which provide one expression for gears with uncrowned 

teeth and another expression for gears with crowned teeth. 

These two expressions are combined into one formula 

below. The contact stress model for straight bevel gears may 

then be expressed as (please refer to the Appendix B for 

proof): 
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Where: 
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zmd               (24) 

 

d mid facewidth pitch diameter (mm) 

 

The number of teeth on the virtual spur gearset for straight 

bevel gears is estimated as: 
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vz virtual number of teeth 

 

Define 1k  and 2k : 
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 tvtvv zzzk  sin)cos()2(5.0 2
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k action line contact length factor 

 

The transverse contact ratio of the virtual spur gear for a 

straight bevel gear is [19]: 

 

t

t

kk




cos

21 
       

(27) 

 

t virtual or effective transverse contact ratio 

 

5.2 A New Contact Stress Model 

Osakue and Anetor [19] presented a new contact stress 

model for straight bevel where a bevel gear load factor was 

defined. This factor provides a kinetic link between the 

physical bevel gear and virtual spur gear. The combination 

of the “Tredgold’s approximation” and the “bevel load 

factor” help define an equivalent spur gear for a bevel gear. 

The proposed new contact stress model may be expressed 

as: 

 

3
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1

21

12 10
  

 cos)1(2
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

eetf

cebHs
H

ddb

TEKKK




      (28) 

 

f effective face width factor 

 

The expected effective face width factor based on ISO [7] 

and ANSI/AGMA [28] is in the range of 80% to 90%. 

Because of some accommodations of contact conditions by 

the contact quality factor cK  in Eq. (16?) and determination 

of pitch velocity at the backend of the bevel gear, f  

0.89 is recommended [20]. 

 

The similarities between Eqs.  (23) and (28) are obvious. 

The differences are in the pitch diameters of the bevel gear 

and the bevel load factor. Eq. (21), can be formatted in the 

same way but is not done due the method AGMA uses in 

evaluating IZ  factor. 

 

6. DESIGN APPLICATION CASES 

Table 1 shows the design data for six gears chosen for this 

study. Based on the information on Table 1, the gears were 

sized [19] and the preliminary basic dimensions for the six 

gearsets are presented in Table 2. Using the AGMA 2003 

[5], ISO 10300 [6], and the new contact stress expressions 

discussed above, the contact stress predictions from the 

models were evaluated and Table 3 shows the results 

obtained. Evaluation methods for load service factor 

components are well documented in AGMA standards and 

those methods were adopted for the new contact stress 

model because they are simpler than ISO methods. 

Appendix A provides a summary for both AGMA and ISO 

methods for evaluating the components of the service load 

factor. We assumed that cK  = 1.1 and rK  = 1.0 in all the 

design cases considered. However, values for AGMA and 

ISO standards are equal to unity only at high values of rim 

backup ratios. At lower rim backup ratios, the ISO standard 

gives more conservative values than the AGMA standard. 

Table 4 gives the estimates of the service load factor and the 

load influence factors of internal overload and mounting 

overload.  Table 5 shows the percentage variances between 

the new contact stress model and those of AGMA and ISO 

models, while Table 6 shows the percentage variances 

between the new model load influence factors and those of 

ISO model. 
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Table 1: Design Input Data    Table 2: Gearsets Basic Dimensions 

 
 

Table 3: Contact Stresses and Pitch Velocities          Table 4: Estimated Load Influence Factors 

 
 

Table 5: Contact Stress Variances between           Table 6: Load Influence Factor Variances 

 
 

 

7. DISCUSSIONS 

Fig. 4 shows the plot of the contact stresses in Table 3. From 

Fig. 4, it is obvious that the new and the AGMA 2003 [5] 

models give close predictions, with the new model values 

slightly lower. At high loads and velocities, the values from 

the two models appear to be converging. The ISO 10300 [6] 

model contact stress values seem to be very significantly 

higher at low loads 
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Fig 4: Contact stress estimates from models 

 

 

and velocities than either the new model or AGMA values. 

However, at high loads and velocities the contact stress 

values from ISO 10300 appears to converge and even 

predicts lower contact stress values than either the new 

model or AGMA values. The shape of each curve is 

accentuated by the influence of crowning, which was 

applied only to design cases 1, 3, and 5. From Table 5, it is 

seen that the percentage differences between the new and 

AGMA 2003 models are in the range of 2.22% to 7.40%. 

These differences are small but can mean significant 

improvement in the pitting life expectancy of the gears since 

life and contact stress is related by a power law of 

approximately 9th degree [29]. For example, a 5% decrease 

in contact stress could mean a pitting life increase of about 

50%. The percentage differences between the new and ISO 

models contact stresses are in the range of -6.57% to 

67.34%. These are large differences, indicating that much 

shorter pitting life should be expected based on the ISO 

model. In Appendix A, it is shown that when 

7.2 rn   for straight bevel gears of ISO standard 

proportions, the AGMA model predicts a value of 1.0 for 

rK  while the ISO model predicts a value of 1.295. Thus the 

service load factor for ISO model will be about 30% higher 

at this value of n . When 5.37.2  n , ISO predicts 

values of rK  that are above unity while AGMA model 

predicts a value of unity. Hence in that interval of values, 

the ISO gear will practically be larger in size. 

 

At 5.3 rn   and above, the rim thickness influence is 

the same for both standards since 1rK . Therefore, 

contact stress estimates for ISO standards in this study 

would be higher than obtained if 5.37.2  n  is 

assumed. According to Childs [1], ANSI/AGMA 2003 

standard provides conservative contact and bending stresses 

for bevel gears. Hence, contact stress models slightly less 

conservative than AGMA standard should then be given 

serious consideration. Contact stress models more 

conservative than AGMA standard would seem to be in 

need of careful revision, in our opinion. 

 

Fig. 5 shows the service load factor predictions from the 

new model and that of ISO 10300 methods. The AGMA 

values are the same as the new model values since the new 

model used the AGMA methods of evaluation. The service 

load values at low loads and speeds for the ISO model are 

higher than those of the new model. As the load and pitch 

velocity increase in values, the predictions from the two 

models appear to converge. However, they diverge again at 

very high loads and pitch velocity, where the estimates from 

the new model tend to be higher in values than those of the 

ISO model. 
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Fig 5: Service load factor estimates from models 

 

 

Fig. 6 shows the plot of the internal overload factor for the 

new and ISO 10300 models. In the ISO 10300 bevel gear 

standard, the load coefficient values at low loads and speeds 

are higher than those at higher load and speeds. At higher 

loads and speeds, the velocity coefficients tend to be very 

low. As the pitch velocity increases, higher tooth quality is 

required which leads to lower values of the internal overload 

factor for the two model estimates. The new model estimates 

appear to be consistently higher at medium to high pitch 

velocities while the values from the ISO model appears to 

bottom out. Please see the Appendix A for a brief 

presentation of the formulas used in estimating the internal 

overload factor from the new and ISO methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 6: Internal overload factor estimates from models 
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Fig 7: Mounting overload factor estimates from models 

 

 

Fig. 7 shows the plot of the mounting overload factor from 

the model estimates. Thisplots show that the ISO model is 

insensitive to changing values of loads and pitch velocities. 

That is one value seems to apply to all design cases. The 

new model values are significantly lower in values at low 

loads and pitch velocities than those of ISO model. As the 

load increases, the required face width of the gearsets also 

increases. This leads to a corresponding increase in the value 

of the mounting overload factor which is proportional to the 

square of the facewidth in the AGMA evaluation method. 

Please refer to the Appendix A for the mounting factor 

models of the new and ISO methods. 

 

As shown in Table 6, significant differences exist between 

the load influence factors predictions of ISO and the new 

models. The ISO model service load factor values differ 

from the new model values by -17.87% to 54.80%. The 

main contributors to these differences are the internal 

overload and mounting overload factors. As pointed out 

above, the rim flexibility factor is assumed to be unity for 

both ISO and AGMA models, making AGMA model very 

conservative. If AGMA recommendation of unity rim 

flexibility factor is assumed, the service load factor 

predictions from the ISO model will even be higher than 

those used in this study. 

 

In Eq. (16?), five components of the service load factors 

have been selected as significant and they are largely based 

on experimental data. Experimental results are based on 

national and local design and manufacturing practices and 

the expertise of the investigators, so the data results may 

show some variations naturally. Hence from experimental 

data modeling perspective, similar component factor models 

may predict slightly different results due to the value 

differences in experimental data that the models simulate. 

Consequently, it is expected that the service load factor 

estimates from different gear standards may exhibit some 

differences as shown in Table 6. However, the large 

differences indicated in the table cannot just be attributed to 

experimental data variances and data modeling. Therefore, a 

careful examination of the evaluation methods and models 

for the internal overload and mounting overload factors in 

ISO standards seem appropriate, if not necessary. 

 

There is widespread agreement that the Tredgold’s 

geometric approximation specifies the backend cone radius 

of the physical bevel gear as the radius of the equivalent 

spur. Hence any bevel gear analysis model that adopts this 

approximation should of necessity use the backend cone 

radius of the bevel gear as the radius of the equivalent spur 

gear. However, the ISO model uses the mid facewidth plane 

to define the radius of the equivalent spur gear. Thus, it 

appears that such models are using a different approximation 

for the geometric equivalence for bevel gear. As can be 

verified easily by inspection of the contact stress Eqns. (23) 

for the ISO model and (28) for the new model respectively, 

the gear diameter parameters appear as denominators. 

Therefore, smaller values will result in higher contact 

stresses, while larger values lead to lower contact stresses. 

Because the backend diameters are larger than mid 

facewidth diameters, Eq. (28) of the new model will predict 

lower contact stress than Eq. (23) of the ISO standard that 

uses the mid facewidth diameters. Therefore, comparing 

ISO model results with the new or AGMA models is 

philosophically flawed because they use different 

approximations to define the equivalent spur gears. It is 

therefore not surprising to find significant differences when 

model results based on Tredgold’s geometric approximation 

are compared with ISO models. 

 

In AGMA bevel standards, many authors use the actual gear 

teeth number on the bevel gears [1, 2, 3, 6, 30], to evaluate 

the ZI factor. However, some authors [31], use the virtual 

spur gear teeth number to evaluate the ZI factor. 
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Conceptually, it is perhaps more appropriate to use the 

virtual teeth number when estimating ZI factor because the 

stress expression is based on that notion. Now when the 

virtual gear teeth numbers are used, there is the possibility 

of being out of range in the available AGMA charts, 

especially for the gears that normally have very high number 

of virtual teeth. Therefore, there appears to be some 

confusion in the estimation of ZI when AGMA bevel 

standard is used.  It is refreshing that the new contact stress 

model completely eliminates these problems. 

 

The new contact stress model incorporates a bevel load 

factor in its formulation and distinguishes between 

geometric and kinetic equivalence [19]. Perhaps lack of 

understanding the difference between geometric and kinetic 

equivalence may be responsible for mid-width plane and 

backend plane approaches in the AGMA and ISO models. It 

may also account for the use of mid-width and backend 

pitch velocity in evaluation of internal overload factor by 

different authors. The new model helps clarify these issues 

and avoids the inconsistencies. 

 

8. CONCLUSION 

In this study, the power range of 10 to 15,000 kW, backend 

modules of 2.5 to 25 mm and backend pitch velocities of 

4.58 to 25.37 m/s were covered. Contact stress computations 

for six design cases were performed. The percentage 

differences in contact stress values between the new and 

AGMA 2003-B97 models are in the range of 2.22% to 

7.40%. Though the differences are small, they could 

significantly improve the pitting life expectancy of the gears 

since life and contact stress is related by a power law of 

approximately 9th degree [29]. The percentage differences 

between the new and ISO 10300 models contact stresses are 

in the range of -6.57% to 67.34%. These are large 

differences, indicating that much shorter pitting life should 

be expected based on the ISO model. ANSI/AGMA 2003-

B97 standard provides a conservative means for estimating 

the contact and bending stresses in straight, zero, and spiral 

bevel gears and comparing the merits of different design 

proposals [1]. Due to the influence of stress on pitting life 

expectance, contact stress models yielding slightly less 

conservative values than AGMA standard should then be 

given serious consideration. 

 

Current bevel gear design standards share three fundamental 

concepts of Hertz contact stress, spur gear equivalence 

based on Tredgold’s geometric approximation, and load and 

strength influence modification factors. The Tredgold’s 

approximation for the geometry of an equivalent spur gear 

of a bevel gear is near universal acceptance. It allows bevel 

gears to be designed with the geometric parameters defined 

at the backend of the bevel gear. However, differences exist 

in the application of Tredgold’s approximation in that 

AGMA 2003-B97 applies it at the backend while ISO 10300 

applies it at the mid-facewidth planes. Load influence 

factors are generally adopted so as to match theoretical gear 

capacity models such as pitting resistance with experimental 

data. Similarly, capability or strength influence factors are 

adopted so as to match gear material performance with 

experimental data. Differences in AGAM and ISO standards 

with respect to modification factors manifest in the number 

of factors considered important and the expressions 

developed for their estimation. 

 

Significant differences in contact stress value estimates were 

observed in this study when AGMA 2003-B97 and ISO 

10300 standards are used in estimating contact stress in 

straight bevel gear design. The ISO model contact stress 

values were found to be mostly higher than the AGMA 

values. A new contact stress model proposed yield contact 

stress values that are marginally smaller in values than those 

of AGMA. The differences in the contact stress value 

estimates may be attributed to the difference in the 

application of the Tredgold’s geometric approximation in 

ISO standard and the AGMA standard or new model and the 

values of the load service factor. The equivalent spur gear 

pitch radius for ISO 10300 standard is smaller than the 

equivalent spur gear pitch radius for the new model or 

AGMA 2003-B97 standards; leading to higher contact 

stresses for the ISO 10300 standard. Secondly, the estimated 

values of the service load factor from the ISO standards 

were generally higher than those of the new model. So even 

if the Tredgold’s approximation was applied identically in 

the different models or standards, the ISO results will still be 

higher in most cases. 

 

While AGMA and ISO gear design philosophies and 

procedures are similar, the evaluation of specific parameters 

in the service load factor varies in the standards. The 

methods of parameter estimation seems to reflect differences 

in approach, assumptions, details in modeling and attempt to 

correlate theoretical models with experimental results. The 

evaluation of the components of the service load factor in 

the new model is the same as AGMA methods. 

 

The maximum contact stress in a gear mesh should be 

determined with reasonable accuracy because the durability 

or pitting service life of gears depends on it. Due to the 

significant differences in contact stress values from AGMA 

and ISO standards, the differences in application of 

Tredgold’s approximation and the models for the component 

parameters in the service load factor expression, it is 

concluded that comparing the results from these different 

standards seems inappropriate. The authors agree with 

KISSsoft [16] that there is need to harmonize ISO and 

AGMA bevel gear standards. Globalization of the economy 

and technology has made this a very important imperative. 
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APPENDIX A: GEAR LOAD INFLUENCE 

FACTORS 

1 Application Factor ( aK  or oK ) 

The factor aK  adjusts the rated transmitted load value to 

compensate for external forces largely dependent on the 

characteristics of the driving and driven devices and the 

masses and stiffness of the system, including shafts and 

couplings used in service. The values of aK  recommended 

by AGMA and ISO standards are basically the same. 

 

2. Internal Dynamic Load Factor ( vK ) 

The internal dynamic factor relates the total tooth load to the 

rated transmitted tangential tooth load. It accounts for 

internal dynamic loads arising from acceleration and 

deceleration local masses of the geared unit. The internal 

dynamic loads are influenced by the quality of design and 

manufacturing. It is defined as: 
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dF incremental internal dynamic load (N) 

vk incremental internal dynamic factor 

 

AGMA provides expressions for vk  depending on the 

gear tooth quality in the range of 0 to 12 and the pitch 

velocity. According to AGMA [2] recommendations: 
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nq gear tooth profile quality number 

1a AGMA velocity exponent 

2a AGMA velocity coefficient 

tV Pitch point tangential velocity (m/s) 

 

Eq. (A3a) gives approximate values. For uni-directional 

loading, commercial quality gears should have 5.1vK  

since Hamrock et al [30], suggest that a value of 1.43 is 

conservative. Smooth running gearsets should have 

25.1vK  [33]. Precision drives generally have vK  in the 

range of 1.02 to 1.11 [34], that is 15.1vK . Therefore, as 

a guide for gear tooth profile quality selection, commercial 

quality gears may have 5.125.1  vK , premium quality 

gears may have 25.115.1  vK , and precision quality 

gears may have 15.1vK . In these categories, lower 

values would mean higher processing cost. For high speed 

applications, especially those above 20 m/s, methods that 

account for gear material properties, mass and inertia of the 

gears, and actual tooth profile errors should be used to 

estimate vK  [21]. 

 

3. ISO Method C-Graphical 

ISO 6336-1 [32] provides several methods for estimating 

vK  depending on desired accuracy.  Method A has an 

experimental approach and a comprehensive analytical 

approach. The experimental approach uses direct 

measurements to determine overload while the 

comprehensive analytical approach considers load intensity, 

pitch velocity, elasticity of connected members, deflection 

of shafts and housing, damping, etc. and must be supported 

by experience with similar designs. Method B is a simplified 

analytical evaluation method assuming an elementary single 

mass and spring system and is not recommended for low 

speeds with oV  less than 3 m/s [31]. Method C is a 

simplified version of Method B and has both analytical and 

graphical versions. Method D is a further simplification of 

Method C and Method E adopts AGMA method. 

 

According to Method-C graphical approach: 

 

Nov KK 3501 
         

(A4) 

 

NK350 velocity coefficient for 350N resonance load 

o load correction factor 
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Where: 

 

),(0 no qqf
, b

FK
q ta

o 
     

(A5) 

 

oq Specific load (N/mm) 

 

And 

 

),(350 noN qVfK 
, 1100 2

2

1







t

o

Vz
V

   

(A6) 

 

0V Specific pitch point velocity (m/s) 

 

NK350  

oV (m/s) 

 

Fig 1: Spur gear dynamic load coefficient (Fig. 6 of BS ISO 6336-1) [32] 

 

Table 1: Spur Gear Load Correction Factor ( o  )
+
[32] 

Gear Accuracy 

Grade
a 

)( nq  
Specific Load (N/mm) = oq  

≤100 200 350 500 800 1200 1500 2000 

Values of o  

3 1.61 1.18 1.00 0.93 0.86 0.83 0.81 0.80 

4 1.81 1.24 1.00 0.90 0.82 0.77 0.75 0.73 

5 2.15 1.34 1.00 0.86 0.74 0.67 0.65 0.62 

6 2.45 1.43 1.00 0.83 0.67 0.59 0.55 0.51 

7 2.73 1.52 1.00 0.79 0.61 0.51 0.47 0.43 

8 2.95 1.59 1.00 0.77 0.56 0.45 0.40 0.35 

9 3.09 1.63 1.00 0.75 0.53 0.41 0.36 0.31 

10 3.22 1.67 1.00 0.73 0.50 0.37 0.32 0.27 

11 3.30 1.69 1.00 0.72 0.48 0.35 0.30 0.24 

12 3.37 1.71 1.00 0.72 0.47 0.33 0.27 0.22 

NOTE: Interpolate for intermediate values 
a
Gear accuracy in accordance with ISO 1328-1. 

+
Table 5 of BS ISO 6336-1[32] 
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The gear tooth quality number and specific load are used to 

determine the value of NK350  from the graph of Fig. A1 and 

the gear tooth quality and specific velocity are used to 

determine o  from Table A1. Fig. A1 and Table A1 data 

apply only to spur gears. 

 

From the above, both AGMA and ISO methods require the 

gear tooth quality number in estimating the internal overload 

factor. However, the ISO models also have the specific load 

which depends on the contact load and pitch velocity as 

variables. AGMA method is thus simpler and faster for 

estimating the internal overload factor. 

 

4. Mounting Overload Factor ( mK ) 

The mesh or mounting overload factor, mK  takes care of 

non-uniform load distribution along the tooth contact length 

due to gear teeth misalignments in a mesh.  Misalignments 

generally result from the deflections of gear supporting 

members under load and clearances in bearings and housing; 

manufacturing accuracy, tooth width and spacing, and 

geometric characteristics of gear tooth.  For bevel gears, 

values of mK  are highly dependent on the mounting 

configuration of both pinion and gear. Preferred mounting 

configuration is for both gears to be straddle mounted, but 

this may not always be possible. So one-straddle and one-

cantilevered configuration is common in practice. Both 

gears may be cantilevered but this is a rare configuration in 

practice and is not recommended. AGMA standard 2003-

A86 [23] provides general methods for estimating mK . 

Generally, it may be defined as: 

 

a

i

a

m
q

q

q

q
K  1max , mm kK 1     (A7) 

 

a

i
m

q

q
k           (A8) 

 

mK mounting or mesh overload factor 

maxq maximum specific load (N/mm) 

iq incremental specific load (N/mm) 

aq average specific load (N/mm) 

mk incremental specific load factor 

 

The AGMA data for the gear mounting overload factor may 

be approximated as [2]: 

 
62 106.5  bKK momc         

(A9) 

 

mcK generic mounting or mesh overload factor 

moK basic mounting or mesh overload factor 

 

For crowned gear teeth: 

 

mcm KK   (A10a) 

 

For uncrowned teeth higher values are expected [3] and 

from limited data [24], the values for uncrowned teeth 

appear to be in the range of 1.5 to 2.0 times the incremental 

specific load factor for crowned teeth. Therefore, for 

uncrowned teeth, it is suggested that: 

 

)1(75.11  mcm KK
   

(A10b) 

Table A2 gives suggested values of moK  

 

Table A2: Basic mounting Factor for Right Angle Crowned 

Bevel Gearset [8, p. 667]. 

 

Gear Mounting Type 

Basic Mesh Overload 

Factor  ( moK ) 

Both gears straddled 1.00 

One gear straddled 1.10 

Both gears cantilevered 1.25 

 

ISO method for evaluating mK  is a product of two 

components which are the face (axial) factor ( mK  ) and 

transverse (radial) factor ( mK  ).  This acknowledges 

possible contact stress variation in two directions. Thus: 

 

 mmm KKK           (A11) 

 

mK radial mounting transverse overload factor 

mK axial mounting axial overload factor 

 

From [7, p.14] 1.1mK
 
for shaved teeth and 1.0 for 

ground teeth. Note that AGMA assumes 1mK ; so only 

mK  is considered significant. 

 

From [35]: 

 
















f

mmm KK




85.0
5.1

           
(A12) 

 

The range of f  
is 0.85 to 0.90 [7], but it is advisable to use 

actual value based on rated load test. Values of mmK  are 

taken from Table A3, depending on bevel gear arrangement. 
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Table A3: ISO Basic Mounting Factor for Bevel Gears [35] 

Mounting Configuration 
Basic Mounting 

Factor, mmK
 

Both gears straddled 1.10 

Small gear straddled 1.15 

Large gear straddled 1.20 

Both gears cantilevered 1.30 

 

For Eq. (28), it is assumed that s  
= 0.89 and for the 

common case of a straddled pinion mmK  = 1.15 so that: 

 
















f

mmm KK




85.0
5.1

 

 

6475.1
89.0

85.0
15.15.1 










                
(A13) 

 

Assuming shaved teeth, 1.1mK : 

 

 mmm KKK  = 1.1×1.6475 = 1.812         (A14) 

 

From the above, values of mK  and mK  for bevel gears in 

ISO 10300 are essentially fixed for all gear sizes. This is 

appears not to be in tune with practical expectations since 

housing and shaft rigidity vary depending on design, quality 

of manufacture, and assembly. 

 

The mesh overload factor prediction by ISO 10300 [7] bevel 

gear standards varies from about 1.75 to 2.25 and the range 

of values is about 1.05 to 1.95 for crowned straight bevel 

gears based on AGMA graph [8]. The value range from 

Japanese standards is about 1.3 to 2.5 for crowned straight, 

zero, and spiral bevel gears and 1.3 to 3.8 for uncrowned 

straight bevel gears [24]. Clearly, the lower range values for 

ISO model appear to be on the high side when compared 

with the other standards mentioned above. 

 

5. Rim Flexibility Factor ( rK  ) 

The Lewis bending stress formula assumes a gear tooth 

attached to a perfectly rigid base support. This is true only if 

the gear rim is sufficiently rigid or thick enough. Large 

diameter gears of cast or fabricated construction having 

relatively thin rim are more flexible and may be subjected to 

low frequency vibration modes [28] that can cause gear 

failure. In both AGMA and ISO models, rK  is 

conventionally applied to the root bending stress only. 

Because the vibrations associated with flexible gear rims 

increases the load during contact, then that load should 

influence the contact stresses also. Therefore, the authors 

believe the rim rigidity or flexibility factor should apply to 

both bending and contact stresses. 

 

6. AGMA 

Gear tooth base support rigidity is assessed by the rim 

backup ratio which is defined as the rim thickness divided 

by the whole depth of gear tooth. Experimental data suggest 

that when the rim backup ratio is greater than 1.2, the rim 

rigidity factor is unity, otherwise it is above unity. Based on 

AGMA [3] recommendation: 

 














r

rK


242.2
ln6.1  for 2.15.0  r    (A15a) 

 

0.1rK  for 2.1r   (A15b) 

 

t

r
r

h

t
        (A16) 

r rim backup ratio 

rt rim thickness (mm) 

th gear tooth whole depth (mm) 

tm transverse module (mm) 

 

For standard ISO cylindrical and bevel gears, tt mh 25.2 . 

A rim back up ratio of 2.1r  suggests a rim thickness, rt  

of 2.7 times the gear module for spur and straight bevel 

gears of ISO standard proportions.  For a Gleason bevel gear 

system, the rim thickness, rt  is about 2.63 times the gear 

module. 

 

ISO 

The ISO standard [7] has its own expression for rK
 and is 

based on similar concepts of gear tooth flexibility and 

resonance that can dramatically increase contact load. The 

expression is: 

 











n

rK


324.8
In15.1

 
for 5.375.1  n    

(A17a) 

 

0.1rK  for 5.3n       (A17b) 

 

Where: 

 

n

r
n

m

t
         (A18) 

 

n nominal rim backup ratio 

nm backend normal module (mm) 
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For the ISO model, additional precaution is recommended 

for 75.1n . Note that when 7.2 rn   for straight 

bevel gears of ISO standard proportions, the AGMA model 

predicts a value of 1.0 for rK  while the ISO model predicts 

a value of 1.295. Thus the service load factor for ISO model 

will be about 30% higher at this value of n . When 

5.37.2  n , ISO predicts values of rK  is above unity 

while AGMA model predicts a value of unity. Thus in that 

interval of values, the ISO gear will practically be larger in 

size. At 5.3 rn   and above, the rim thickness 

influence is the same for both standards since 1rK . 

Though the AGMA and ISO methods for estimating rK  are 

based on similar logic, values of rK  could be very different 

sometimes depending on the backup ratio as demonstrated 

above. 

 

57 Contact Quality Factor ( cK ) 

Tooth contact quality accounts for the effects of surface 

roughness, pitch line velocity, and lubrication effectiveness. 

Surface finish may be affected by manufacturing, heat 

treatment and surface treatment methods, residual stresses, 

plastic work hardening, etc. [2, 36].  In AGMA model, 

lubrication effective is not associated with this factor. The 

standard suggests it may be assumed to be unity for gears 

made with conventional methods but can be given a value 

above unity for unusually rough surface finish or for known 

presence of detrimental residual stresses [3]. Friction is 

generally associated with surface roughness and lubrication, 

and some suggested values for cylindrical and bevel gear 

meshes are 0.05 to 0.10 [37] and 0.04 to 0.08 [38]. 

However, in Hertz contact stress formulations for cylindrical 

and bevel gearing, mesh friction is neglected in most gearing 

standards because it is assumed to be negligible. But it is 

known that the presence of friction in Hertz contact 

increases the maximum contact pressure and introduces a 

tensile stress [3] in the stress field which is detrimental to 

fatigue resistance. Therefore, the contact quality factor may 

be justifiably given above unity value due to the presence of 

friction. The effect of surface roughness, pitch line velocity, 

and lubrication effectiveness is usually not more than 10% 

on gearing capability, according to McVillie [14]. For spur 

gears, a value of 1.10 was suggested in [12]. This value is 

assumed for straight bevel gears also. 

 

Appendix B: Simplifying ISO Bevel Model 

 

ISO 10300 contact stress model from [7, p. 17] for 

uncrowned straight bevel gears is simplified into: 
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Where: 
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HZ zone factor for uncrowned gear teeth 

Z contact ratio factor 

 

For gears with crowned teeth: 
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MZ zone factor for crowned gear teeth 

 

That is, replace HZ  with MZ  in the equation (B1) above, 

where: 
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bmp mid face width base circular pitch 

 

Eqs. (B1) and (B3) may be combined and expressed as: 
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where for uncrowned tooth: 
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For crowned teeth 
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Now 
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Then from Eq. (22a) combined with Eq. (B7): 

 

310 cpfHE EKKZZ        (B8) 

 

Also 
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Therefore, combining Eqs. (B5), (B8) and (B9): 
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Now substitute: 
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into the denominator and Eq. (15) into the numerator of Eq. 

(B10): 
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Eq. (B12) is the combined equation for straight bevel gears. 

The mid-zone factor accounts for the effect of heightwise 

crowning and applies to spiral bevel gears [7]. The spiral 

bevel gear model is adopted for straight bevel gears here by 

setting the helix angle of the spiral bevel gear to zero. 

 

It is noted that ISO standards generally require more details 

in the methods for evaluating load influence and strength 

influence factors than AGMA standards. 


