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Abstract 
A bending stress capacity model explicit in the representation of helical gear design parameters is developed. The model accounts 

for the bending stresses from both tangential and axial loads on the gear tooth as well as the direct shear stresses from these 

loads. A shear stress concentration factor is incorporated to account for the geometric influence of the fillet at the root of the 

gear. The model clearly reveals the direct influence of the base helix angle on the bending stress and normal module size 

estimates. Several design examples of bending stress estimates from different references are computed using the new bending 

stress capacity model and compared with American Gear Manufacturers Association (AGMA) estimates. The examples 

considered cover a wide range of the helix angles which spans 15
o
 to 41.41

o
 and different normal pressure angles of 20

o
 and 25

o
. 

In the examples considered, the shear stress contribution to the total root bending stress varies from about 24% to 36%. This is 

quite significant, so that ignoring it may result in early failure of helical gears in bending fatigue. The percentage variances 

between the new model and AGMA bending stress estimates are within -7% to 10% in this study. Therefore the results show very 

favorable comparisons with AGMA model. The new model appears to give slightly higher bending stress values in general so that 

for preliminary design, it offers the advantage of providing conservative solutions. The bending stress capacity model was 

modified for design sizing and its application is demonstrated in Example 6. The model may be used for bending fatigue design of 

spur gears if the helix angle is taken as 0
o
. 
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1. INTRODUCTION 

A gear is a toothed disk used to transmit power and motion 

when mounted on a rotating shaft. In most applications, it is 

made separate from the shaft but it could be made integral 

with the shaft, especially when it is small in size. Gear types 

include spur, single helical, double helical, straight bevel, 

spiral bevel, hypoid, and worm gears [1]. A gearset is a pair 

of gears coupled together in a mesh and the smaller gear is 

generally called “pinion” while the larger gear is called 

“gear” or “wheel”. When smooth, slip-free uniform motion, 

light weight, high speed, high efficiency, precise timing, and 

compact design are important power drive design criteria, in 

nearly all cases, an appropriate system of gears can be 

selected to meet the needs [2]. 

 

A helical gear has teeth helically wrapped like a screw on its 

pitch cylinder though the pitch surfaces are cylindrical as in 

spur gears [3]. The helix may be right-handed or left-handed 

and its inclination to the axial direction is called the helix 

angle. A spur gear may be treated as a helical gear with a 

zero helix angle [2]. Helical gears can be used to transmit 

torque and rotational motion between parallel and non-

parallel shafts, though the former is more common than the 

later. The initial contact in a mesh is a point which develops 

into a diagonal line on the tooth face as the teeth come into 

more engagement. This leads to a more gradual engagement 

of meshing teeth which results in a smoother transfer of load 

from the driving teeth to the driven teeth. Therefore helical 

gears have the ability to transmit heavy loads at high speeds 

[4] and run quieter and with less vibration compared to spur 

gears. They accommodate small variations in center distance 

and pitch velocity normally can be over 50 m/s. Due to the 

helix angle, helical gears exert axial load on supporting shafts 

in addition to the tangential and radial loads experienced by 

spur gears. When two or more single helical gears are 

mounted on the same shaft, the hands of the helix angles on 

the gears should be selected so as to minimize the axial thrust 

load on the shaft [4]. The helix angle has the same value for 

the pinion and the gear in a helical gearset. For parallel shaft 

assembly, the hand of the helix angle is opposite on the 

meshing gears but can be the same for non-parallel shafts. 

The range of the helix angle is between 5
o
 to 50

o
 [5, 6]. Helix 

angles of 5
o
 to 25

o
 are generally used in single-helix gears so 

as to keep thrust load relatively small [5, 7, 8]. For single-

helix gears, the helix angle should not exceed 30
o
 to avoid 

excessive axial thrust and it should not be less than 8
o
 

because the advantages of helical gearing become marginal at 

low helix angles [7]. Thrust loads are practically eliminated 

in double-helix gears because of the opposing hands of the 

helix angles on the two faces of the gear. They develop 

opposite thrust reactions that tend to cancel the axial load 

components [4]. The helix angle for double-helix gears is 

generally between 20
o
 to 45

o
 [3, 5]. A helix angle of at least 

30
o
 is recommended but a value of about 35

o
 is preferred [4, 

9]. The design of double-helix gears is the same as that of 

single-helix gears after the transmitted power is halved [8]. It 

is desirable to have whole number helix angle because it 

simplifies machine setup for cutting and finishing helical 

gears [7], thereby reducing manufacturing costs. 

 

Several potential failure modes in gearing have been 

identified [7, 10], but the two prominent modes are surface 

fatigue or pitting and bending fatigue [2, 11, 12]. This study 
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is concerned only with bending fatigue. Fatigue failures are 

often caused by tensile stresses, so compressive stresses tend 

to enhance fatigue resistance [3]. In 1892, the Philadelphia 

Engineers club recognized Wilfred Lewis presentation on 

bending fatigue gear failure [13] which still serves as the 

basis for gear bending fatigue design today. He modeled a 

gear tooth as a short cantilever beam with the transmitted 

load applied near the tip of the gear tooth. The maximum 

tensile stress occurs at the root radius on the loaded or active 

side of the gear tooth. Depending on the geometry of the gear 

tooth and the characteristics of loading, the stress 

concentration at the root radius at the region of maximum 

tensile stress may vary from 1.4 to 2.5 [14]. Due to repeated 

loading of a gear tooth, this region becomes the preferential 

site for initiation of fatigue crack. Several factors may be 

attributed to bending fatigue failure and include poor gear 

design, improper assembly, misalignment of gears, 

overloads, inadvertent stress raisers, subsurface defects, and 

use of incorrect materials and heat treatments [15]. If bending 

fatigue failure mode is the main failure problem, the 

minimum number of teeth on the pinion that avoids 

interference will give the strongest gearset. Generated spur 

gears should have at least 17 teeth on a pinion to avoid 

undercutting of tooth profile. 

 

Most gears available today have surface hardness in the 

range of 235 HVN to 700 HVN. Medium hard gears of 235 

HVN to 375 HVN hardness are generally more compliant 

and tolerate operational errors relatively more than hard gears 

[5]. They tend to generate more noise when gear failure is 

impending. Very high kilowatt power drives in many cases 

require very hard or case-hardened gears so as to keep 

operating pitch point velocity within allowable limits. Very 

hard gears are prone to scoring due to operational high load 

intensity and sliding velocities [5]. Gear tooth form accuracy 

for high speed gearing has to be very good in order to 

minimize internally generated dynamic loads [16]. Thru-

hardened gears (160 HVN to 450 HVN hardness) have the 

same hardness at the surface and core and bending fatigue 

failure is more likely to initiate from the surface at the gear 

root where the induced bending stress is highest. Case-

hardened gears surface hardness is in the range of 450 HVN 

to 1000 HVN and their core hardness is substantially lower 

than the surface hardness. This means the bending fatigue 

strength of the gear root surface can be higher than that of the 

core. Therefore, bending fatigue failure may occur at the 

transition between case-hardness and core-hardness if the 

induced stress at the junction is more than the available core 

fatigue strength. Case-hardened gears are therefore prone to 

bending fatigue failure at the core. 

 

Helical gears are increasingly being used because of their 

relatively smooth and quiet operation, large load carrying 

capacity, and higher operating speed [5, 17]. Single-helix and 

double-helix gears are mainly used for high speed gearing in 

parallel shaft connection and other types of gears are seldom 

used for high speed applications. Single-helix gears can be 

used for pitch point speed of up to 50 m/s while double-helix 

gears may be used up to 150 m/s pitch point speed [18]. But 

high speed gearing has presented some challenges both to 

designers and manufacturers [5]. Therefore a better 

understanding of the loading and analysis of the elements and 

transmission process in gearing can help in addressing these 

challenges. Similarly, developing suitable design analysis 

methods that can be easily applied in practice are necessary 

in order to maximize the benefits of helical gear transmission 

in particular and gears in general. Particularly, relatively 

accurate simplified design analysis methods help to shorten 

design and development times and thus reduce design project 

costs. This work is done with the purpose of providing a 

relatively accurate simplified design analysis methods for 

helical gears based on bending fatigue. The power loss per 

mesh in cylindrical gear drives is of the order of 1% [19] 

which is considered negligible in this study. 

 

1.1 Helical Gear Forces and Planes 

Fig. 1 shows the forces on a helical gear tooth at the pitch 

point on the pitch cylinder. The coordinate axes are set with 

the pitch point as origin. The driving force is the tangential 

force xF , which is created in the transverse plane. The 

force nF determines the contact stress while NF determines 

the bending stress on the gear tooth. The transverse pressure 

angle t is different from normal pressure angle n  due to 

the angularity of the helical gear teeth. 

 

 
Fig. 1: Forces on helical gear tooth 

 

The relationship between the pressure angles is [9]: 
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
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tan
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t   (1) 

 

The following force relations may be verified by referring to 

standard books in machine design: 
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Though the driving force for a helical gearset is created in the 

transverse plane, actual contact of gear teeth occurs in the 

normal plane so the operation of a helical gearset depends on 

what happens on the normal plane. The normal plane 

intercepts the pitch cylinder so that the gear tooth profile 

generated in it has the same properties as the actual helical 

gear [6].  The normal plane therefore may be used to define 

an equivalent spur gear of a helical gear. The base helix angle 

according to Maitra [7] gives accurate estimate of the radius 

of curvature of the equivalent spur gear on the normal plane 

of contact. So the spur gear equivalent pitch diameter is: 
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Where [20]: 
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The pitch diameter of a helical gear is: 
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The contact ratio of the equivalent spur gearset is 

approximated [20] as: 
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The transverse contact ratio t is for a fictitious spur gear 

and not the physical helical gear. It depends on the actual 

number of gear teeth on the physical helical gearset. The 

fictitious spur gearset is assumed to have the same number of 

teeth as the helical gearset and a transverse module equal to 

normal module of the helical gear. However the transverse 

contact ratio of the physical helical gear is not directly 

implied and is not equal to t . 

 

1.2 Bending Fatigue Stress Capacity Model 

The forces xF and zF in Fig. 1 produce both bending and 

direct shear stresses at the root of the gear. The bending 

stress from the axial force causes axial stress variation from 

heel to toe of the gear tooth. The bending stresses are usually 

significantly larger than the shear stresses at low helix angles. 

As the helix angle increases, the force zF  also increases so 

that the bending and direct shear stresses from it may become 

comparable to those from xF . The force yF induces direct 

compressive stress at the root of the gear and is generally 

accounted for through the AGMA bending stress factor. 

 

In a helical, the normal bending force NF , acts perpendicular 

to the tooth similar to the transverse force in a spur gear. The 

analogous bending stress from this force may be expressed 

using normal plane parameters as: 

 

nnnn

N
N

Ymb

F


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  (10) 

 

cos

b
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Substitute Eqs. (4a), (8a), and (11) in Eq. (12): 

 

ntn
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N
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F






 

cos2

  (12) 

The bending stress of Eq. (12) neglects the bending stress 

from the axial force and also the shear stresses from the 
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transverse and axial forces in the helical gear. To account for 

these stresses, we will consider the equivalent spur gear of a 

helical gear to be loaded by transverse and axial forces but 

please note that actual spur gears do not experience axial 

loads. So consider Fig. 2 where an equivalent spur gear tooth 

of a helical gear is modelled as a cantilever beam loaded in 

two planes. Fig. 2a is representative of the transverse loading 

while Fig. 2b is representative of the axial loading. The 

bending and direct shear stresses from these loads will now 

be considered. 

 

 
a) Transverse loading            b) Axial loading 

 

Fig. 2: Cantilever models of gear tooth in bending 

 

Bending Stresses 

The bending stress from the transverse load is: 
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However, based on AGMA standard: 
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Eq. (15) is the AGMA model for bending stress capacity 

model of a spur gear which is loaded in bending only by the 

transverse load. The equivalent spur gear we have in mind is 

loaded in bending by both transverse and axial forces. So the 

bending stress from the axial load is: 
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Substituting Eq. (17) in Eq. (16), we have: 
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For a rectangular cross-section, the resultant bending stress 

at one of the corners is: 

 









  tan1

 b

t

Jbm

F

t

x
bzbxb  (19) 

 

Direct Shear Stresses 

The transverse and axial forces also induce direct shear 

stresses on the equivalent spur gear. The direct shear stress 

induced by the transverse load is: 
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   (20) 

 

The stress concentration factor included in Eq. (20) is due to 

the geometric discontinuity caused by the root fillet. The 

direct shear stress from the axial load is: 
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  bt
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The resultant shear stress is: 
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  222 tan1
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Equivalent Root Tensile Stress 

Equivalent tensile stress may be based on distortion energy 

theory or maximum shear stress theory depending on 

whether the material is ductile or brittle [2, 11]. Most gears 

are made from ductile materials, so the equivalent tensile 

stress at the tooth root may be estimated by applying the 

distortion energy theory. For a plane stress situation, the 

equivalent tensile stress is: 
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Substituting Eq. (19) and Eq. (22) into Eq. (23a), we have: 
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We need an estimate of the gear tooth thickness at its root in 

Eq. (23b). Now we know for spur gears from Eqs. (13) to 

(15) that: 
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Therefore: 
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For properly designed low-contact ratio spur gearset, the 

transverse contact ratio is such that two pairs of teeth are in 

contact at the beginning and the end of the contact period in 

the transverse plane. Towards the middle of the contact 

period, a transition from two pairs to one pair of teeth in 

contact occurs. A similar transition from one pair to two 

pairs of teeth in contact occurs beyond the middle period of 

contact. The worst-load condition occurs when a single pair 

of teeth carries the full load transmitted at the transition of 

one pair to two pairs of teeth. This point corresponding to 

the worst-load condition is called the highest point of single 

tooth contact (HPSTC). Assuming the first point of contact 

coincides exactly with the dedendum point of the involute 

profile, the HPSTC will happen when the first point of 

contact in the transverse plane has moved just one base pitch 

up the line of action [10]. The line of action of a spur gear in 

a mesh may be construed as an incline plane with the angle 

of inclination being the transverse pressure angle as shown 

in Fig. 3. It is important to note that the tangential force is 

not constant along the inclined plane but attains a maximum 

value in the vicinity of the HPSTC [21]. At that point the 

lever arm of the force about the root point is cl as indicated 

in Fig. 6. 

 
Fig. 3: Inclined plane model of tooth loading 

 

From Fig. 6: 
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Hence: 
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How reasonable is Eq. (25c)? For a spur gear when 020t , 

then tc ml 01.1 . This means the worst load point is in the 

vicinity of the pitch circle diameter since the pitch circle 

diameter is one module above the dedendum circle diameter. 

This is not an unreasonable estimate since the HPSTC is 

known to be on the upper side of the pitch circle diameter 

[21] and pitting generally appears first at or below the pitch 

point on the pinion tooth [2, 7]. Substituting (25c) into Eq. 

(24b), then: 
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Substituting for t in Eq. (23), the equivalent tensile stress 

for the equivalent spur gear is: 
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The above equation can be applied to a helical gear by 

inspection when we combine Eqs. (12) and (27), so that the 

estimate of the bending stress for a helical gear is obtained 

as: 
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where: 
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tK  is a stress modification factor that accounts for direct 

shear stresses from axial and transverse loads and also for 

the bending stress from the axial load. Even for spur gears, 

where  is zero, Eq. (29) reduces to: 
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Eq. (30) suggests that tK is greater than unity even for spur 

gears. 

 

The shear stress concentration factor k (Eq. (29), Eq. (30)) 

is in general a function of material and geometry like the 

normal stress concentration factor in AGMA standards. The 

effective shear stress concentration is taken as 1.7 to 2.2 for 

flexible spline teeth generated with pinion cutter and 1.6 to 

2.0 when the teeth are hobbed [22]. Flexible spline teeth are 

similar to those of cylindrical gears and are produced in 

similar ways, therefore, we will assume k to be 2 in our 

model to be conservative. 
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The bending stress in helical gears is then estimated as: 
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Eq. (32) is the theoretical bending stress capacity of a helical 

gear based on its spur gear equivalency. Two issues need be 

addressed to convert it to a practical or engineering model. 

These are load shearing during transmission and the actual 

transmitted load. Load shearing is expected in helical 

gearsets but as in normal contact spur gears, load shearing 

will not be exactly equal to the transverse contact ratio. 

Similarly the load shearing in the equivalent spur gear 

model will not be exactly equal to t . Therefore, we shall 

substitute s for t as load shearing factor in the above 

formula. 

 

The actual transmitted load is known from experience to be 

greater than the rated transmitted load. This is because 

manufacturing tolerances, elastic deformation of machine 

elements and supporting structures, local accelerations and 

decelerations of gear drives, external dynamics of devices 

coupled with gear drives, foundation vibrations, etc. induce 

vibrations on meshing gears that magnify the rated 

transmitted load. Therefore, to account for the load increases 

on the rated transmitted load in practice, a service load 

factor sK will be introduced into the theoretical model. 

Consequently the engineering bending stress capacity model 

of a helical gear is: 
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The equivalent spur gear teeth 
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The parameter Yn in Eq. (33a) is used as an approximation 

of the AGMA Jn -factor and can be estimated as [23]: 
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For 70 ≤ z  < 300 
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2. DESIGN SIZING BASED ON BENDING 

FATIGUE 

The objective in design sizing is to obtain initial estimate of 

a component size based on specific serviceability criteria. 

For bending fatigue failures, the bending fatigue strength is 

the limit of capacity and failures are often sudden. Now, 

gear design is an iterative process and the initial solution 

provides trial values of gear sizes. The basic gear size 
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parameter is the module, therefore finding an initial module 

value is the primary goal of gear design sizing. 

 

Now: 
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Substitute Eq. (36) into Eq. (33a) and obtain: 
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 





  2
22

1

/ tan13tan1 























kJ

z
K n

b
t

 (38) 

 

Eq. (38) is obtained by substituting Eq. (36b) into Eq. (29) 

and it is the initial estimate of tK . A conservative version of 

Eq. (37) is obtained when  is set equal to b . Hence for 

sizing purposes: 
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From Eq. (39): 
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Now, the service factor sK is generally a function of the 

pitch velocity and gear sizes through the component 

parameters vK , mK and rK . Since gear sizes are not kwon at 

the beginning of the design process, we need an initial 

estimate of sK . The external overload factor oK can be 

selected based on the drive characteristics of the power 

source and driven devices. An initial approximate value 

of mK  based on [11] but slightly modified for helical gears 

is: 
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Eq. (41a) clearly shows the dependence of mK  on the rated 

load and so is vK  because it depends on the pitch point 

speed and gear tooth quality number. The gear tooth quality 

number is often selected based on the tangential velocity 

which is determined by the gear pitch diameter and its 

rotational speed. It is thus suggested that its initial value 

may be estimated as: 

 

12/  mv KK  (41b) 

 

Then the service load factor for design sizing may be 

estimated as: 

 

///
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The estimate of the gear module becomes: 

 
3/1

2
1

1
// cos2

cos10













tsb

bts
bn

Sz

TKK
m




  (42a) 

 

where: 

 

) , min( 2211 bnbnt SYSYS   (42b) 

 

To avoid interference, the smallest helical pinion teeth 

number that can run with a rack must be maintained [4]. 

Now, gear ratio in single-helix gearsets can be up to 10 and 

may be up to 15 in double-helix gearsets. For speed-

reducing drive with 15o , it is suggested that: 
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In the Appendix, it is shown that the base circle diameter of 

a spur gear is smaller than the dedendum circle diameter if 

the number of gear teeth is more than 33. Thus for high 

speed gearing, a minimum pinion teeth number of 33 is 

suggested for spur gears so that the working depth is 

completely of involute profile. For helical gears, the 

suggested minimum for high speed applications 

is b3cos33 . This will maximize the transverse contact ratio 

and therefore enhance load sharing and reduce gear noise. 

 

A tentative maximum value of b for medium-hard gears 

may be obtained as: 
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Eqs. (43) and (44) allows us to provide initial values of 

these parameters in Eq. (42a) in order to estimate the normal 

module. Thereafter, a standard normal module value is 

chosen and the helical gearset basic dimensions are 

determined. The number of gear teeth is estimated as: 
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12 zz o  (45a) 

 

An integer value for 2z must be chosen. Then refine: 
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z
  (45b) 

 

Choosing a higher module value than estimated allows a 

designer to reduce 1z and 2z while keeping  constant. 

When a hunting tooth is used in power drives, the speed 

ratio error or tolerance should be checked. That is: 
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When a satisfactory value of o is obtained, then: 
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Model Applications 

 The new design bending stress capacity model presented in 

the previous section is tested in five design examples which 

involve design verification tasks and one example of design 

sizing and verification tasks. The relevant equations were 

coded in Microsoft Excel for computational efficiency. The 

spreadsheet has two pages and the first page has a material 

selection and strengths estimation sections. The second page 

has design sizing and design verification sections. Iteration 

during design verification can be done by changing the 

value of effective face width, gear module, and gear teeth. 

The gear pitch diameter is changed when either the module 

or gear teeth number is changed. 

 

Design Example Problems 

Example 1: A 17-tooth helical steel pinion with a right-hand 

helix angle of 30
o
 rotates at 1800 rpm when transmitting 3 

kW to a 52-tooth helical steel gear. The gearset has a normal 

pressure angle of 20
o
, normal module of 2.54 mm, and a 

face width of 38.1 mm. Determine the bending stress on the 

pinion for a service load factor of 1.769 [4, p. 771 – 773]. 

 

Example 2: A 15-tooth helical steel pinion with a right-hand 

helix angle of 41.41
o
 rotates at 2500 rpm when transmitting 

3.75 kW to a 24-tooth helical steel gear. The gearset has a 

normal pressure angle of 20
o
, normal module of 2.54 mm, 

and a face width of 29.21 mm. Determine the bending stress 

on the pinion for a service load factor of 1.84 [2, p. 658 – 

662]. 

 

Example 3: A helical steel gearset for a milling machine 

drive is to transmit 48.5 kW from an electric motor with a 

pinion speed of 3450 rpm and a gear speed of 1100 rpm. 

The gearset has a normal pressure angle of 20
o
 and a helix 

angle of 15
o
. The pinion has 24 teeth, gear has 75 teeth, the 

normal module is 2.17 mm and the face with is 58.15 mm. 

Determine the bending stress on the pinion for a service load 

factor of 2.552 [19, p. 461 - 462]. 

 

Examples 4 & 5: A 3-helical steel gear train transmits 15 

kW at 2500 rpm at the pinion. The pinion has 14 teeth, idler 

has 17 teeth and the gear has 49 teeth. The gearset has a 

normal pressure angle of 25
o
, helix angle of 20

o
, normal 

module of 4.233 mm, and face width of 67.74 mm. 

Determine the bending stresses on the pinions for a service 

load factor of 2.424 [24, p. 764 - 768]. Note that two 

gearsets are involved in this problem: pinion-idler (Example 

4), and idler-gear (Example 5) combinations. 

 

Solutions: Examples 1 to 5 

Table 1 summarizes the basic gearset dimensions and load 

data for examples 1 to 5. The service load factor value for 

each example is made identical to the values in the 

references so that the numerical bending stress values for 

each example can be properly compared with previous 

results. Table 2 shows the AGMA bending stress values in 

column 3 and the new model bending stress values in 

column 4. The percentage difference between the new 

bending stress capacity model values and AGMA values are 

indicated in column 5. The variances between the results are 

in the range of -7% to 10% in the wide range of helix angles 

which span 15
o
 to 41.41

o
. Clearly the new model appears to 

compare favorably with AGMA model results. According to 

Matthew [25], simplified engineering models can yield 

±10% accuracy. From the favorable comparison of the five 

examples presented with AGMA model, it seems reasonable 

to accept the new model for preliminary design which is 

tested in Example 6. 
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Table 1: Input Parameters for Bending stress for Examples 

Parameters 
Examples 

1 2 3 4 5 

Transmitted power (kW) 3 3.75 48.5 15 15 

Pinion speed (rpm) 1800 2500 2450 2500 2056 

Pinion torque (Nm) 15.92 14.32 134.24 57.30 69.67 

Speed ratio 3.0 1.60 3.136 1.216 2.884 

Normal pressure angle (
o
) 20 20 20 25 25 

Helix angle (
o
) 30 41.41 15 20 20 

Normal module (mm) 2.54 2.54 2.17 4.233 4.233 

Pinion teeth number 17 15 24 14 17 

Gear teeth number 51 24 75 17 49 

Pinion pitch diameter (mm) 49.86 50.8 53.92 63.07 76.58 

Gear pitch diameter (mm) 149.58 81.28 168.49 76.58 220.73 

Face width (mm) 38.1 24.13 57.15 67.74 67.74 

Service load factor 1.769 1.840 2.472 2.424 2.424 

 

Table 2: Bending Stress Solutions for Example 1 to 5 

Source 
Face Contact 

Ratio 

Pinion Bending Stress (MPa) Difference (%) 

AGMA New 

Budynas [4 ] 2.39 27.60 26.16 5.22 

Collins [ 2] 2.00 40.02 36.16 9.65 

Mott [19 ] 2.17 242.24 250.93 -3.59 

Norton [24 ] 1.74 31.85 36.58 -0.74 

Norton [24 ] 1.74 30.10 34.00 -6.52 

 

Table 3: Shear Stress Contributions in Example 1 to 5 

Source 
Helix Angle 

(deg.) 

Stress Modification Factor Shear Stress 

Contribution (%) Bending Total 

Budynas [4] 30 1.071 1.429 25.05 

Collins [2] 41.41 1.011 1.570 35.61 

Mott [19] 15 1.016 1.351 24.80 

Norton [24 ] 20 1.044 1.375 24.07 

Norton [ 24] 20 1.045 1.389 24.77 

 

 

Shear Stress Contributions 

Eq. (29) and Eq. (33a) show that the shear stresses 

contribute to the equivalent root bending stress. It is logical 

then to estimate the degree of contribution in the examples 

considered above. This is summarized in Table 3 from 

which, we note that the contribution of the shear stresses is 

significant in each example, being more that 20%. Also, the 

contribution is greater for higher helix angles as expected 

since the axial load increases with increasing helix angle. 

 

Example 6: Design a pair of helical steel gears is to transmit 

8.5 kW from an electric motor with the pinion running at 

720 rpm and the gear at 144 rpm. The normal pressure angle 

is 20
o
 while the helix angle is 20

o
. The gears are made from 

carbon steel material and are each thru-hardened to 300 

HVN. Design the gearset for a minimum life of 10
8
 load 

cycles based on 99% reliability. Assume an external 

overload factor of 1.5. 

 

Solution 6: A minimum life of 10
8
 load cycles implies the 

slower running gear should last at least 10
8
 load cycles. This 

information was used to determine the design bending 

strength of the gearset, indicating that the pinion is weaker, 

with an estimated design bending fatigue strength of 219 

MPa. Gear design bending fatigue strength was determined 

on the basis of AGMA recommendations. AGMA gear 

material nominal strength data are determined at 99% 

reliability at 10
7
 load cycles. Nominal strengths are usually 

determined experimentally in controlled environments. For 

field applications, the nominal strengths need adjustments, 

so AGMA [26] recommends several factors as modifiers.  

Please refer to the Appendix for a very brief discussion. 

 

Table 4: Design Sizing for Example 6 

Parameter Value 

Transmitted power (kW) 8.5 

Pinion rotational speed (rpm) 720 

Pinion rotational speed (rpm) 144 

Desired speed ratio 5 

Pinion number of teeth 19 

External overload factor 1.50 

Composite elastic modulus (GPa) 230 

Pinion torque (Nm) 112.73 

Core hardness (HVN) 300 
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Design bending fatigue strength (MPa) 219 

Desired design factor 1.25 

Service load factor 2.72 

Normal module (mm): estimate 2.78 

Normal module (mm): chosen 3.0 

 

Table 4 shows other design sizing parameters. Design sizing 

estimates yielded pinion teeth number of 19, gear teeth 

number of 95, and normal module value 2.78 mm based on 

bending fatigue resistance. A standard normal module value 

of 3 mm [19] was chosen. Table 5 shows the design 

verification data for the first iteration which yielded 

acceptable results because a design factor of 1.74 is obtained 

against a desired value of 1.25. The service load factor 

estimate for design sizing is 2.72 based on a shape factor of 

0.90. The corresponding value for design verification based 

on a shape factor of 0.99 is 2.48. 

 

Table 5: Design Verification for Example 6 

Parameter Value 

Normal pressure angle (
o
) 20 

Helix angle (
o
) 20 

Normal module (mm) 3.0 

Pinion teeth 19 

Gear teeth 95 

Design speed ratio 5 

Pinion pitch diameter (mm) 60.66 

Gear pitch diameter (mm) 303.29 

Pinion face width (mm) 60 

Face contact ratio 2.18 

Service load factor 2.48 

Root bending stress (MPa) 126.0 

Estimated design factor for pinion 1.74 

 

3. CONCLUSION 

A bending fatigue stress capacity model of helical gears is 

presented. The model gives estimate of the bending stress 

expected at the tooth root in a helical gear. Several design 

examples of root bending stresses from different references 

are computed and they compare very favorably with AGMA 

estimates because the percentage variances between the two 

model values are in the range of -7 to 10% in the examples. 

It is important to note the wide range of the helix angle 

which spans 15
o
 to 41.41

o
 and the different normal pressure 

angles of 20
o
 and 25

o
 in the examples considered. Secondly, 

the new model appears to give slightly higher bending stress 

values in general so that for preliminary design, it offers the 

advantage of providing conservative solutions. The 

favorable comparison should give some confidence in using 

the new model for preliminary design tasks of helical gears. 

In the Examples 1 to 5 considered, the shear stress 

contribution to the total root bending stress varies from 

about 24% to 36%. This is quite significant, so that ignoring 

it may result in early failure of helical gears. 

 

The new bending stress capacity model was modified for 

design sizing and its application is demonstrated in example 

6. Design sizing provides the value of gear normal module 

based on bending fatigue which is used to determine the 

other basic dimensions of a gearset. 

 

For high speed gearing, a minimum pinion teeth number of 

33 is suggested for spur gears so that the working depth is 

completely of involute profile. For helical gears, the 

suggested minimum for high speed applications 

is b3cos33 . 

 

The very favorable comparison obtained between the new 

bending stress capacity model and AGMA values allows us 

to conclude that the bending stress capacity model presented 

is sufficiently accurate enough to be acceptable for 

preliminary design of helical gears. This model may be used 

for spur design if the helix angle is taken as 0
o
. 
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NOMENCLATURE 

HVN = Hardness: Vicker’s Number 

HPSTC = Highest Point of Single Tooth Contact 

b Effective gear face width (mm) 

1b Pinion face width (mm) 

2b Gear face width (mm) 

C  Center distance (mm) 

oC  Operating center distance (mm) 

1d Pitch circle diameter of pinion (mm) 

2d Pitch circle diameter of gear (mm) 

nF  Normal contact force (N) 

NF  Normal bending force (N) 

xF Rated transmitted or transverse force (N) 

yF Rated radial force (N) 

zF Rated axial force (N) 

J AGMA geometric stress factor at HPSTC 

/J AGMA J-factor for load at gear tooth tip 

1k Approach path factor 

2k Recess path factor 

tK  Stress correction factor 

k  Shear stress concentration factor 

sK  Service load factor 

oK  External overload factor 

vK  Internal overload factor 
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mK  Mesh overload factor 

rK Rim rigidity factor 

cK  Contact quality factor 

tm Transverse module of gear (mm) 

nm Normal module of gear (mm) 

zm Axial module of gear (mm) 

Fn Design factor for bending fatigue strength 

N  Rotational speed (rpm) 

1N  Rotational speed of pinion (rpm) 

2N  Speed of gear (rpm) 

1P  Power at pinion (kW) 

nq  Gear tooth quality number 

1T  Rated torque at pinion (Nm) 

2T Rated torque at gear (Nm) 

bS Allowable bending fatigue stress (MPa) 

FS Design bending fatigue strength (MPa) 

/
FS Nominal design bending fatigue strength (MPa) 

utS Ultimate tensile strength (MPa) 

t Equivalent root bending stress (MPa) 

tS Factored bending fatigue strength (MPa) 

tV Tangential velocity at pitch point (m/s) 

Y Estimate of AGMA J factor at HPSTC 

bfY Bending fatigue strength adjustment factor 

bbY Bi-directional bending stress factor 

biY Induction/flame hardening root factor 

bnY Bending fatigue durability factor 

brY Gear reliability factor for bending 

bzY Bending fatigue size factor 

z  Number of teeth on pinion or gear 

t Transverse pressure angle (deg.) 

n Normal pressure angle (deg.) 

 Helix angle (deg.) 

b Base helix angle (deg.) 

 Design speed ratio 

o Desired speed ratio 

t Transverse plane contact ratio 

f Face contact ratio 

b Maximum gear root bending stress (MPa) 

H Maximum Hertz bending stress (MPa) 

 Helix angle error 

o Speed ratio error 

b Gear aspect ratio or face width factor 

1 = Subscript for pinion 

2 = Subscript for gear 
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APPENDIX 

Base Circle less than Dedendum Circle 

In gear generation process, the gear being produced and the 

cutter are in mesh like two gears rolling on their pitch 

cylinders [7]. For pinions with small number of teeth, 

interference can occur if the cutter extends beyond the base 

circle. The profile created at the section beyond the base 

circle deviates from true involute, preventing conjugate 

action in operation. Also, a recess is cut at the root of the 

gear tooth, weakening its bending resistance. The condition 

to ensure that the base circle diameter is smaller   than the 

dedendum circle diameter is: 

 

)(2cos2 tt mrr   (A1) 

 

After simplification, Eq. (A1) reduces to: 
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For a spur gear when
020t : 
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Therefore, when 33z in generated gears, the base circle 

diameter is smaller than the dedendum circle diameter. This 

means the working depth of the gear tooth will be 

completely of involute profile which will give the maximum 

contact ratio. Consequently, load shearing will be 

maximized and gear noise reduced. 

 

For helical gears, the gear teeth number to ensure complete 

involute profile of the working depth is: 

 

bz 3cos2.33  (A4) 

 

To minimize noise and maximize load shearing in high 

speed gearing for generated gears, the pinion teeth number 

should be chosen as indicated in Eq. (A3) and Eq. (A4) for 

spur and helical gears, respectively for standard ISO gear 

proportions. 

 

Estimating Design Bending Fatigue Strength 

Contact fatigue strength is related to surface hardness while 

bending fatigue strength is related to core hardness [2, 3, 4, 

6, 7, 8, 9, 11, 19, 22, 24]. Many of the AGMA available gear 

nominal strength data have been developed from tests of 

actual gear teeth so they better represent reality than general 

material strength data [4]. AGMA gear material nominal 

strength data are determined at 99% reliability at 10
7
 load 

cycles. Nominal strengths are usually determined 

experimentally in controlled environments. For field 

applications, the nominal strengths need adjustments, so 

AGMA [26] recommends several factors as modifiers. 

 

For AGMA grade 1 thru-hardened steel, the nominal 

bending fatigue strength may be estimated [3] as: 

 

88515.0/  sF HS  (A5) 

 

The design strength is obtained as: 

 

/
FbfF SYS   (A6) 

 

bbbibzbrbnbf YYYYYY   (A7) 

 

AGMA provides methods for evaluating most of the 

parameters in Eqs. (A6) and (A7). The allowable or design 

bending stress is: 

https://www.agma.org/assets/uploads/publications/10FTM06_Rameshkumar.pdf
https://www.agma.org/assets/uploads/publications/10FTM06_Rameshkumar.pdf
http://wp.kntu.ac.ir/asgari/AGMA%202001-D04.pdf
https://archive.org/details/gov.in.is.210.2009
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F

F
b

n

S
S   (A8) 

 

AGMA provides no specific recommendations for Hn . As a 

general guide, it is suggested Fn 1.25 for normalized steel, 

Fn 1.35 for quenched-tempered steel, and Fn 1.55 for 

case-hardened steel and cast iron. 

 

Cast Iron Gears 

Equivalent tensile stress may be based on maximum shear 

theory for brittle materials like cast iron [2, 11]. In this case, 

the equivalent tensile stress at the tooth root may be 

estimated as: 

 

22 4 sbt    (A9) 

 

It should be noted that Eq. (29) may be used for gears of 

cast iron materials also, though they are generally 

considered to be brittle materials. This is because the 

parameter 23 k  is the main determinant in such cases. 

Generally, notch sensitivity of cast iron materials is low. For 

instance, a maximum normal stress concentration factor of 

about 1.2 was estimated on available data in IS 210: 2009 

[27] for gray cast iron. Assuming maximum shear stress 

theory of failure for brittle materials; 23 k  becomes 24 k . 

Now 
2)2.1(4   or 5.76 is less than 

2)2(3  or 12 from Eq. (29). 

Hence Eq. (29) is on the conservative side for gray cast iron 

gears if 2k is assumed. Though it is anticipated that the 

stress concentration factor for ductile cast iron will be higher 

than that of gray cast iron, it will be conservative to treat 

ductile cast iron gear as a steel gear. Then Eq. (29) will be 

applicable. 


