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Abstract 
A probabilistic method for determining a design factor is presented based on the lognormal probability density function. Design 

parameters are characterized by mean values and coefficients of variation (covs). The design capacity model variability is 

estimated using first order Taylor series sensitivity analysis. The method provides a lower bound and an upper bound estimate for 

a design factor which can be used to initiate a design task without an arbitrarily chosen “safety factor”. Two design cases of 

static bending and axial tensile fatigue are considered. In first case, the range of the design factor is 1.485 to 1.620 at a reliability 

level of 99.9%.  In the second case, the range of the design factor is 1.631 to 1.739 at a reliability level of 99%. The higher values 

of the design factor in the second case compared to the first, even at lower reliability level are attributable to the greater 

variability of design parameters for the second case. The illustrated two cases are stress-based problems but the method is not 

limited to stress-based design. It can be applied to other serviceability criteria such as buckling, lateral deflection, torsional 

deformation, critical frequency, etc. What is required is the formulation of a design capacity model for a failure mode that is 

related to an appropriate serviceability requirement. Because a probabilistic design factor serves the function of a “safety factor” 

in deterministic design, it follows that deterministic design is converted to probabilistic design by its use. This is an easier, faster 

and less costly approach to probabilistic design than classical methods. 
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--------------------------------------------------------------------***------------------------------------------------------------------ 

1. INTRODUCTION 

Engineers and designers have a long history of using “factor 

of safety”, “safety factor”, “design factor”, “safety margin”, 

etc. in the design of products and components to guard 

against design uncertainty in order to prevent failure [1- 5]. A 

safety factor is subjectively assigned in practice so this 

approach does not provide a logical basis for addressing 

uncertainty or variability and is not directly related to failure 

probability. In fact, the safety factor method does not give 

insight about individual variation or the actual margin of 

safety in a design [6] because the level of reliability cannot 

be assessed quantitatively. Hence this approach can lead to 

over-design and under-design issues. Other terms like 

reliability factor or reliability index essentially serve the 

same purpose but are evaluated on the basis of probabilistic 

and statistical considerations [7, 8, 9]. Probabilistic design 

treats design model parameters as random variables and 

allows an assessment of risk or confidence in a design. A 

reliability factor or index can be quantitatively associated 

with probability of failure so that safety concerns can be 

addressed. Probabilistic design can also quantify the amount 

of over- or under-design [10]. 

 

The main factors that affect uncertainties in design are 

variation in service load, material properties, component 

geometry, accuracy of analytical model, accuracy of failure 

mode model, and human errors [11]. Variability in service 

load is usually the largest but most difficult to predict, 

especially at the design phase [5, 7, 12]. Variation in material 

properties and component geometry are controlled by 

manufacturing practices. For example, tolerances are 

specified on component dimensions and products to restrict 

variability and limits are required on material property values 

for conformance to standards or specifications. Variability in 

material properties are more significant than those of 

dimensions which are generally small, especially in mating 

components. The possibility of human errors is ever present 

in human activities and design is no exception. Human errors 

can be greatly minimized by doing things systematically and 

with a serious commitment to excellence. It is not physically 

possible or financially feasible to eliminate variation of 

design parameters. This is due to the fact that the reduction of 

variability is associated with higher costs either through 

better and more precise manufacturing methods and 

processes or increased efforts in quality control. Accepting 

variability and limiting it seems to be a more pragmatic 

approach in design as it makes production more cost-

effective and products more affordable [13]. 

 

Due to known variation in many design model parameters, a 

statistical consideration of their values is a logical 

expectation in engineering design. This is because statistical 

methods allow quantitative descriptions of phenomena that 

show consistent pattern of variability [1]. The need to assess 

failure risk quantitatively brings probabilistic considerations 

into design analysis. Different probability distribution 

functions have been used in describing design parameters. 

The exponential, normal and lognormal distributions have 

been used to study reliability and they provide closed form 

solutions [14, 15, 16, 17]. Reshetov et al [17] has pointed out 

that the lognormal distribution is more accurate in situations 

of high reliability than the normal distribution. It is known 

that products of variates from any distribution tend 

asymptotically to lognormal [1]. In addition; products, 

quotients, and exponents of lognormal variates are also 
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lognormals. Since design capacity models generally contain 

products and quotients of design parameters and or sum of 

terms of products and quotients of design parameters, the 

lognormal distribution is a good candidate for probabilistic 

design applications for closed form solutions. Assuming 

lognormal distribution function for design parameters is 

reasonable because of the control of material properties and 

the positive skewness of known load distribution curves [18]. 

 

The use of probabilistic and statistical approaches in design 

analysis has led to the concept of a reliability factor [3, 7]. A 

reliability factor is expressed as a function of design 

parameter variability and a failure level variable which 

represents acceptable safety and or economic risk. Evaluating 

a reliability factor accurately at the beginning of a design task 

is problematic in most cases. In general it can only be 

evaluated approximately, so the approximate value of the 

reliability factor is here referred to as “design factor”. The 

estimation and use of the design factor will allow design to 

proceed without an arbitrarily chosen “safety factor”. Also a 

reasonably accurate design factor can minimize the number 

of iterations for an acceptable design solution. 

 

The objective of this study is to formulate a probabilistic 

approach for the estimation of design factor. The design 

parameters of capacity models are assumed to have 

lognormal probability density function. Each design 

parameter is characterized by a mean value and a coefficient 

of variation (cov) and the cov represents the uncertainty 

associated with the design parameter. The uncertainty of a 

design capacity model is estimated using sensitivity analysis 

of the first order Taylor’s series expansion. Safety may be 

quantitatively described in terms of a reliability level denoted 

by a unit normal variate. The design factor is estimated from 

a target reliability level and the coefficient of variations 

(covs) of the design parameters. 

 

2. DESIGN CAPACITY MODEL 

Random variable analysis shows that mean values of 

functional relationships are obtained by substituting the mean 

values of variates [1]. When design capacity models are 

evaluated using mean values of the significant parameters, 

the expected result has a reliability of 50%, which 

corresponds to a unit normal variate of zero. Increased 

reliability needs higher values of the unit normal variate. 

 

Consider a design capacity model of the form: 
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The design capacity model basic cov is: 
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The covs of the above equation come from the load and 

geometric parameters in a specific design capacity model. 

The load is by far the most uncertain design parameter [5]. If 

the load is specified as a maximum value, then a decision 

need to be made about how much deviation around the 

maximum value can be expected. For instance does one 

expect ±5% or ±10% deviation on the maximum load value? 

When the data size is small, or unknown, dividing the 

deviation by 2 may yield a conservative estimate of the load 

cov. Another approach for estimating the load cov is the use 

of overload factors. If an overload factor for a class of 

devices is given or known over a range [19], both its mean 

and deviation can be estimated, so the cov can then be 

determined too. Ullman [20] has suggested the Program 

Evaluation and Review Technique (PERT) approach for 

estimating the mean and cov values of service loads. 

Variations in geometry are controlled by manufacturing 

practices and these are generally small, especially in mating 

components which is of the order of 0.001 [1] for cross-

sectional dimension in machine design. A cov value of 0.005 

to 0.03 for length may be assumed in most cases, the higher 

values being for smaller length sizes. 

 

The basic design capacity model of Eq. (2) needs to be 

adjusted for analytical accuracy, failure mode correlation to 

mechanical capability, and human related variability. This 

could be done by use of coefficients as suggested by [20]. 

That is: 

 

momhmfmaM kkk    (5) 

 

The design capacity model cov is: 

 
222

momsM    (6) 

 

where: 

 

 

2222
mhmfmams    (7) 

 

Engineering design models are approximations of reality and 

are generally sufficiently accurate, having deviations of about 

±10% [21], representing a cov ( ma ) of about 5%. The cov 

( mf ) of failure mode models vary over a considerable range 

of 0.02 to 0.25 [11, 20], the higher values being associated 

with fatigue failures. Human related variability in design can 
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be attributed to human errors, most of which may be 

eliminated by doing things systematically. Human errors can 

be made during design, manufacturing, assembling, 

inspection, installation, operation, maintenance, and 

handling. A study of 931 gear failures over a period of 35 

years found that human errors accounted for 40.6% of the 

gear failures [22, 23]. This represents a cov ( mh ) of about 

7%, assuming the contribution spans 6 standard deviations, 

since sample size is high. Because gear design is complex, 

this cov should be conservative for less complicated design 

tasks. 

 

3. MECHANICAL CAPABILITY MODEL 

Every component in an assembly or sub-assembly has a limit 

in its ability to resist imposed load. This limit is here called 

“mechanical capability” which is the maximum load capacity 

of the component. A mechanical capability may be the yield 

strength, tensile strength, fatigue strength, critical lateral 

deflection, critical torsional deformation, critical axial 

deformation, critical frequency, etc. of a component. In most 

cases, mechanical capabilities are determined in controlled 

environments such as laboratories. Values so obtained are 

called basic or nominal mechanical capabilities. A 

component in a device in the field will hardly ever have 

conditions similar, much less identical, to those in 

laboratories. Consequently, the basic mechanical capability 

of a component needs to be adjusted for service conditions. 

Therefore, the mechanical capability may be expressed as: 

 

coctcrC Ykk  
(8) 

 

And: 

 
2222
coctcrC    

(9) 

 

Eq. (9) makes correction for reliability level and service 

temperature. The reliability level correction may be 

necessary for yield and tensile strengths because these are 

often quoted as minimum strengths in literature currently. 

Most fatigue and endurance strengths are reported as mean 

values [24] so no correction is needed in such cases; that 

is 0.1crk and 0cr . Be sure to confirm if this is true 

when reading or using data from design handbooks and other 

reference sources. Sometimes components are deployed in 

areas of elevated temperatures and adjustment must be made 

accordingly on the material capability. However, it is 

preferable to obtain data at service temperatures, especially 

when safety is a concern. According to Ullman [20], if the 

material properties are well known, use a cov ( co ) of 0.05; 

if the material properties are not well known, use a cov of 

0.10 – 0.15. The cov values for fatigue strength from some 

data indicate it is less than 0.08 [24]. A temperature cov 

( ct ) of 0.099 to 0.11 is reported by Budynas and Nissbett 

[24]. For steel materials, temperature effect may be ignored 

for temperatures less than 250oC. 

 

In most fatigue related designs, adjustment is made for 

surface finish and component size due to their influence on 

fatigue strength. The cov for the size adjustment is negligible 

[1] but the cov for the surface finish adjustment factor must 

be accounted for, so the stress concentration cov is: 

 
222
srkkf     (10) 

 

The cov ( k ) value for stress concentration factor is 0.11, 

while that for the surface finish ( sr ) is in the range of 0.06 

to 0.15 [1]. 

 

4. LOGNORMAL RELIABILITY MODELS 

Two reliability and design factor models based on the 

lognormal probability density distribution are considered 

below. They are the load ratio and absolute value models. 

 

4.1 Load Ratio Model 

Suppose XM and YC are the design model and service load 

capability random variables respectively, the load ratio is the 

quotient of YC and XM.  If it is assumed that YC and XM have 

lognormal probability density distributions, the load ratio 

random variable will have lognormal probability density 

distribution also [1]. 

 

That is: 
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Fig 1 shows the lognormal domain and standard normal 

probability distribution representations of n . The natural 

representation uses n as independent variable while the 

standard normal representation uses the unit normal variate 

(z) as independent variable. The failure regions are indicated 

in the two representations. 
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a) Lognormal domain     b) Standard normal domain 

 

Fig. 1: Load ratio lognormal probability functions 

 

 

The mean value of random variable n may be assumed to be 

equal to the reliability factor zn [1] which is obtained as: 
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(12) 

 

The reliability factor corresponds to the load ratio of the 

mean values of the load capability and service load. It is very 

important to note that the reliability factor depends on the 

mean values of these design parameters. This is because 

when considering chance failure, calculations of safety or 

design factor based on the quotient of minimum load 

capability and maximum load is not appropriate [1]. 

 

The lognormal standard deviation associated with random 

variable n may be estimated [25] as: 

 

 )1)(1(ln 22

MCn    

 

(13) 

 

The reliability factor is also related to model variability and 

desired reliability level specified by normal variate (z) [25] 

as: 

 

 )5.0(exp nnz zn    (14) 

 

In design sizing calculations, simplifying assumptions are 

made to help initiate the normal iterative design process. 

Generally, design sizing capacity model should be based on 

the most significant failure mode of a component in order to 

obtain a reasonable initial size [26]. A reasonable estimate of 

size in design sizing task should result in fewer iterations 

during design verification [27]. When a capacity model is 

based on the most significant failure mode, a less accurate 

form of Eq. (1) is obtained and may be used for a quick 

solution. A simplified capacity model can also be obtained by 

using a linear form of a non-linear model. For instance, 

Osakue [28] developed a linearized version of the Gerber 

fatigue model for design sizing but uses the non-linear 

original model for design verification. Using a simplified 

form of a design capacity model implies that any estimate of 

M based on such a model is only an approximation. A 

problem in fatigue situation is that the stress concentration 

factor depends on component size and the fillet radius. Since 

the component size and fillet radius are unknown at the 

beginning of a design task, some assumptions may have to be 

made. Note that fatigue is reported to be responsible for 80 – 

90% failures of mechanical devices [17, 29]. Consequently it 

may not always be possible at the start of a design endeavor 

to have an accurate value of M . Though Eq. (8) is often less 

complicated than Eq. (1), the above argument may be made 

for the mechanical capability. In view of these situations, 

only an approximate value of the reliability factor can be 

estimated at the beginning of a design task in most cases. 

This approximate value is called “probabilistic design factor” 

or simply “design factor” and it is obtained as: 

 

 )5.0(exp
oooo
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where: 

 

 )1)(1(ln 22

MCo    

 

(16) 

 

The design factor obtained from Eq. (15) is the minimum 

required value of the design factor for design sizing to avoid 

under-design condition. Note that Eq. (15) shows the design 

factor depends only on variability and the desired reliability 

target. 

 

4.2 Absolute Value Model 

Fig 2 shows representations of the probability density 

functions of the design capacity model and component 

capability model in the physical domain. The covs are shown 

in brackets. From a probabilistic perspective, failure occurs 

in the area of overlap between the heel of the design model 

capacity probability distribution function and the tail of the 

component capability probability distribution function. 
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Theoretically, if the overlapping is prevented, then failure 

will be eliminated. The gap between the two functions in Fig. 

2 is indicated for visualization purposes only. No failure 

region is indicated because overlapping is assumed not to 

occur. This is highly unlikely and practically impossible 

because the probability density distribution functions extend 

to infinity in both directions. Thus this extreme situation may 

be associated with over-design, representing an upper bond 

for the reliability factor. A reliability factor value above this 

value is too high. 

 

 
Fig. 2: Physical domain representation of probability density functions 

 

 

In the lognormal domain: 
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And: 
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Assuming no overlap of the probability distribution densities 

of the XM and YC in the lognormal domain, then: 
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and: 

 

 2/ 5.0exp asz zn    (21) 

 

where: 

 

)1ln()1ln( 22
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(22a) 

And 

 

)1ln()1ln( 222
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(22b) 

 

Due to the approximations in the design capacity and 

component capability models at the beginning of a design 

task: 

 

 2/ 5.0exp aoso zn    (23) 

 

The design factor obtained from Eq. (23) is the maximum 

value. It is useful in preventing starting a design with too 

high value of the design factor. During design verification, it 

should be recalculated and used to judge over-design 

condition. The objective in design verification is to assess 

the adequacy of a design. Based on the result(s) of design 

sizing, the designer(s) have size(s) which can be used to 

estimate stresses or other performance capacities. The 

performance capacity result(s) can then be judged for 

acceptability. If the evaluated design factor for a failure 

model is higher than the over-design factor (
/

on ), then 

reducing the size of the component should be given a 

serious consideration. 

 

5. APPLICATIONS OF MODELS 

Two illustrative cases are considered below in 

demonstrations of model applications. The first case is that 

of static bending of a flange in a pressure vessel. The second 

case is the axial tensile loading of a fastener in fatigue. 

Approximate design sizing capacity models are used to 

determine the design factors. 
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5.1 Case 1 

Determine the design factor for the thickness of raised face 

flange of Fig. 3 if the desired reliability is 99.9% or 

oz 3.09. Yield failure in bending of the flange is most 

likely and the applied static load has a cov of 0.092. The 

outside flange diameter is 1200(1, 0.005) mm; base flange 

diameter is 1000(1, 0.005) mm; and the yield strength of 

flange has a cov of 0.039 [30]. The mean values of design 

parameters are outside the parentheses and the covs are the 

second decimal numbers inside the parentheses above. 

 

 
Fig. 3: Flange (After Zhang et al, (2005)) 

 

5.1 1 Solution for Case 1 

The failure of the flange is critical in bending though direct 

shear stress is another possible failure model. Neglecting the 

direct shear stress, the stress capacity model and static yield 

failure criterion is [30]: 
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Apply the rule of Eq. (3) to Eqs. (24a to 24c) and obtain: 
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The cov ( F ) for the load is 9.2% and that for flange 

diameter ( D or 1D  ) is 0.5% and that of the thickness ( t  

) as 0.2%. Substituting values in Eq. (25): 
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The model accuracy cov ( ma ) is taken as 5% for bending 

stress formula and the bending failure cov ( mf ) is taken as 

3% since the failure mode is well understood. The human 

errors cov ( mh ) is assumed to be 3% because this is a 

simple design task. Substituting values in Eq. (7): 

 

0043.003.005.003.0 2222 ms  

 

Substituting values of mo and ms in Eq. (6), the design 

capacity model cov is: 

 

014318.001002.00043.02 M  

 

The mechanical load capacity is the yield strength and it has 

a cov of 0.039. The yield strength is a mean value, so no 

reliability level correction is required. Assuming ordinary 

temperature environment, no service temperature correction 

is required too, so Eq. (9) becomes: 

 

039.0 ytC  ;         00152.02 C  

 

Load Ratio Model Solution 

Substituting values of M and C in Eq. (16): 
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Substituting values of o and oz in Eq. (15): 
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Absolute Value Model Solution 

Substituting values of M and C  in Eq. (22a): 
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Substituting values of M and C in Eq. (22b): 
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Substituting values of s , a and oz in Eq. (23): 

 

 
620.1

)0127.0(5.009.31582.0exp/



on
 

 

5.2 Case 2 

Two bolts are used to support an external tensile load of 10 

kN. For a preliminary design, ISO class 4.6 bolts are 

specified [19, p. 501 – 502] and preload tension will be 

applied using a wrench. Estimate the design factor for a 

reliability of 99% or oz 2.326. 

 

5.2.1 Solution for Case 2 

Fig. 4 shows a bolt fastener under load in service. The 

operating forces are the preload tension ( iF ) and the 

external load ( eF ). The load on the fastener and treads come 

from both eF and iF . The joint may be assumed to be under 

fatigue loading due to possible fluctuations in service load 

and machinery vibrations. 

 

 
Fig. 4: Fastener under load in service 

 

If a joint is overloaded, then bodily separation of joint parts 

may occur and the external load is then carried only by the 

fastener. On this premise, Osakue and Anetor [31] proposed 

a simple axial fatigue tensile stress capacity model for 

fastener sizing purposes. This model may be slightly 

modified by introducing the design factor as: 
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The model capacity basic cov is obtained as: 

 
2222 4 hkfFmo    (27) 

Hence from Eq. (10) and Eq, (27): 

 
22222 4 hsrkFmo     (28) 

 

Both the preload and external load are subject to variability, 

but the preload will in most cases be associated with greater 

uncertainty because variations of ±25% in preload torque 

are routinely experienced [32, 33]. It is therefore more 

reasonably to use the cov of the preload to estimate the 

design factor The preload tension is directly proportional to 

the torque, so from the deviation on the preload torque, the 

cov ( F ) for the load is estimated as 12.5% (0.125), 

assuming the deviation spans two standard deviations. It is 

usually safe to assume that threads have been rolled, except 

otherwise specified [12]. If the stress concentration type at 

the thread root is considered as a shoulder type and rolled, 

the cov for the stress concentration factor ( k ) and surface 

finish ( sr ) are respectively, 0.11 and 0.06 [1]. The cov for 

fastener diameter ( h ) is taken as 0.002. Therefore 

substituting values in Eq. (28): 

 

031341.0

002.0406.011.0125.0 22222



mo
 

 

The assembly of fasteners is generally labor intensive so the 

human error cov ( mh ) is taken as 0.05. The cov for failure 

model accuracy ( mf ) for uni-axial fatigue is about 0.05 

[20], and the cov for design model accuracy ( ma ) is taken 

as 0.05 because it is a simplified model. Substituting values 

in Eq. (7): 

 

0075.005.005.005.0 2222 ms  

 

Substituting mo and ms  in Eq. (6), the design capacity 

model cov is: 

 

038841.0

031341.00075.0222



 momsM 
 

 

The mechanical load capacity is the yield strength and for 

fastener steel material grades, the properties are well 

understood. Therefore the cov for the yield strength may be 

taken as 0.05 [20]. The yield strength for standard fastener is 

quoted as minimum value [24], so a reliability correction 

factor is required. Assuming ordinary temperature 

environment, no service temperature correction is required, 

so Eq. (9) becomes: 

 
222
ytcrC    (29) 
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From Eq. (A3) in the Appendix: 

 

006.005.0326.2 22  ytscr z   

 

Hence from Eq. (29): 

 

00254.0006.005.0 222 C ; 

 

Load Ratio Model Solution 

Substituting values of M and C in Eq. (16): 

 

  2016.0)038841.01)(00254.01(ln o  

 

Substituting values of o and oz in Eq. (15): 

 

  631.1)2016.05.0326.2(2016.0exp on  

 

Absolute Value Model Solution 

Substituting values of M and C in Eq. (22a): 

 

 0.2456

 )038841.01ln()00254.01ln(



s
 

 

Substituting values of M and C in Eq. (22b): 

 

03557.0

)038841.01ln()00254.01ln(2



a
 

 

Substituting values of s , a and oz  in Eq. (23): 

 

 
739.1

)03557.0(5.0326.22456.0exp/



on
 

 

6. DISCUSSIONS 

Design capacity model or component capability expressions 

are of two types; standard and non-standard forms. Eq. 9 is 

an example of a standard form expression where design 

parameters are in only multiplicative functional relationship 

(Eq. 8).  Eq. (25) for design Case 1 is an example of non-

standard form expression where design parameter are in 

multiplicative and or summation functional relationship. The 

summation relationship of Eq. (25) is in the parameter b, 

which is given by Eq. (24b). The cov expression for 

standard form design model capacity can be derived by 

inspection (please refer to Eqs. (8) and (9)) of the design 

capacity model functional relationship but the cov 

expression for non-standard form design model capacity 

must be derived by use of Eq. (3). 

 

Table 1: Summary Results for Design Cases 1 and 2 

Parameter Case1 Case2 

Reliability target (%) 99.9 99 

Unit normal variate 3.09 2.326 

Minimum design factor 1.485 1.631 

Maximum design factor 1.620 1.739 

 

Table 1 summarized the results from Case1 and Case 2 

designs. We note that though the reliability in Case 2 is 

lower than that in Case 1, the minimum and maximum 

values of the design factor for Case 2 are higher than those 

of Case 1. This reason for this is that the covs or variability 

for the design parameters in Case 2 are higher than those of 

Case 1. Arbitrarily choosing a “safety factor” may not 

properly factor this variability information into the value of 

the design factor. Whether variability is high or low, the risk 

of failure and its consequence(s) can be properly considered 

by the choice of a reliability target which is then used to 

estimate a probabilistic design factor. Consequently, the use 

of probabilistic design factor makes it possible to fine tune 

design sizes to the risk of failure. 

 

After initial dimensions are selected, a more accurate 

capacity model for Case 1 can be developed by considering 

combined bending and direct shear stresses [26]. Based on 

such a model, better estimates of the reliability factor and 

over-design factor can be made. Similarly in Case 2, after 

design sizing, the non-linear Gerber fatigue design equations 

[25, 31] can be used to obtain estimates of reliability factor 

and over-design factor. 

 

The above cases demonstrate that probabilistic design 

allows a quantification of risk which is captured by the 

design factor. The over-design factor may be interpreted as a 

value of a design factor for a higher reliability. In that case, 

it guides the designer in ensuring that sizes are economical. 

Therefore the over-design factor should be re-calculated 

during design verification because at design verification it is 

informative to know if a case of over-design exists. This can 

be assessed by comparing the estimates of the reliability 

factor from the design capacity model with that from the 

absolute value model. If the former is higher than the later, 

then the component size need to be reduced to prevent over-

design. Consequently, probabilistic design can help to avoid 

over- or under-design problems while ensuring that safety 

and quality levels are economically achieved. Over design 

requires more resources than necessary and leads to costly 

products. Avoiding over-design helps to conserve product 

materials and reduce manufacturing resources, machining 

accuracy, quality control, etc. during processing [34]. 

Under-design is prevented because the minimum design 

factor estimate forces the designer to avoid it. Under-

designed products are prone to failures, making the products 

unsafe and unreliable. This increases the risks of product 

liability lawsuits, customer dissatisfaction, and even 

accidents [34]. 
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7. SUMMARY 

A probabilistic method for determining a design factor is 

presented based on the lognormal probability density 

function. Design parameters are characterized by mean 

values and covs. The design capacity model variability is 

estimated using first order Taylor series sensitivity analysis. 

The method provides a design factor which can be used to 

initiate a design task without an arbitrarily chosen “safety 

factor”. The expression for the minimum value of the design 

factor is based on the load ratio concept, the basis for the 

standard definition of “factor of safety” or “safety factor”. A 

quantitative expression for over-design is developed and it 

gives the maximum value for the design factor. The 

expression is based on the assumption that there is no 

interaction of the probability density functions of design 

capacity and component capability models. This situation is 

very highly unlikely and thus represent an extreme 

condition. 

 

Two cases of design applications are considered. Case 1 is a 

static bending stress governed model and the range of the 

design factor is 1.485 to 1.620 at a reliability level of 99.9%.  

In Case 2, uni-axial tensile fatigue is assumed and the range 

of the design factor is 1.631 to 1.739 at a reliability level of 

99%. The higher values of Case 2 compared to Case 1 even 

at lower reliability level are attributable to the greater 

variability of design parameters for Case 2. The two cases 

are stress-based design problems. However, the method is 

not limited to stress-based designs; it can be applied to 

buckling, deflection, frequency, etc. serviceability criteria. 

What is required is the formulation of a design capacity 

model for a failure mode that is related to an appropriate 

serviceability requirement. 

 

8. CONCLUSION 

This work demonstrates that a probabilistic design factor 

can be estimated easily at the beginning of a design task. 

The factor combines the uncertainties in design and the 

anticipated failure risks in a single number. A probabilistic 

design factor is attractive in design works because, it is fine-

turned to economic and safety risks. Hence it may be argued 

that what is termed “probabilistic design factor” in this 

paper is the true “safety factor”. Because a probabilistic 

design factor serves the function of a “safety factor” in 

deterministic design, it follows that deterministic design is 

converted to probabilistic design by its use. This is an easier, 

faster and less costly approach to probabilistic design than 

classical methods. Generally, probabilistic designs yield 

smaller sized components that can be produced more 

economically. Consequently probabilistic design should be 

encouraged since depletion of scarce resources can be 

conserved through its use. That is good for the environment 

and future generations. 

 

Data on mean values and covs of design parameters are 

required in probabilistic design, so it is suggested that 

material testing results should preserve such information. 

Note that the cov is the ratio of the standard deviation to the 

mean value. While such data may be scarce in public 

domain, they may well be readily available in private and 

protected domains. 
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NOMENCLATURE 

tA tensile stress area of fastener 

b  flange width 

1D  flange base diameter 

D  flange outside diameter 

eF external load on fastener 

iF preload tension on fastener 

yF  load on flange 

mak correction multiplier for design capacity model 

accuracy 

mfk  correction multiplier for failure model accuracy 

mhk  correction multiplier for human errors 

crk  reliability correction multiplier for basic or nominal 

capability 

ctk  correction multiplier for temperature 

k stress concentration factor 

n  load ratio random variable 

on  design factor 

/

on over-design factor 

zn reliability factor 

/

zn over-design reliability factor 

t  flange thickness 

mos  standard deviation of design capacity model 

xis  standard deviation of a design parameter 

ytS mean tensile yield strength 

/
ytS minimum tensile yield strength 

utS mean ultimate tensile strength 

/
utS minimum ultimate tensile strength 

ix  design parameter random variable 

coY  nominal or basic mechanical capability 

MX  design capacity model random variable 

CY service mechanical capability random variable 

z  unit normal variate for a target reliability goal 

oz  unit normal variate for target or desired reliability 
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sz unit normal variate for minimum strength 

  flange diameter factor 






x
partial differentiation with respect to x variable 

mo  mean value of basic design capacity model 

C  mean value of service mechanical capability 

M  mean value of corrected design capacity model 

M  effective cov of design capacity model 

mo  basic cov of design capacity model 

ma  cov of capacity model accuracy 

mf  cov of failure mode accuracy 

mh  human error cov 

o  lognormal standard deviation for design factor 

s  lognormal absolute deviation major factor 

a  lognormal absolute deviation minor factor 

F cov for service load 

ms  effective miscellaneous cov 

M  lognormal standard deviation for design model 

capability 

C  lognormal standard deviation for service mechanical 

capability 

n  lognormal standard deviation for reliability factor 

1D cov for flange base diameter 

t cov for flange thickness 

D cov for flange outside diameter 

bz  bending stress in flange base 

t tensile stress in fastener 

kf cov of stress concentration 

k cov for stress concentration factor 

sr cov for stress concentration surface finish modifier 

yt cov of tensile yield strength 

ut cov of ultimate tensile strength 
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APPENDIX: Minimum to Mean Strength Value 

Most data availability on yield and tensile strengths are 

quoted as minimum values. Assuming lognormal 

distribution for these mechanical capabilities, the 

corresponding mean values can be estimated. For case, the 

mean yield strength is obtained as: 

 

crytyt kSS /  
A1 

 

Where: 

 
)5.0( ytsyt z

cr ek
 

  
A2 

 

The cov of the reliability adjustment factor is: 

 
2
ytscr z    A3 

 

If tensile strength is the serviceability criterion, then: 

 

crutut kSS /  A4 

 

Where: 

 
)5.0( utsut z

cr ek
 

  A5 

 

The cov of the reliability adjustment factor is: 

 
2
utscr z    A6 

 

Minimum strength according to ASTM corresponds to 1% 

failure level or reliability of 99% [1, 24]. A reliability of 

99% corresponds to 326.2sz . 
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