
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 13

A METHODOLOGY FOR QUANTITATIVELY MANAGING THE

CODING PHASE OF SOFTWARE DEVELOPMENT PROCESS

Boby John
1
, Rajeshwar S Kadadevaramath

2

1
SQC & OR Unit, Indian Statistical Institute, Bangalore, India

2
Department of Industrial Engineering and Management, Siddaganga Institute of Technology, Tumkur, India

Abstract
Many organizations use information technology to gain competitive advantage. As a result the demand for software products

increased tremendously and the information technology industry has grown rapidly. As demand increased, the competition among

information technology firms also increased. The information technology companies can no longer survive by just delivering the

products but has to ensure the quality of products as well as the products have to be delivered on time without cost or effort

overrun. Hence it is imperative for information technology companies to quantitatively manage the software development process.

In fact quantitative project management is one of the requirements for achieving higher levels of capability maturity model. Lots

of research has been carried out in the past to develop models to quantitatively manage the software development process. Most

of these studies focussed on methodologies to quantitatively manage only one of the performance characteristics namely quality

or schedule or effort. But to deliver the good quality software on time within the budgeted cost, all the critical performance

parameters of software development process namely quality, productivity, effort, cost, etc need to be managed simultaneously.

Many of these characteristics are related to each other and many cases the correlation is such that improving the performance of

one characteristic will adversely affect the performance of other performance characteristics. Moreover all these performance

characteristics need to be managed by controlling a common set of control parameters. Hence it is required to identify the best

values of the control parameters which would simultaneously optimise all the performance characteristics. In this paper, the

authors suggest a methodology to simultaneously optimize the performance characteristics of coding phase of the software

development process. The same methodology can be used to simultaneously manage the different performance characteristics at

other phases as well as the overall software development process. In this study the authors have taken two performance

characteristics namely coding productivity and quality (measured in terms of defect density). The approach is to develop separate

process performance models to estimate the coding productivity and defect density using the process parameters namely

programmer skill, reviewer skill, review type, preparation time, module complexity and code review rate. Then the values of these

process parameters which would simultaneously optimize the coding productivity and defect density are identified using

Taguchi’s loss function. The proposed approach has been implemented on seven software development projects and the results

are very encouraging. Moreover the optimum obtained by the proposed method is much better than that of optimizing the coding

productivity and defect density separately. The project managers also agreed that a common setting for process parameters which

would optimize both performance characteristics simultaneously is much easier to implement than methods for managing different

performance characteristics independently.

Keywords: Quantitative project management, multi response optimization, dummy variable regression, Taguchi’s loss

function

---***---

1. INTRODUCTION

The organizations need to have the competitive advantage to

succeed in globalised business world. Brand image, pricing,

technology, skilled resources, etc (Samson & Terziovski

1999; Adam et al 2001) can provide the aforementioned

competitive advantage. Recently more and more

organizations are depending on Information Technology

(IT) to gain the competitive advantage. As the demand for

the software products increased, the number of firms also

increased. But even today many IT companies struggle to

deliver quality software on time within the budgeted cost. So

the software companies need to have a balanced approach of

management for the different sub process of software

development life cycle to meet the goals or requirements of

quality, schedule, cost, etc. The Capability Maturity Model

developed by Software Engineering Institute (SEI) of the

Carnegie Mellon University classified the software

processes into five maturity levels namely initial, repeatable,

defined, managed and optimizing (Paulik et al 1993). The

research has shown that higher maturity levels are associated

with higher quality, better on time delivery and lower cost

(Harter et al 2000). Still most of the studies on

quantitatively managing the software processes are focusing

on only one performance characteristic or response variable

and majority of them are on only software quality.

Tamura (2009) has developed three process performance

models, one for estimating product quality objectives (defect

density) in terms of requirement inspection rate (pages per

hour) and whether prototype is developed or not as factors.

The second one is for estimating code review yield (% of

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 14

defects present in the software that are removed by the

review) in terms of review rate (the number of lines of code

reviewed per hour). The third model is to predict the

escaped unit test defect density with test coverage as

controllable variable. Hao and Zhang (2011) also developed

a model for delivered defect density using average team skill

level and test coverage as controllable variables. Similarly

lots of models have been developed for predicting software

defects or classifying the software as defect prone or not.

These models are generally developed using either statistical

techniques (Nagappan et al 2005; Khoshgoftaar and Allen

1999; Cruz and Ochimizu 2009; Bibi et al 2006; Binkley

2007; Schneidewind 2001; Sandhu et al 2010) or machine

learning techniques (Tao and Wei-hua 2010; Fenton et al

2007; Ceylan et al 2006; Kaur and Malhotra 2008; Elish and

Elish 2008; Afzal and Torkar 2008; Zhu and Wu 2009;

Hribar and Duka 2010).

Studying the relationship between software quality or defect

density with process control variables and developing a

prediction model is useful for achieving the quality goals.

Using the model, the project managers can identify the

optimum values of the control variables which would bring

the quality close to the target. But achieving quality goals or

target alone is not sufficient. The organizations also need to

manage the software development life cycle process to

achieve the goals of other performance characteristics

namely productivity, schedule, cost etc. Many of these

performance characteristics may be correlated. Moreover the

managers need to adjust a common set of controllable

variables to achieve the goals on multiple characteristics.

Hence it is desirable to have a common setting of

controllable variables which would simultaneously optimize

the multiple performance characteristics. The same problem

exists in other industries also and lot of work has been

carried out in simultaneous optimization of multiple

performance or output characteristics. Based on the success

of simultaneous optimization of multiple responses in

manufacturing industries, the authors suggest a similar

methodology for achieving simultaneously the goals of

multiple performance characterstics in IT industry. This

paper demonstrates the proposed approach for

simultaneously achieving the targets on quality and

productivity at coding phase of software development life

cycle. The coding phase includes development and code

review sub processes. The quality and productivity are

studied in this paper, the same approach can be used for

other performance characteristics also. In fact, the approach

can be used for simultaneously achieving the goals on any

number of characteristics. The approach can be used for

other sub processes like design, testing, etc and also for

quantitatively managing the entire software development

process.

The remaining part of the paper is organised as follows: a

brief discussion on simultaneous optimisation of multiple

characteristics is given in section 2, Taguchi’s loss function

is explained in section 3, section 4 describes the proposed

methodology for quantitatively managing the coding phase

of software development life cycle and the results and

conclusions are discussed in section 5.

2. SIMULTANEOUS OPTIMIZATION OF

MULTIPLE PERFORMANCE

CHARACTERISTICS

Many industrial processes are characterised by more than

one performance characteristics. For example, in surface

hardening process not only the surface hardness, the case

depth can also be important. Similarly in machining process,

not only the dimensional accuracy, the surface finish also

need to be optimised. Lot of studies have been carried out in

the past on developing methodologies for simultaneous

optimisation of multiple performance characteristics.

Montgomery and Castillo (1993) suggested response surface

methodology. Harrington (1965) and Derringer (1994)

developed the desirability function approach. Koksoy and

Yalcinoz (2006) used mean square error criterion for

analysing several quality characteristics simultaneously. Su

and Tong (1997) suggested principal component analysis

based methodology for multiple characteristics optimization.

Hsu (2004) proposed an integrated approach based on neural

networks, exponential desirability functions & tabu search.

Many researchers have also used data envelopment analysis

(Liao 2004), fuzzy logic (Antony et al 2006) and gray

relational analysis (Saha and Mandal 2013) for simultaneous

optimization of multiple performance characteristics.

Logothetis and Haigh (1988), Tong et al (1997),

Magsoodloo and Chang (2001), Reddy et al (1998), Boby

(2012) and Wu (2002) used methods based on Taguchi's loss

function (Taguchi et al 1989) for simultaneous optimization

of multiple performance characteristics.

Lot of case studies are also available in the literature on

multiple characteristic optimization. Fung and Kang (2005)

optimized the injection-moulding process for friction

properties of fiber-reinforced polybutylene terephthalate

using Taguchi method and principal component analysis.

Dubay and Yadava (2008) presented a hybrid of Taguchi

and response surface method for the multi-response

optimisation of a laser beam cutting process. Gauri and

Chakraborty (2009) suggested a modified principal

component analysis based method for multi-response

optimisation of wire electrical discharge machining process.

Asilturk and Neseli (2012) presented Taguchi method-based

response surface methodology to determine multi-objective

optimal cutting conditions for CNC turning process. Wei

and Yuying (2008) applied Pareto-based multi-objective

genetic algorithm to optimize sheet metal forming process.

In this research, the authors are also proposing Taguchi's

loss function methodology for simultaneously achieving the

quality and productivity goals at the coding phase of

software development process.

3.TAGUCHI'S LOSS FUNCTION APPROACH

According to Taguchi, any deviation of the performance

characteristic from the target needs to be treated as loss. He

developed the quadratic loss function to quantify the loss.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 15

Taguchi’s quality loss function (Fowleks and Creveling

1998) is defined as

2)()(TykyL  (1)

where y is the performance characteristic, T is the target

value of the performance characteristic and k is a

proportionality constant namely quality loss coefficient. The

value of k can be chosen based on economical

considerations. When the characteristic y is on the target T,

there will be no loss and as the performance characteristic y

deviates from the target, the loss increases. The

proportionality constant k can also be chosen to ensure that

as long as the performance characteristic is meeting the

service level agreements (SLA) or specification limits, then

the loss will be ≤ 1. This can be achieved by choosing k as

2

2












LSLUSL
k (2)

where USL is upper specification limit & LSL is the lower

specification limit of the performance characteristic. The

aforementioned choice of k ensures that the loss will be

equal to 1 when the response variable is on either of the

specification limits. The loss will be < 1 when the

performance characteristic is within the specification limits

and the same will be 0 when the characteristic is on the

target. Similarly k can be chosen for one sided SLA or

specification limits also.

The quality loss function is defined for three types of

response variables namely smaller the better (STB), larger

the better (LTB) and nominal the best (NTB). Let y1, y2, - - -,

yn be the n observations of the performance characteristics y.

Then the formula for computing the different loss functions

are as follows:

For nominal the best characteristics

2

1

)(
1

)(Tyk
n

yl
n

i

i  


 (3)

For smaller the better characteristics





n

i

iyk
n

yl
1

21
)((4)

And for larger the better characteristics




n

i iy
k

n
yl

1
2

11
)((5)

Finally the overall expected loss L(y) is computed as the

average of the expected losses of individual response

variables as given in (6).

)(
1

)(
1





p

i

iyl
p

yL (6)

The combination of the process control variables with

minimum overall expected loss would simultaneously

optimise all the performance characteristics

4. METHODOLOGY FOR QUANTITATIVELY

MANAGING THE CODING PROCESS

The application of simultaneous optimization of multiple

performance characteristics for software development

process is described in this session. Taguchi’s loss function

methodology is used in this study. The study is carried out at

the coding phase of the software development life cycle. The

performance characteristics chosen for simultaneous

optimisation are code review defect density and coding

productivity. The defect density is a measure of quality and

is defined as the number of defects per unit size (Fenton and

Bieman 2014). The unit size generally is taken as 1000 lines

of code. The coding productivity is measured as the ratio of

size over effort. In other words, coding productivity is the

number of lines coded per unit effort. The specifications on

the performance characteristics under study are given in

table 1.

Table 1: Performance characteristics with specification

Sl

No

Performance

Characteristics
Target LSL USL

1 Defect density 1.0 0.5 1.5

2 Coding productivity 12 10 14

The specification on coding productivity is arrived based on

the industry benchmark for the underlying technology.

Ideally a software should be free from any defect or bug.

But since the software development is a human activity,

errors can occur and bugs can get injected during designing,

coding or integrating the modules, etc. Hence it is important

to detect and remove as many bugs as possible before

releasing the software. It is even better to detect the bugs at

the early stages of software development like design review

or code review than down the line at system or acceptance

testing. So if the code review defect density target is zero,

then the review may not be carried out properly and many

defects may escape to subsequent phases. Similarly if the

defect density target is very high and the programmers are

highly skilled and knowledgeable, then it becomes almost

impossible to achieve code review defect density targets.

Hence based on the past performance the specification on

defect density is arrived at as given in table 1.

The discussions with the project managers and engineers of

the firm revealed that mostly the people related factors are

easier to control in software development by changing the

composition of the development as well as review teams.

Moreover these factors are likely to impact the performance

characteristics as software development is a human activity.

The controllable factors identified for the study is given in

table 2.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 16

Table 2: List of controllable factors

SL

No

Factor Name Description

1 Programmer

skill

0: Fresher, 1:Experienced

2 Reviewer skill 0: Fresher, 1: Experienced

3 Review type 0: Peer review, 1: Fagan review

4 Preparation

time

0: 20% of total time, 1: 30% of

total time

5 Complexity 0: Simple, 1: Complex

6 Code review

rate

0: 75 to 100 lines per hour, 1: 50

to 75 lines per hour

The data on the factors and the performance characteristics

namely defect density and coding productivity are collected

from the past projects. Two models, one each for defect

density and coding productivity are developed using the

factors as independent variables. Since the factors are

categorical, dummy variable regression is used for

developing the models. The regression statistics, regression

Anova table and coefficient table for defect density model is

given in table 3 to 5 respectively.

Table 3: Defect density regression model statistics

Statistics Value

R
2
 0.955

Adjusted R
2
 0.925

Standard Error 0.5524

Table 4: Defect density regression Anova table

df SS MS F p value

Regression 6 59.0193 9.8365 32.2352 0.0000

Residual 9 2.7463 0.3051

 Total 15 61.7656

Table 5: Defect density model coefficient table

Coefficients Standard Error t Stat P-value

Intercept 2.33078 0.36538 6.37904 0.00013

Programmer Skill -1.81519 0.27620 -6.57199 0.00010

Reviewer skill 1.02766 0.27620 3.72070 0.00477

Review type -1.74885 0.27620 -6.33178 0.00014

Preparation time 2.44989 0.27620 8.86993 0.00001

Complexity analysis 1.14978 0.27620 4.16284 0.00244

Code review rate 0.14612 0.27620 0.52905 0.60957

The table 3 shows that R
2
 and adjusted R

2
 are reasonably

high (> 0.6) and the p value in the regression anova table

(refer table 4) < 0.05, hence the model is significant. The

table 5 shows that except code review rate, other factors are

significant at 5% level (p value < 0.05). Hence the

regression analysis is carried out again by dropping the code

review rate factor. The new coefficient table is given in table

6.

Table 6: Modified coefficient table for defect density model

Coefficients Standard Error t Stat P-value

Intercept 2.40384 0.32587 7.37669 0.00002

Programmer Skill -1.81519 0.26607 -6.82222 0.00005

Reviewer skill 1.02766 0.26607 3.86236 0.00315

Review type -1.74885 0.26607 -6.57286 0.00006

Preparation time 2.44989 0.26607 9.20765 0.00000

Complexity 1.14978 0.26607 4.32134 0.0015099

Form table 6, the model for estimating the defect density is

Defect density = 2.40 – 1.82 Programmer skill + 1.03 Reviewer skill – 1.75 review type + 2.45 Preparation time + 1.15

Complexity (7)

Similarly the regression statistics, regression Anova table and coefficient table for coding productivity model is given in table 7 to

9 respectively

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 17

Table 7: Productivity regression model statistics

R
2
 0.913

Adjusted R
2

0.853

Standard Error 1.376

Table 8: Productivity regression Anova table

df SS MS F p value

Regression 6 178.63 29.77 15.72 0.00

Residual 9 17.04 1.89

 Total 15 195.67

Table 9: Productivity model coefficient table

Coefficients Standard Error t Stat P-value

Intercept 13.53 0.9102 14.8649 0.0000

Programmer Skill 3.57 0.6880 5.1886 0.0006

Reviewer skill -0.2225 0.6880 -0.3234 0.7538

Review type 0.37 0.6880 0.5378 0.6038

Preparation time -1.405 0.6880 -2.0420 0.0715

Complexity -5.195 0.6880 -7.5504 0.0000

Code review rate -1.6625 0.6880 -2.4163 0.0388

The table 7 shows that R
2
 and adjusted R

2
 are reasonably

high (> 0.6) and the p value in the regression Anova table

(refer table 8) < 0.05, hence the model is significant. The

table 9 shows that except review type and reviewer skill,

other factors are significant at 5% level (p value < 0.05).

Hence the regression analysis is carried out again by

dropping the reviewer skill and review type factors. The new

coefficient table is given in table10.

Table 10: Modified coefficient table for productivity model

Coefficients Standard Error t Stat P-value

Intercept 13.604 0.711 19.137 0.000

Programmer Skill 3.570 0.636 5.615 0.000

Preparation time -1.405 0.636 -2.210 0.049

Complexity -5.195 0.636 -8.170 0.000

Code review rate -1.663 0.636 -2.615 0.024

Hence the model for coding productivity is

Coding productivity = 13.604 +3.57 Programmer skill –

1.405 Preparation time -5.195 Complexity - 1.663 Code

review rate

(8)

The defect density and coding productivity are computed for

all the possible combination of factor values using (7) and

(8). Since there are 6 factors and each can take 2 values,

there are 64 possible combinations. Then the expected loss

for defect density, productivity and the overall expected loss

for all these combinations are computed using (3) and (6).

The combination of factor values which would minimise

expected loss is given in table 11.

Table 11: Optimum combination

Factor Value

Programmer Skill Experienced

Reviewer skill Experienced

Review type Fagan review

Preparation time 20% of total time

Complexity Complex

Code review rate 75 to 100 lines per hour

Defect density 1.017

Productivity 12.574

DD_loss 0.001

Productivity_Loss 0.082

Expected Overall loss 0.042

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 18

The table 11 above shows that the estimated defect density

for optimum setting or combination of factors would be

1.017, very close to the target of 1 and well within the

specification limits. Similarly the estimated productivity for

optimum setting or combination of factors would be 12.574,

very close to the target of 12 and well within the

specification limits (refer table 1). The optimum

combinations of factors obtained by optimising performance

characteristic defect density also gave the same combination

but that of optimising productivity alone has given different

combinations. In fact there are four different combinations

that would bring productivity very close to the target. The

combinations are given in table 12.

Table 12: Factor combinations for optimising productivity

alone

Combinati

ons 1 2 3 4

Programm

er Skill

Experien

ced

Experien

ced

Experien

ced

Experien

ced

Reviewer

skill Fresher Fresher

Experien

ced

Experien

ced

Review

type

Peer

review

Fagan

review

Peer

review

Fagan

review

Preparatio

n time 20% 20% 20% 20%

Complexit

y Complex Complex Complex Complex

Code

review

rate

50 - 75

lines

50 - 75

lines

50 - 75

lines

50 - 75

lines

Defect

Density 4.19 2.44 5.22 3.47

Productivi

ty 11.91 11.91 11.91 11.91

The table 12 revealed that even though the expected

productivity is 11.91, which is very close to the target of 12

but in all the four cases expected defect density is not

meeting the SLA or specification. Hence it is better to

simultaneously optimise the multiple performance

characteristics. Moreover the project managers can achieve

the targets on different performance characteristic with a

common setting of process control variables or factors. The

managers can also easily identify the second best, third best

combinations, etc. This would give them lot of options to

quantitatively manage the process.

The approach is validated by comparing the results of seven

modules satisfying the optimum combination of factors. The

defect density and coding productivity of the seven modules

used for validation is given in table 13.

Table 13: Validation results

Module id Defect density Coding Productivity

1 1.05 12.85

2 0.98 13.21

3 1.24 12.01

4 1.18 11.93

5 0.97 11.86

6 1.4 12.67

7 1.32 13.01

The table 13 shows that for all the seven modules, the defect

density is close to the predicted defect density of 1.017 for

the optimum combinations. Similarly all the seven

productivity values are also close to the predicted value of

12. 574. Hence it is decided to recommend the proposed

methodology for quantitatively managing the coding phase

of all the upcoming projects.

5. CONCLUSION

The software industry has been witnessing tremendous

growth. Still delivering the quality software without cost or

schedule overrun is a challenge for many information

technology companies. It is required to quantitatively

manage the software development process to achieve the

goals on software quality, productivity, cost, etc. But most

of the published works are on quantitatively managing the

process to achieve goals of only one performance

characteristics. In this paper, the authors suggested a

methodology to simultaneously achieve the goals of

multiple performance characteristics. The paper discussed a

special case of simultaneously optimizing the defect density

and coding productivity of the coding phase of the software

development process.

Through discussions with the technical experts, the different

factors influencing the defect density and productivity are

identified. Then two models has been developed one each

for estimating the defect density and productivity. The

models are developed using dummy variable regression.

Then using Taguchi’s loss function approach the optimum

combination of factors that would simultaneously bring both

defect density and productivity close to the respective

targets are identified. The methodology would help the

project managers to meet the requirements of multiple

performance characteristics with common settings of

factors. It is also found that the optimum combination

obtained through the suggested methodology is superior to

that of optimising individual performance characteristics

separately. The suggested methodology can also be used for

simultaneously achieving goals of multiple performance

characteristics of other sub processes like design, testing, etc

of the software development life cycle as well as the entire

software development process itself.

REFERENCES

[1] Adam EE, Flores BE and Macias A (2001) Quality

improvement practices and the effect on

manufacturing firm performance: evidence from

Mexico and the USA. International Journal of

Production Research 39(1): 46 – 63.

[2] Afzal W and Torkar R (2008) A comparative

evaluation of using genetic programming for

predicting fault count data. In Third IEEE

International Conference on Software Engineering

Advances: 407-414.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 19

[3] Antony J, Anand RB, Kumar M and Tiwari MK

(2006) Multiple response optimization using Taguchi

methodology and neuro-fuzzy based model. Journal

of Manufacturing Technology Management 17(7):

908–925.

[4] Asiltürk I and Neşeli S (2012) Multi response

optimisation of CNC turning parameters via Taguchi

method-based response surface analysis.

Measurement 45(4):785-794.

[5] Bibi S, Tsoumakas G, Stamelos I and Vlahavas IP

(2006) Software Defect Prediction Using Regression

via Classification. In AICCSA: 330-336.

[6] Binkley D, Feild H, Lawrie D and Pighin M (2007)

Software fault prediction using language processing.

Testing: IEEE Academic and Industrial Conference

Practice and Research Techniques: 99-110.

[7] Boby John (2012) Simultaneous optimization of

multiple performance characteristics of carbonitrided

pellets: a case study. The International Journal of

Advanced Manufacturing Technology 61(5-8): 585-

594

[8] Ceylan E, Kutlubay FO and Bener AB (2006)

Software defect identification using machine learning

techniques. In 32
nd

 IEEE EUROMICRO Conference

on Software Engineering and Advanced

Applications: 240-247

[9] Cruz AC and Ochimizu K (2009) Towards logistic

regression models for predicting fault-prone code

across software projects. In 3
rd

 IEEE International

Symposium on Empirical Software Engineering and

Measurement: 460-463.

[10] Del Castillo E and Montgomery DC (1993) A

nonlinear programming solution to the dual response

problem. Journal of Quality Technology 25(3): 199 -

204.

[11] Derringer G (1994) A balancing act: Optimising

product’s properties Quality Progress 27(6): 51- 58.

[12] Dubey, AK and Yadava V (2008) Multi-objective

optimisation of laser beam cutting process. Optics &

Laser Technology 40(3):562-570.

[13] Elish KO and Elish MO (2008) Predicting defect-

prone software modules using support vector

machines. Journal of Systems and Software 81(5):

649-660.

[14] Fenton N and Bieman J (2014) Software metrics: a

rigorous and practical approach, CRC Press.

[15] Fenton N, Neil M, Marsh W, Hearty P, Marquez D,

Krause P and Mishra R (2007) Predicting software

defects in varying development lifecycles using

Bayesian nets. Information and Software Technology

49(1): 32-43.

[16] Fowleks WY, Creveling CM (1998) Engineering

methods for robust product design: using Taguchi

methods in technology and product development.

Addison-Wesley Longman Inc. USA

[17] Fung CP and Kang PC (2005) Multi-response

optimization in friction properties of PBT composites

using Taguchi method and principle component

analysis. Journal of materials processing technology

170(3):602-10.

[18] Gauri SK and Chakraborty S (2009) Multi-response

optimisation of WEDM process using principal

component analysis. The International Journal of

Advanced Manufacturing Technology 41(7-8):741-

748.

[19] Hao Y and Zhang YF (2011) Statistical prediction

modeling for software development process

performance. In 3
rd

 IEEE International Conference on

Communication Software and Networks (ICCSN):

703-706.

[20] Harrington E (1965) The desirability function

Industrial Quality Control 21(10): 494 – 498.

[21] Harter DE, Krishnan MS and Slaughter SA (2000)

Effects of process maturity on quality, cycle time, and

effort in software product development. Management

Science 46(4): 451- 466.

[22] Hribar L and Duka D (2010) Software component

quality prediction using KNN and Fuzzy logic.

In Proceedings of the 33
rd

 IEEE International

Convention MIPRO: 402-408.

[23] Hsu CM (2004) An integrated approach to enhance

the optical performance of couplers based on neural

networks, desirability functions and tabu search.

International Journal of Production Economics

92(3):241 – 251.

[24] Hung-Chang Liao (2004) A data envelopment

analysis method for optimising multi-response

problems with censored data in the Taguchi method.

Computers and Industrial Engineering 46(4): 817-

835.

[25] John Boby (2013) Application of desirability

function for optimizing the performance

characteristics of carbonitrided bushes. International

Journal of Industrial Engineering Computations 4(3):

305-314.

[26] Kaur A and Malhotra R (2008) Application of

random forest in predicting fault-prone classes.

In IEEE International Conference on Advanced

Computer Theory and Engineering: 37-43.

[27] Khoshgoftaar TM and Allen EB (1999) Logistic

regression modeling of software quality. International

Journal of Reliability, Quality and Safety Engineering

6(4): 303-317.

[28] Koksoy O and Yalcinoz T(2006) Mean square error

criteria for multi-response process optimisation by a

new genetic algorithm Applied Mathematics and

Computations 175(2): 1657 – 1674.

[29] Logothetis N and Haigh A (1988) Characterizing and

optimizing multi-response processes by Taguchi

method. Quality and Reliability Engineering

International 4(2):159–169.

[30] Maghsoodloo S and Chang CL (2001) Quadratic loss

functions and signal to noise ratios for bivariate

response. Journal of Manuf acturing Systems

20(1):1– 12

[31] Nagappan N, Williams L, Osborne J, Vouk M and

Abrahamsson P (2005) Providing test quality

feedback using static source code and automatic test

suite metrics. In 16
th

 IEEE International Symposium

on Software Reliability Engineering: 10-pp.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 16 | ICRAES-2016 | Sep-2016, Available @ http://www.esatjournals.org 20

[32] Paulk MC (1993) Comparing ISO 9001 and the

capability maturity model for software. Software

Quality Journal 2(4): 245-256.

[33] Reddy PBS, Nishina K and Babu AS (1998)

Taguchi’s methodology for multi-response

optimization—a case study in the Indian plastics

industry. International Journal of Quality &

Reliability Management 15(6):646–668.

[34] Samson D and Terziovski M (1999) The relationship

between Total Quality Management practices and

operational performance. Journal of Operations

Management 17(4): 393 – 409.

[35] Sandhu PS, Kaur M and Kaur A (2010) A Density

Based Clustering approach for early detection of fault

prone modules. In 2010 IEEE International

Conference on Electronics and Information

Engineering 2: V2-525.

[36] Schneidewind NF (2001) Investigation of logistic

regression as a discriminant of software quality. In

Proceedings of IEEE Seventh International Software

Metrics Symposium: 328-337.

[37] Su CT and Tong LI (1997) Multi-response robust

design by principal component analysis. Total Quality

Management 8(6): 409 – 416.

[38] Taguchi G, Elsayed EA and Hsiang T (1989) Quality

engineering in production systems. McGraw-Hill,

New York

[39] Tamura S (2009) Integrating CMMI and TSP/PSP:

Using TSP Data to Create Process Performance

Models (No. CMU/SEI-2009-TN-033), Carnegie-

Mellon University, Software Engineering Institute,

Pittsburgh.

[40] Tao W and Wei-hua L (2010) Naive bayes software

defect prediction model. In IEEE International

Conference on Computational Intelligence and

Software Engineering: 1-4.

[41] Tong LI, Su CTand Wang CH (1997) The

optimization of multiresponse problems in the

Taguchi method. International Journal of Quality &

Reliability Management 14(4):367–380

[42] Wei L and Yuying Y (2008) Multi-objective

optimization of sheet metal forming process using

Pareto-based genetic algorithm. Journal of materials

processing technology 208(1):499-506.

[43] Wu FC (2002) Optimization of multiple quality

characteristics based on percentage reduction of

Taguchi’s quality loss. International Journal of

Advanced Manufacturing Technology 20(1):749–753

[44] Zhu D and Wu Z (2009) The Application of Gray-

Prediction Theory in the Software Defects

Management. In IEEE International Conference on

Computational Intelligence and Software

Engineering: 1-5.

