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Abstract 
Many organizations use information technology to gain competitive advantage. As a result the demand for software products 

increased tremendously and the information technology industry has grown rapidly. As demand increased, the competition among 

information technology firms also increased. The  information technology companies can no longer survive by just delivering the 

products but has to ensure the quality of products as well as the products have to be delivered on time without cost or effort 

overrun. Hence it is imperative for information technology companies to quantitatively manage the software development process. 

In fact quantitative project management is one of the requirements for achieving higher levels of capability maturity model. Lots 

of research has been carried out in the past to develop models to quantitatively manage the software development process. Most 

of these studies focussed on methodologies to quantitatively manage only one of the performance characteristics namely quality 

or schedule or effort. But to deliver the good quality software on time within the budgeted cost, all the critical performance 

parameters of software development process namely quality, productivity, effort, cost, etc need to be managed simultaneously. 

Many of these characteristics are related to each other and many cases the correlation is such that improving the performance of 

one characteristic will adversely affect the performance of other performance characteristics. Moreover all these performance 

characteristics need to be managed by controlling a common set of control parameters. Hence it is required to identify the best 

values of the control parameters which would simultaneously optimise all the performance characteristics. In this paper, the 

authors suggest a methodology to simultaneously optimize the performance characteristics of coding phase of the software 

development process. The same methodology can be used to simultaneously manage the different performance characteristics at 

other phases as well as the overall software development process. In this study the authors have taken two performance 

characteristics namely coding productivity and quality (measured in terms of defect density).  The approach is to develop separate 

process performance models to estimate the coding productivity and defect density using the process parameters namely 

programmer skill, reviewer skill, review type, preparation time, module complexity and code review rate. Then the values of these 

process parameters which would simultaneously optimize the coding productivity and defect density are identified using 

Taguchi’s loss function. The proposed approach has been implemented on seven software development projects and the results 

are very encouraging. Moreover the optimum obtained by the proposed method is much better than that of optimizing the coding 

productivity and defect density separately. The project managers also agreed that a common setting for process parameters which 

would optimize both performance characteristics simultaneously is much easier to implement than methods for managing different 

performance characteristics independently. 

 

Keywords: Quantitative project management, multi response optimization, dummy variable regression, Taguchi’s loss 

function 

-------------------------------------------------------------------***------------------------------------------------------------------- 

1. INTRODUCTION 

The organizations need to have the competitive advantage to 

succeed in globalised business world. Brand image, pricing, 

technology, skilled resources, etc (Samson & Terziovski 

1999; Adam et al 2001) can provide the aforementioned 

competitive advantage. Recently more and more 

organizations are depending on Information Technology 

(IT) to gain the competitive advantage. As the demand for 

the software products increased, the number of firms also 

increased. But even today many IT companies struggle to 

deliver quality software on time within the budgeted cost. So 

the software companies need to have a balanced approach of 

management for the different sub process of software 

development life cycle to meet the goals or requirements of 

quality, schedule, cost, etc. The Capability Maturity Model 

developed by Software Engineering Institute (SEI) of the 

Carnegie Mellon University classified the software 

processes into five maturity levels namely initial, repeatable, 

defined, managed and optimizing (Paulik et al 1993). The 

research has shown that higher maturity levels are associated 

with higher quality, better on time delivery and lower cost 

(Harter et al 2000).  Still most of the studies on 

quantitatively managing the software processes are focusing 

on only one performance characteristic or response variable 

and majority of them are on only software quality. 

 

Tamura (2009) has developed three process performance 

models, one for estimating product quality objectives (defect 

density) in terms of requirement inspection rate (pages per 

hour) and whether prototype is developed or not as factors. 

The second one is for estimating code review yield (% of 
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defects present in the software that are removed by the 

review) in terms of review rate (the number of lines of code 

reviewed per hour). The third model is to predict the 

escaped unit test defect density with test coverage as 

controllable variable. Hao and Zhang (2011) also developed 

a model for delivered defect density using average team skill 

level and test coverage as controllable variables. Similarly 

lots of models have been developed for predicting software 

defects or classifying the software as defect prone or not. 

These models are generally developed using either statistical 

techniques (Nagappan et al 2005; Khoshgoftaar and Allen 

1999; Cruz and Ochimizu 2009; Bibi et al 2006; Binkley 

2007; Schneidewind 2001; Sandhu et al 2010) or machine 

learning techniques (Tao and Wei-hua 2010; Fenton et al 

2007; Ceylan et al 2006; Kaur and Malhotra 2008; Elish and 

Elish  2008; Afzal and Torkar 2008; Zhu and Wu 2009; 

Hribar and Duka 2010). 

 

Studying the relationship between software quality or defect 

density with process control variables and developing a 

prediction model is useful for achieving the quality goals. 

Using the model, the project managers can identify the 

optimum values of the control variables which would bring 

the quality close to the target. But achieving quality goals or 

target alone is not sufficient. The organizations also need to 

manage the software development life cycle process to 

achieve the goals of other performance characteristics 

namely productivity, schedule, cost etc. Many of these 

performance characteristics may be correlated. Moreover the 

managers need to adjust a common set of controllable 

variables to achieve the goals on multiple characteristics. 

Hence it is desirable to have a common setting of 

controllable variables which would simultaneously optimize 

the multiple performance characteristics. The same problem 

exists in other industries also and lot of work has been 

carried out in simultaneous optimization of multiple 

performance or output characteristics. Based on the success 

of simultaneous optimization of multiple responses in 

manufacturing industries, the authors suggest a similar 

methodology for achieving simultaneously the goals of 

multiple performance characterstics in IT industry. This 

paper demonstrates the proposed approach for 

simultaneously achieving the targets on quality and 

productivity at coding phase of software development life 

cycle. The coding phase includes development and code 

review sub processes. The quality and productivity are 

studied in this paper, the same approach can be used for 

other performance characteristics also. In fact, the approach 

can be used for simultaneously achieving the goals on any 

number of characteristics. The approach can be used for 

other sub processes like design, testing, etc and also for 

quantitatively managing the entire software development 

process. 

 

The remaining part of the paper is organised as follows: a 

brief discussion on simultaneous optimisation of multiple 

characteristics is given in section 2, Taguchi’s loss function 

is explained in section 3, section 4 describes the proposed 

methodology for quantitatively managing the coding phase 

of software development life cycle and the results and 

conclusions are discussed in section 5. 

 

2. SIMULTANEOUS OPTIMIZATION OF 

MULTIPLE PERFORMANCE 

CHARACTERISTICS 

Many industrial processes are characterised by more than 

one performance characteristics. For example, in surface 

hardening process not only the surface hardness, the case 

depth can also be important. Similarly in machining process, 

not only the dimensional accuracy, the surface finish also 

need to be optimised. Lot of studies have been carried out in 

the past on developing methodologies for simultaneous 

optimisation of multiple performance characteristics. 

Montgomery and Castillo (1993) suggested response surface 

methodology. Harrington (1965) and Derringer (1994) 

developed the desirability function approach. Koksoy and 

Yalcinoz (2006) used mean square error criterion for 

analysing several quality characteristics simultaneously. Su 

and Tong (1997) suggested principal component analysis 

based methodology for multiple characteristics optimization.  

Hsu (2004) proposed an integrated approach based on neural 

networks, exponential desirability functions & tabu search. 

Many researchers have also used data envelopment analysis 

(Liao 2004), fuzzy logic (Antony et al 2006) and gray 

relational analysis (Saha and Mandal 2013) for simultaneous 

optimization of multiple performance characteristics. 

Logothetis and Haigh (1988), Tong et al (1997), 

Magsoodloo and Chang (2001), Reddy et al (1998), Boby 

(2012) and Wu (2002) used methods based on Taguchi's loss 

function (Taguchi et al 1989) for simultaneous optimization 

of multiple performance characteristics. 

 

Lot of case studies are also available in the literature on 

multiple characteristic optimization. Fung and Kang (2005) 

optimized the injection-moulding process for friction 

properties of fiber-reinforced polybutylene terephthalate 

using Taguchi method and principal component analysis. 

Dubay and Yadava (2008) presented a hybrid of Taguchi 

and response surface method for the multi-response 

optimisation of a laser beam cutting process. Gauri and 

Chakraborty (2009) suggested a modified principal 

component analysis based method for multi-response 

optimisation of wire electrical discharge machining process. 

Asilturk and Neseli (2012) presented Taguchi method-based 

response surface methodology to determine multi-objective 

optimal cutting conditions for CNC turning process. Wei 

and Yuying (2008) applied Pareto-based multi-objective 

genetic algorithm to optimize sheet metal forming process. 

In this research, the authors are also proposing Taguchi's 

loss function methodology for simultaneously achieving the 

quality and productivity goals at the coding phase of 

software development process. 

 

3.TAGUCHI'S LOSS FUNCTION APPROACH 

According to Taguchi, any deviation of the performance 

characteristic from the target needs to be treated as loss. He 

developed the quadratic loss function to quantify the loss. 
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Taguchi’s quality loss function (Fowleks and Creveling 

1998) is defined as 

 
2)()( TykyL                                (1) 

 

where y is the performance characteristic,  T is the target 

value of the performance characteristic and k is a 

proportionality constant namely quality loss coefficient. The 

value of k can be chosen based on economical 

considerations. When the characteristic y is on the target T, 

there will be no loss and as the performance characteristic y 

deviates from the target, the loss increases. The 

proportionality constant k can also be chosen to ensure that 

as long as the performance characteristic is meeting the 

service level agreements (SLA) or specification limits, then 

the loss will be ≤ 1. This can be achieved by choosing k as 
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where USL is upper specification limit & LSL is the lower 

specification limit of the performance characteristic. The 

aforementioned choice of k ensures that the loss will be 

equal to 1 when the response variable is on either of the 

specification limits. The loss will be < 1 when the 

performance characteristic is within the specification limits 

and the same will be 0 when the characteristic is on the 

target. Similarly k can be chosen for one sided SLA or 

specification limits also. 

 

The quality loss function is defined for three types of 

response variables namely smaller the better (STB), larger 

the better (LTB) and nominal the best (NTB). Let y1, y2, - - -, 

yn be the n observations of the performance characteristics y. 

Then the formula for computing the different loss functions 

are as follows: 

 

For nominal the best characteristics 
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For smaller the better characteristics 
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And for larger the better characteristics 
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Finally the overall expected loss L(y) is computed as the 

average of the expected losses of individual response 

variables as given in (6). 
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The combination of the process control variables with 

minimum overall expected loss would simultaneously 

optimise all the performance characteristics 

 

4. METHODOLOGY FOR QUANTITATIVELY 

MANAGING THE CODING PROCESS 

The application of simultaneous optimization of multiple 

performance characteristics for software development 

process is described in this session. Taguchi’s loss function 

methodology is used in this study. The study is carried out at 

the coding phase of the software development life cycle. The 

performance characteristics chosen for simultaneous 

optimisation are code review defect density and coding 

productivity. The defect density is a measure of quality and 

is defined as the number of defects per unit size (Fenton and 

Bieman 2014). The unit size generally is taken as 1000 lines 

of code. The coding productivity is measured as the ratio of 

size over effort. In other words, coding productivity is the 

number of lines coded per unit effort. The specifications on 

the performance characteristics under study are given in 

table 1. 

 

Table 1: Performance characteristics with specification 

Sl 

No 

Performance 

Characteristics 
Target LSL USL 

1 Defect density 1.0 0.5 1.5 

2 Coding productivity 12 10 14 

 

The specification on coding productivity is arrived based on 

the industry benchmark for the underlying technology. 

Ideally a software should be free from any defect or bug. 

But since the software development is a human activity, 

errors can occur and bugs can get injected during designing, 

coding or integrating the modules, etc. Hence it is important 

to detect and remove as many bugs as possible before 

releasing the software. It is even better to detect the bugs at 

the early stages of software development like design review 

or code review than down the line at system or acceptance 

testing. So if the code review defect density target is zero, 

then the review may not be carried out properly and many 

defects may escape to subsequent phases. Similarly if the 

defect density target is very high and the programmers are 

highly skilled and knowledgeable, then it becomes almost 

impossible to achieve code review defect density targets.  

Hence based on the past performance the specification on 

defect density is arrived at as given in table 1. 

 

The discussions with the project managers and engineers of 

the firm revealed that mostly the people related factors are 

easier to control in software development by changing the 

composition of the development as well as review teams. 

Moreover these factors are likely to impact the performance 

characteristics as software development is a human activity. 

The controllable factors identified for the study is given in 

table 2. 
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Table 2: List of controllable factors 

SL 

No 

Factor Name Description 

1 Programmer 

skill 

0: Fresher, 1:Experienced 

2 Reviewer skill 0: Fresher, 1: Experienced 

3 Review type 0: Peer review, 1: Fagan review 

4 Preparation 

time 

0:  20% of total time, 1: 30% of 

total time 

5 Complexity 0: Simple, 1: Complex 

6 Code review 

rate 

0: 75 to 100 lines per hour, 1: 50 

to 75 lines per hour 

 

The data on the factors and the performance characteristics 

namely defect density and coding productivity are collected 

from the past projects. Two models, one each for defect 

density and coding productivity are developed using the 

factors as independent variables. Since the factors are 

categorical, dummy variable regression is used for 

developing the models. The regression statistics, regression 

Anova table and coefficient table for defect density model is 

given in table 3 to 5 respectively. 

 

Table 3: Defect density regression model statistics 

Statistics Value 

R
2
 0.955 

Adjusted R
2
 0.925 

Standard Error 0.5524 

 

 

Table 4: Defect density regression Anova table 

 

df SS MS F p value 

Regression 6 59.0193 9.8365 32.2352 0.0000 

Residual 9 2.7463 0.3051 

  Total 15 61.7656 

    

Table 5: Defect density model coefficient table 

 

Coefficients Standard Error t Stat P-value 

Intercept 2.33078 0.36538 6.37904 0.00013 

Programmer Skill -1.81519 0.27620 -6.57199 0.00010 

Reviewer skill 1.02766 0.27620 3.72070 0.00477 

Review type -1.74885 0.27620 -6.33178 0.00014 

Preparation time 2.44989 0.27620 8.86993 0.00001 

Complexity analysis 1.14978 0.27620 4.16284 0.00244 

Code review rate 0.14612 0.27620 0.52905 0.60957 

 

 

The table 3 shows that R
2
 and adjusted R

2
 are reasonably 

high (> 0.6) and the p value in the regression anova table 

(refer table 4) < 0.05, hence the model is significant. The 

table 5 shows that except code review rate, other factors are 

significant at 5% level (p value < 0.05). Hence the 

regression analysis is carried out again by dropping the code 

review rate factor. The new coefficient table is given in table 

6. 

 

Table 6: Modified coefficient table for defect density model 

 

Coefficients Standard Error t Stat P-value 

Intercept 2.40384 0.32587 7.37669 0.00002 

Programmer Skill -1.81519 0.26607 -6.82222 0.00005 

Reviewer skill 1.02766 0.26607 3.86236 0.00315 

Review type -1.74885 0.26607 -6.57286 0.00006 

Preparation time 2.44989 0.26607 9.20765 0.00000 

Complexity 1.14978 0.26607 4.32134 0.0015099 

 

Form table 6, the model for estimating the defect density is 

 

Defect density = 2.40 – 1.82 Programmer skill + 1.03 Reviewer skill – 1.75 review type + 2.45 Preparation time + 1.15 

Complexity                                                    (7) 

 

Similarly the regression statistics, regression Anova table and coefficient table for coding productivity model is given in table 7 to 

9 respectively 
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Table 7: Productivity regression model statistics 

R
2
 0.913 

Adjusted R
2 

0.853 

Standard Error 1.376 

 

Table 8: Productivity regression Anova table 

 

df SS MS F p value 

Regression 6 178.63 29.77 15.72 0.00 

Residual 9 17.04 1.89 

  Total 15 195.67 

    

Table 9: Productivity model coefficient table 

 

Coefficients Standard Error t Stat P-value 

Intercept 13.53 0.9102 14.8649 0.0000 

Programmer Skill 3.57 0.6880 5.1886 0.0006 

Reviewer skill -0.2225 0.6880 -0.3234 0.7538 

Review type 0.37 0.6880 0.5378 0.6038 

Preparation time -1.405 0.6880 -2.0420 0.0715 

Complexity -5.195 0.6880 -7.5504 0.0000 

Code review rate -1.6625 0.6880 -2.4163 0.0388 

 

 

The table 7 shows that R
2
 and adjusted R

2
 are reasonably 

high (> 0.6) and the p value in the regression Anova table 

(refer table 8) < 0.05, hence the model is significant. The 

table 9 shows that except review type and reviewer skill, 

other factors are significant at 5% level (p value < 0.05). 

Hence the regression analysis is carried out again by 

dropping the reviewer skill and review type factors. The new 

coefficient table is given in table10. 

 

Table 10: Modified coefficient table for productivity model 

 

Coefficients Standard Error t Stat P-value 

Intercept 13.604 0.711 19.137 0.000 

Programmer Skill 3.570 0.636 5.615 0.000 

Preparation time -1.405 0.636 -2.210 0.049 

Complexity -5.195 0.636 -8.170 0.000 

Code review rate -1.663 0.636 -2.615 0.024 

 

 

 

Hence the model for coding productivity is 

 

Coding productivity = 13.604 +3.57 Programmer skill – 

1.405 Preparation time -5.195 Complexity - 1.663 Code 

review rate 

(8) 

 

The defect density and coding productivity are computed for 

all the possible combination of factor values using (7) and 

(8). Since there are 6 factors and each can take 2 values, 

there are 64 possible combinations. Then the expected loss 

for defect density, productivity and the overall expected loss 

for all these combinations are computed using (3) and (6). 

The combination of factor values which would minimise 

expected loss is given in table 11. 

 

 

Table 11: Optimum combination 

Factor Value 

Programmer Skill Experienced 

Reviewer skill Experienced 

Review type Fagan review 

Preparation time 20% of total time 

Complexity Complex 

Code review rate 75 to 100 lines per hour 

Defect density 1.017 

Productivity 12.574 

DD_loss 0.001 

Productivity_Loss 0.082 

Expected Overall loss 0.042 
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The table 11 above shows that the estimated defect density 

for optimum setting or combination of factors would be 

1.017, very close to the target of 1 and well within the 

specification limits. Similarly the estimated productivity for 

optimum setting or combination of factors would be 12.574, 

very close to the target of 12 and well within the 

specification limits (refer table 1). The optimum 

combinations of factors obtained by optimising performance 

characteristic defect density also gave the same combination 

but that of optimising productivity alone has given different 

combinations. In fact there are four different combinations 

that would bring productivity very close to the target. The 

combinations are given in table 12. 

 

Table 12: Factor combinations for optimising productivity 

alone 

Combinati

ons 1 2 3 4 

Programm

er Skill 

Experien

ced 

Experien

ced 

Experien

ced 

Experien

ced 

Reviewer 

skill Fresher Fresher 

Experien

ced 

Experien

ced 

Review 

type 

Peer 

review 

Fagan 

review 

Peer 

review 

Fagan 

review 

Preparatio

n time 20% 20% 20% 20% 

Complexit

y Complex Complex Complex Complex 

Code 

review 

rate 

50 - 75 

lines 

50 - 75 

lines 

50 - 75 

lines 

50 - 75 

lines 

Defect 

Density 4.19 2.44 5.22 3.47 

Productivi

ty 11.91 11.91 11.91 11.91 

 

The table 12 revealed that even though the expected 

productivity is 11.91, which is very close to the target of 12 

but in all the four cases expected defect density is not 

meeting the SLA or specification. Hence it is better to 

simultaneously optimise the multiple performance 

characteristics. Moreover the project managers can achieve 

the targets on different performance characteristic with a 

common setting of process control variables or factors. The 

managers can also easily identify the second best, third best 

combinations, etc.  This would give them lot of options to 

quantitatively manage the process. 

 

The approach is validated by comparing the results of seven 

modules satisfying the optimum combination of factors. The 

defect density and coding productivity of the seven modules 

used for validation is given in table 13. 

 

Table 13:  Validation results 

Module id Defect density Coding Productivity 

1 1.05 12.85 

2 0.98 13.21 

3 1.24 12.01 

4 1.18 11.93 

5 0.97 11.86 

6 1.4 12.67 

7 1.32 13.01 

 

The table 13 shows that for all the seven modules, the defect 

density is close to the predicted defect density of 1.017 for 

the optimum combinations. Similarly all the seven 

productivity values are also close to the predicted value of 

12. 574. Hence it is decided to recommend the proposed 

methodology for quantitatively managing the coding phase 

of all the upcoming projects. 

 

5. CONCLUSION 

The software industry has been witnessing tremendous 

growth. Still delivering the quality software without cost or 

schedule overrun is a challenge for many information 

technology companies. It is required to quantitatively 

manage the software development process to achieve the 

goals on software quality, productivity, cost, etc. But most 

of the published works are on quantitatively managing the 

process to achieve goals of only one performance 

characteristics. In this paper, the authors suggested a 

methodology to simultaneously achieve the goals of 

multiple performance characteristics.  The paper discussed a 

special case of simultaneously optimizing the defect density 

and coding productivity of the coding phase of the software 

development process. 

 

Through discussions with the technical experts, the different 

factors influencing the defect density and productivity are 

identified. Then two models has been developed one each 

for estimating the defect density and productivity. The 

models are developed using dummy variable regression. 

Then using Taguchi’s loss function approach the optimum 

combination of factors that would simultaneously bring both 

defect density and productivity close to the respective 

targets are identified. The methodology would help the 

project managers to meet the requirements of multiple 

performance characteristics with common settings of 

factors. It is also found that the optimum combination 

obtained through the suggested methodology is superior to 

that of optimising individual performance characteristics 

separately. The suggested methodology can also be used for 

simultaneously achieving goals of multiple performance 

characteristics of other sub processes like design, testing, etc 

of the software development life cycle as well as the entire 

software development process itself. 
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