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Abstract 
In a job shop scheduling problem as the number of jobs and machines becomes larger, identifying the optimum schedule to 

achieve a particular objective becomes complex. Recent development in this field has led to approximating algorithms designed to 

handle a large solution space. Some of which include Genetic Algorithm, Tabu Search, Simulated Annealing and Particle Swarm 

Optimization. These algorithms can be used to obtain a near optimal schedule with improved solution efficiency. This paper 

discusses the development of a deterministic model to schedule 12 jobs on 5 machines with the objective of minimizing makespan 

using simple genetic operators. 
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1. INTRODUCTION 

The job shop problem is a highly complex combinatorial 

optimization problem. It is typically categorized as Non-

Deterministic Polynomial Hard (NP-Hard). The solution to 

such problems may not be obtained in polynomial time 

using non-deterministic Turing machine. 

 

To gain a very brute understanding of NP-Hard problems, 

consider a decision problem. The solution to a decision 

problem always ends in a “yes” or “no” solution. A 

computer is an example of a Turing machine which can be 

used to answer decision problems like does 1+2=3. 

 

A non-deterministic Turing machine ideally has unlimited 

parallelism.   It can take multiple paths at a decision point. In 

a job shop scheduling problem [JSSP] there are multiple 

feasible schedules. Thereby, such problems become more 

complex to handle. 

 

The size of the solution space for a job shop scheduling 

problem can be estimated using the expression below. If 

there are X jobs, each job passing through Y machines. Then 

the number of possible solutions Z is given below. 

 

Z = (X!)
Y 

 

As the solution space increases conventional methods like 

mixed integer linear programming (MILP) prove inefficient 

in solving them. Recent developments in this field have led 

to approximating techniques such as genetic algorithm, 

simulated annealing and tabu search. These algorithms were 

developed to solve problems in which the solution space is 

so vast that brute force optimization algorithms would take 

significantly more time. 

 

Genetic algorithm has wider scope and is more abstract 

when compared to simulated annealing or tabu search. The 

algorithm is built with the objective of solving problems 

with a large solution space. When genetic algorithm is 

applied to a job shop scheduling problem, each schedule is 

considered as an entity in the population. Each entity is then 

evaluated on the basis of a defined fitness function value 

which correlated to the objective function. The algorithm 

executes in iterations, each iteration is called a generation. 

 

At each generation the new schedules are evolved from the 

members of the previous generation. Therefore, it evolves an 

approximate solution to the problem based on the fitness 

value of the previous generation through the use of genetic 

operations. 

 

This paper focuses on building a deterministic model using 

simple genetic operations to solve 12 jobs on 5 machines 

scheduling problem. The objective is to minimize makespan 

(i.e. the time taken to process a set of jobs). The selection 

and permutation genetic operators are used to evolve a 

feasible schedule with minimum makespan. 

 

2. PROBLEM DESCRIPTION 

A (12Jx5M) scheduling problem was considered. 
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Table 1: Summary of the (12Jx5M) scheduling problem 

Job Designation Machine Allocated Processing Designation Processing Time 

J1 M13 P13,1,1 1490 

  M13 P13,1,2 1240 

  M9 P9,1,1 3360 

  M9 P9,1,2 1860 

  M6 P6,1,1 2360 

  M6 P6,1,2 2360 

J2 M13 P13,2,1 412.5 

  M13 P13,2,2 378 

  M9 P9,2,1 774 

  M9 P9,2,2 567 

  M6 P6,2,1 636 

  M6 P6,2,2 636 

J3 M13 P13,3,1 1907.5 

  M13 P13,3,2 1574 

  M9 P9,3,1 4362 

  M9 P9,3,2 2361 

  M6 P6,3,1 3028 

  M6 P6,3,2 3028 

J4 M13 P13,4,1 399.5 

  M13 P13,4,2 443 

  M9 P9,4,1 1520 

  M9 P9,4,2 505 

  M9 P9,4,3 650 

J5 M11 P11,5,1 1860 

  M11 P11,5,2 1260 

  M13 P13,5 1860 

  M11 P11,5,3 1740 

  M14 P14,5 3660 

J6 M11 P11,6,1 1360 

  M11 P11,6,2 960 

  M13 P13,6 1320 

  M11 P11,6,3 1240 

  M14 P14,6 2560 

J7 M14 P14,7 3760 

  M11 P11,7,1 1360 

  M11 P11,7,2 1360 

  M11 P11,7,3 2160 

J8 M14 P14,8 5460 

  M11 P11,8,1 1860 

  M11 P11,8,2 1860 

  M11 P11,8,3 3060 

J9 M11 P11,9,1 760 

  M11 P11,9,2 760 

J10 M11 P11,10,1 760 

  M11 P11,10,2 760 

J11 M6 P6,11,1 1376 

  M6 P6,11,2 741 

  M11 P11,11,1 868 

  M11 P11,11,2 868 

J12 M6 P6,12 1360 

  M14 P14,12 2360 

 
 

 

The first column represents the jobs (J1, J2,.., J12). The 

second column represents the processing sequence of the 

respective job. For example, J2 has the following processing 

sequence: M13» M13» M9» M9» M6» M6. The third column 

represents the process designation; each process was given a 

unique notation in the form of PI,J,K. Where I represent the 

machine (MI), J represents the job (JJ) and K represents the 

sub-process. The fourth column represents the processing 

time (in minutes) of the respective job JJ on machine MI. 

 

The objective is to build a deterministic model that provides 

a schedule to process these jobs with minimum makespan. 

The constraints to be taken into consideration are as follows: 

[1] Each machine can process at most one job at any given 

time. 

[2] The precedence constraint of any job cannot be violated. 

For example J2 can be processed on M9 only after its process 

completion on M13. 

 

3. LITERATURE REVIEW 

The productivity and growth of a manufacturing system can 

be maximized if the available resources are utilized 

effectively. Optimized utilization of resources can only be 

possible if a proper scheduling system is in place. This 

makes scheduling systems a highly important aspect of a 

manufacturing system. 

 

David Applegate and William Cook [1] define job shop 

scheduling problem as a problem which deals with 

scheduling a set of jobs to one or more machines, subject to 

constraints that each machine can handle at most one job at a 

time and each job has a specified processing order through 

the machines. 

 

Brucker P. [2], through his study on scheduling algorithm 

comments on the NP-Hard nature of typical job shop 

problems. They belong to a group of complex combinatorial 

optimization problems. 

 

The flowchart shows the various techniques to solve JSSP. 

Optimization based techniques are limited to smaller sized 

problems whereas approximating algorithms are more 

efficient in handling slightly larger problems. 

Approximating algorithms provide sub optimal schedules. 

 

 
Fig. 1: Flowchart showing the various techniques to solve 

JSSP[3] 
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Lestan Z. et al. [4] concludes “The algorithms which are 

based on the method of branch and bound are useful only for 

solving small instances (around 20 jobs). For large scale 

problems approximating algorithms such as shifting 

bottleneck, genetic algorithm, simulated annealing, tabu 

search, priority dispatch, etc are used”. 

 

The best results are obtained with the use of hybrid methods 

involving genetic algorithm, tabu search, simulated 

annealing and the shifting bottleneck approach. This paper 

highlights the development of a simple model which 

attempts to find the schedule with the smallest makespan for 

the given (12Jx5M problem). 

 

Wallace J. Hopp and Mark L. Spearman[5] in their book 

Factory Physics define makespan as the time required for 

processing a set of jobs. 

 

4. METHODOLOGY 

The model was coded using Python language on Jupyter 

Notebook compiler. The extensive literature survey revealed 

a common challenge of infeasible schedules faced in genetic 

algorithm. Infeasible schedules would be of little importance 

in a practical job shop situation. Therefore, this model was 

used to evolve and test feasible schedules for optimality. 

 

The methodology can be divided into three stages. 

 

 
Fig. 2: Flowchart showing the various stages of solving the 

JSSP using the deterministic model 

 

4.1 Evolving Schedules 

Each schedule is represented by a string in the model. A 

string is composed of elements each of which is represented 

as a triplet. A triplet is composed of the job, respective 

machine and corresponding process designation. The triplet 

[J4,M9,P9,4,1] represents the processing of job (J4) on machine 

(M9) sub-process (P9,4,1). 

 

Every job has a fixed processing sequence therefore the 

precedence constraint cannot be violated. A schedule is said 

to be feasible only if it doesn’t violate the precedence 

constraint of any job. In contrast, to introduce variability in 

the search mechanism random schedules have to be created. 

Therefore, a randomizer was used to evolve schedules 

without violating the precedence constraint. The table below 

shows an example. 

 

Table 2: Example of a (3Jx3M) scheduling problem 

Jobs Processing Order Processing Times 

J1 M1 M3 - P1,1 P3,1 - 

J2 M2 M1 M3 P 2,2 P 1,2 P3,2 

J3 M1 M3 M2 P1,3 P3,3 P2,3 

 

The table above shows an example of three jobs, their 

respective processing sequence and the processing times. To 

create a schedule while maintaining feasibility separate lists 

are created for each job. 

 

J1: (J1, M1, P1,1), (J1, M3, P3,1) 

J2: (J2, M2, P2,2), (J2, M1, P1,2), (J2, M3, P3,2) 

J3: (J3, M1, P1,3), (J3, M3, P3,3), (J3, M2, P2,3) 

 

Let S1 represent the string to be created. A randomizer is 

used to allocate elements to this string. The randomizer 

function is used to select a job between J1, J2 and J3. In this 

example consider J3 is selected first. Then the first element 

from the J3 list is selected and placed in string S1, following 

which the element is deleted from the respective job’s list. 

 

S1: [(J3, M1, P1,3)] 

 

J1: (J1, M1, P1,1), (J1, M3, P3,1) 

J2: (J2, M2, P2,2), (J2, M1, P1,2), (J2, M3, P3,2) 

J3: (J3, M3, P3,3), (J3, M2, P2,3) 

 

This process is repeated till the entire schedule is built. 

 

S1: [(J3, M1, P1,3), (J2, M2, P2,2), (J3, M3, P3,3), (J1, M1, P1,1), 

(J2, M1, P1,2), (J1, M3, P3,1), (J3, M2, P2,3), (J2, M3, P3,2)] 

 

The above string represents a feasible schedule. For the 

given (12Jx5M) problem, eight such schedules were created. 

Each schedule consisting of 51 triplets was tested for the 

fitness function value based on the objective of minimizing 

makespan. 

 

4.2 Selection Operation 

Selection operator is the only genetic operation free from 

encoding. As selection does not change the string we do not 

face issues with maintaining feasibility. D. Shiffman [6], in 

his book, “The nature of Code” discusses other genetic 

operators like the crossover operation often produce 

infeasible schedules, which is difficult to repair. 

 

From the tested schedules, the string with the best fitness 

function value is selected using the selection genetic 

operator. 
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4.3 Permutation Operation 

The selection operator identifies the string with the best 

fitness function. Permutation operation is applied on this 

string; this operation shuffles the elements within a string. 

When performing the permutation shuffles it is critical to 

maintain feasibility. Consider the example shown above. 

 

S1: [{(J3, M1, P1,3), (J2, M2, P2,2), (J3, M3, P3,3), (J1, M1, P1,1), 

(J2, M1, P1,2), (J1, M3, P3,1), (J3, M2, P2,3), (J2, M3, P3,2)}] 

 

The permutation shuffling is applied to the elements within 

the curly braces without violating the precedence 

constraints. 

 

S1: [{(J1, M1, P1,1), (J2, M2, P2,2), (J3, M1, P1,3), (J1, M3, P3,1), 

(J3, M3, P3,3), (J2, M1, P1,2), (J2, M3, P3,2), (J3, M2, P2,3)}] 

 

After shuffling the string is tested for its fitness function 

value. If the value is better than the original string it stores 

this string in the memory function and performs the 

permutation operation again. 

 

This process terminates when the defined termination 

condition is encountered. 

 

5. RESULTS AND DISCUSSION 

From the eight randomly generated strings tested in the 

model, string 1 was selected using the selection operation. 

It had a fitness function value of 26690, being the lowest of 

the eight in comparison. 

 

 
Fig. 3: Showing the numerical string output of the 

deterministic model. 

 

The numerical string generated is difficult to visualize 

therefore it string was plotted as a Gantt chart using 

Microsoft Excel. 

 
Fig. 4: The Gantt chart for string-1 after the selection 

operation. 

 

The cells highlighted in green represent the busy state while 

red represents idle state for the respective machine. The 

table below summarizes the Gantt chart from the selection 

stage. 

 

Table 3: Showing machine wise completion time for string-

1 after selection operation. 

Machine Completion Time (hrs) 

Machine-6 409.99 

Machine-9 309.5 

Machine-11 476.97 

Machine-13 265.68 

Machine-14 497.36 

 

The makespan for string-1 after applying the selection 

operator is 497.36 hours. This string is then subjected to 

permutation operation. The elements within the string are 

shuffled without violating the precedence constraints. At 

each stage the fitness value of the changed string is 

compared with the original value. On encountering its 

termination condition the numerical string is plotted as a 

Gantt chart for better visualization. 

 

 
Fig. 5: The Gantt chart for string-1 after the permutation 

operation. 
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After applying the permutation operation to string-1 the 

makespan is reduced to 414.31 hours. This is the optimal 

schedule generated by the deterministic model. 

 

Table 4: Showing machine wise completion time for string-

1 after permutation operation on encountering the 

terminating condition. 

Machine Completion Time (hrs) 

Machine-6 380.17 

Machine-9 279.23 

Machine-11 414.31 

Machine-13 183.62 

Machine-14 296.67 

 

6. CONCLUSION 

This deterministic model is used to test a sample set of eight 

randomly generated schedules. The selection operation is 

used to select one string from the sample set based on the 

fitness function value; this string is then optimized using 

permutation operation. The terminated string has a 

makespan of 414.31 hours. 
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