
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 75

MINIMIZING MAKESPAN FOR AN AEROSPACE MANUFACTURING

SYSTEM USING SIMPLE GENETIC OPERATIONS

Alvin Mark Windsor
1
, V.Vivekanand

2
, G.S.Prakash

3
, Sriram Anupindi

4

1
UG student, Department of IEM, MSRIT, Bengaluru

2
Assistant Professor, Department of IEM, MSRIT, Bengaluru
3
Professor & Head, Department of IEM, MSRIT, Bengaluru

4
UG student, Department of CSE, MSRIT, Bengaluru

Abstract
In a job shop scheduling problem as the number of jobs and machines becomes larger, identifying the optimum schedule to

achieve a particular objective becomes complex. Recent development in this field has led to approximating algorithms designed to

handle a large solution space. Some of which include Genetic Algorithm, Tabu Search, Simulated Annealing and Particle Swarm

Optimization. These algorithms can be used to obtain a near optimal schedule with improved solution efficiency. This paper

discusses the development of a deterministic model to schedule 12 jobs on 5 machines with the objective of minimizing makespan

using simple genetic operators.

Keywords: Job Shop, Genetic Algorithm, Makespan, Scheduling, Sequencing.

---***--

1. INTRODUCTION

The job shop problem is a highly complex combinatorial

optimization problem. It is typically categorized as Non-

Deterministic Polynomial Hard (NP-Hard). The solution to

such problems may not be obtained in polynomial time

using non-deterministic Turing machine.

To gain a very brute understanding of NP-Hard problems,

consider a decision problem. The solution to a decision

problem always ends in a “yes” or “no” solution. A

computer is an example of a Turing machine which can be

used to answer decision problems like does 1+2=3.

A non-deterministic Turing machine ideally has unlimited

parallelism. It can take multiple paths at a decision point. In

a job shop scheduling problem [JSSP] there are multiple

feasible schedules. Thereby, such problems become more

complex to handle.

The size of the solution space for a job shop scheduling

problem can be estimated using the expression below. If

there are X jobs, each job passing through Y machines. Then

the number of possible solutions Z is given below.

Z = (X!)
Y

As the solution space increases conventional methods like

mixed integer linear programming (MILP) prove inefficient

in solving them. Recent developments in this field have led

to approximating techniques such as genetic algorithm,

simulated annealing and tabu search. These algorithms were

developed to solve problems in which the solution space is

so vast that brute force optimization algorithms would take

significantly more time.

Genetic algorithm has wider scope and is more abstract

when compared to simulated annealing or tabu search. The

algorithm is built with the objective of solving problems

with a large solution space. When genetic algorithm is

applied to a job shop scheduling problem, each schedule is

considered as an entity in the population. Each entity is then

evaluated on the basis of a defined fitness function value

which correlated to the objective function. The algorithm

executes in iterations, each iteration is called a generation.

At each generation the new schedules are evolved from the

members of the previous generation. Therefore, it evolves an

approximate solution to the problem based on the fitness

value of the previous generation through the use of genetic

operations.

This paper focuses on building a deterministic model using

simple genetic operations to solve 12 jobs on 5 machines

scheduling problem. The objective is to minimize makespan

(i.e. the time taken to process a set of jobs). The selection

and permutation genetic operators are used to evolve a

feasible schedule with minimum makespan.

2. PROBLEM DESCRIPTION

A (12Jx5M) scheduling problem was considered.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 76

Table 1: Summary of the (12Jx5M) scheduling problem

Job Designation Machine Allocated Processing Designation Processing Time

J1 M13 P13,1,1 1490

 M13 P13,1,2 1240

 M9 P9,1,1 3360

 M9 P9,1,2 1860

 M6 P6,1,1 2360

 M6 P6,1,2 2360

J2 M13 P13,2,1 412.5

 M13 P13,2,2 378

 M9 P9,2,1 774

 M9 P9,2,2 567

 M6 P6,2,1 636

 M6 P6,2,2 636

J3 M13 P13,3,1 1907.5

 M13 P13,3,2 1574

 M9 P9,3,1 4362

 M9 P9,3,2 2361

 M6 P6,3,1 3028

 M6 P6,3,2 3028

J4 M13 P13,4,1 399.5

 M13 P13,4,2 443

 M9 P9,4,1 1520

 M9 P9,4,2 505

 M9 P9,4,3 650

J5 M11 P11,5,1 1860

 M11 P11,5,2 1260

 M13 P13,5 1860

 M11 P11,5,3 1740

 M14 P14,5 3660

J6 M11 P11,6,1 1360

 M11 P11,6,2 960

 M13 P13,6 1320

 M11 P11,6,3 1240

 M14 P14,6 2560

J7 M14 P14,7 3760

 M11 P11,7,1 1360

 M11 P11,7,2 1360

 M11 P11,7,3 2160

J8 M14 P14,8 5460

 M11 P11,8,1 1860

 M11 P11,8,2 1860

 M11 P11,8,3 3060

J9 M11 P11,9,1 760

 M11 P11,9,2 760

J10 M11 P11,10,1 760

 M11 P11,10,2 760

J11 M6 P6,11,1 1376

 M6 P6,11,2 741

 M11 P11,11,1 868

 M11 P11,11,2 868

J12 M6 P6,12 1360

 M14 P14,12 2360

The first column represents the jobs (J1, J2,.., J12). The

second column represents the processing sequence of the

respective job. For example, J2 has the following processing

sequence: M13» M13» M9» M9» M6» M6. The third column

represents the process designation; each process was given a

unique notation in the form of PI,J,K. Where I represent the

machine (MI), J represents the job (JJ) and K represents the

sub-process. The fourth column represents the processing

time (in minutes) of the respective job JJ on machine MI.

The objective is to build a deterministic model that provides

a schedule to process these jobs with minimum makespan.

The constraints to be taken into consideration are as follows:

[1] Each machine can process at most one job at any given

time.

[2] The precedence constraint of any job cannot be violated.

For example J2 can be processed on M9 only after its process

completion on M13.

3. LITERATURE REVIEW

The productivity and growth of a manufacturing system can

be maximized if the available resources are utilized

effectively. Optimized utilization of resources can only be

possible if a proper scheduling system is in place. This

makes scheduling systems a highly important aspect of a

manufacturing system.

David Applegate and William Cook [1] define job shop

scheduling problem as a problem which deals with

scheduling a set of jobs to one or more machines, subject to

constraints that each machine can handle at most one job at a

time and each job has a specified processing order through

the machines.

Brucker P. [2], through his study on scheduling algorithm

comments on the NP-Hard nature of typical job shop

problems. They belong to a group of complex combinatorial

optimization problems.

The flowchart shows the various techniques to solve JSSP.

Optimization based techniques are limited to smaller sized

problems whereas approximating algorithms are more

efficient in handling slightly larger problems.

Approximating algorithms provide sub optimal schedules.

Fig. 1: Flowchart showing the various techniques to solve

JSSP[3]

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 77

Lestan Z. et al. [4] concludes “The algorithms which are

based on the method of branch and bound are useful only for

solving small instances (around 20 jobs). For large scale

problems approximating algorithms such as shifting

bottleneck, genetic algorithm, simulated annealing, tabu

search, priority dispatch, etc are used”.

The best results are obtained with the use of hybrid methods

involving genetic algorithm, tabu search, simulated

annealing and the shifting bottleneck approach. This paper

highlights the development of a simple model which

attempts to find the schedule with the smallest makespan for

the given (12Jx5M problem).

Wallace J. Hopp and Mark L. Spearman[5] in their book

Factory Physics define makespan as the time required for

processing a set of jobs.

4. METHODOLOGY

The model was coded using Python language on Jupyter

Notebook compiler. The extensive literature survey revealed

a common challenge of infeasible schedules faced in genetic

algorithm. Infeasible schedules would be of little importance

in a practical job shop situation. Therefore, this model was

used to evolve and test feasible schedules for optimality.

The methodology can be divided into three stages.

Fig. 2: Flowchart showing the various stages of solving the

JSSP using the deterministic model

4.1 Evolving Schedules

Each schedule is represented by a string in the model. A

string is composed of elements each of which is represented

as a triplet. A triplet is composed of the job, respective

machine and corresponding process designation. The triplet

[J4,M9,P9,4,1] represents the processing of job (J4) on machine

(M9) sub-process (P9,4,1).

Every job has a fixed processing sequence therefore the

precedence constraint cannot be violated. A schedule is said

to be feasible only if it doesn’t violate the precedence

constraint of any job. In contrast, to introduce variability in

the search mechanism random schedules have to be created.

Therefore, a randomizer was used to evolve schedules

without violating the precedence constraint. The table below

shows an example.

Table 2: Example of a (3Jx3M) scheduling problem

Jobs Processing Order Processing Times

J1 M1 M3 - P1,1 P3,1 -

J2 M2 M1 M3 P 2,2 P 1,2 P3,2

J3 M1 M3 M2 P1,3 P3,3 P2,3

The table above shows an example of three jobs, their

respective processing sequence and the processing times. To

create a schedule while maintaining feasibility separate lists

are created for each job.

J1: (J1, M1, P1,1), (J1, M3, P3,1)

J2: (J2, M2, P2,2), (J2, M1, P1,2), (J2, M3, P3,2)

J3: (J3, M1, P1,3), (J3, M3, P3,3), (J3, M2, P2,3)

Let S1 represent the string to be created. A randomizer is

used to allocate elements to this string. The randomizer

function is used to select a job between J1, J2 and J3. In this

example consider J3 is selected first. Then the first element

from the J3 list is selected and placed in string S1, following

which the element is deleted from the respective job’s list.

S1: [(J3, M1, P1,3)]

J1: (J1, M1, P1,1), (J1, M3, P3,1)

J2: (J2, M2, P2,2), (J2, M1, P1,2), (J2, M3, P3,2)

J3: (J3, M3, P3,3), (J3, M2, P2,3)

This process is repeated till the entire schedule is built.

S1: [(J3, M1, P1,3), (J2, M2, P2,2), (J3, M3, P3,3), (J1, M1, P1,1),

(J2, M1, P1,2), (J1, M3, P3,1), (J3, M2, P2,3), (J2, M3, P3,2)]

The above string represents a feasible schedule. For the

given (12Jx5M) problem, eight such schedules were created.

Each schedule consisting of 51 triplets was tested for the

fitness function value based on the objective of minimizing

makespan.

4.2 Selection Operation

Selection operator is the only genetic operation free from

encoding. As selection does not change the string we do not

face issues with maintaining feasibility. D. Shiffman [6], in

his book, “The nature of Code” discusses other genetic

operators like the crossover operation often produce

infeasible schedules, which is difficult to repair.

From the tested schedules, the string with the best fitness

function value is selected using the selection genetic

operator.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 78

4.3 Permutation Operation

The selection operator identifies the string with the best

fitness function. Permutation operation is applied on this

string; this operation shuffles the elements within a string.

When performing the permutation shuffles it is critical to

maintain feasibility. Consider the example shown above.

S1: [{(J3, M1, P1,3), (J2, M2, P2,2), (J3, M3, P3,3), (J1, M1, P1,1),

(J2, M1, P1,2), (J1, M3, P3,1), (J3, M2, P2,3), (J2, M3, P3,2)}]

The permutation shuffling is applied to the elements within

the curly braces without violating the precedence

constraints.

S1: [{(J1, M1, P1,1), (J2, M2, P2,2), (J3, M1, P1,3), (J1, M3, P3,1),

(J3, M3, P3,3), (J2, M1, P1,2), (J2, M3, P3,2), (J3, M2, P2,3)}]

After shuffling the string is tested for its fitness function

value. If the value is better than the original string it stores

this string in the memory function and performs the

permutation operation again.

This process terminates when the defined termination

condition is encountered.

5. RESULTS AND DISCUSSION

From the eight randomly generated strings tested in the

model, string 1 was selected using the selection operation.

It had a fitness function value of 26690, being the lowest of

the eight in comparison.

Fig. 3: Showing the numerical string output of the

deterministic model.

The numerical string generated is difficult to visualize

therefore it string was plotted as a Gantt chart using

Microsoft Excel.

Fig. 4: The Gantt chart for string-1 after the selection

operation.

The cells highlighted in green represent the busy state while

red represents idle state for the respective machine. The

table below summarizes the Gantt chart from the selection

stage.

Table 3: Showing machine wise completion time for string-

1 after selection operation.

Machine Completion Time (hrs)

Machine-6 409.99

Machine-9 309.5

Machine-11 476.97

Machine-13 265.68

Machine-14 497.36

The makespan for string-1 after applying the selection

operator is 497.36 hours. This string is then subjected to

permutation operation. The elements within the string are

shuffled without violating the precedence constraints. At

each stage the fitness value of the changed string is

compared with the original value. On encountering its

termination condition the numerical string is plotted as a

Gantt chart for better visualization.

Fig. 5: The Gantt chart for string-1 after the permutation

operation.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 79

After applying the permutation operation to string-1 the

makespan is reduced to 414.31 hours. This is the optimal

schedule generated by the deterministic model.

Table 4: Showing machine wise completion time for string-

1 after permutation operation on encountering the

terminating condition.

Machine Completion Time (hrs)

Machine-6 380.17

Machine-9 279.23

Machine-11 414.31

Machine-13 183.62

Machine-14 296.67

6. CONCLUSION

This deterministic model is used to test a sample set of eight

randomly generated schedules. The selection operation is

used to select one string from the sample set based on the

fitness function value; this string is then optimized using

permutation operation. The terminated string has a

makespan of 414.31 hours.

REFERENCES

[1]. David Applegate and William Cook (1991). A

Computational Study of the Job Shop Scheduling Problem,

ORSA Journal on Computing, Vol. 3, No.2, Spring 1991.

[2]. Brucker P. (2001). Scheduling algorithms, Springler-

Verlag, Berlin, ISBN 10: 3540415106.

[3]. Anant Singh Jain and Sheik Meeran (1998). A State-of-

the-art Review of Job-Shop Scheduling Techniques.

Department of Applied Physics, Electronic and Mechanical

Engineering University of Dundee, Dundee, Scotland, UK,

DD1 4HN.

[4]. Lestan Z, Brezocnik M, Buchmeister B, Brezovnik S

and Balic J (2009). Solving the Job-Shop Scheduling

Problem with a Simple Genetic Algorithm. ISSN 1726-

4529.

[5]. Wallace J. Hopp and Mark L. Spearman (2000). Factory

Physics: Foundations of Manufacturing Management,

second edition, 2000. 698pp. ISBN 0-256-24795-1.

[6]. D. Shiffman, 2012. The Nature of Code. Publisher: D.

Shiffman, 2012. ISBN 0985930802, 9780985930806.

