STUDY ON SEISMIC PERFORMANCE OF RC FRAME **CONVENTIONAL BEAM SLAB SYSTEM WITH DIFFERENT HEIGHT AND DIFFERENT ZONES**

Tarini¹, Santhosh D², R Prabakara³

¹7th sem BE, Department of civil Engineering, MSRIT, Bangalore ²Assistant professor, , Department of civil Engineering, MSRIT, Bangalore ³Professor and Head, Department of civil Engineering, MSRIT, Bangalore

Abstract

Reinforced concrete (RC) structures are common type of the structure constructed all over the world due to rapid progress of work. In this paper an attempt is made to understand the behaviour of RC frame with different heights and different earthquake zones. These studies have revealed the inadequacies in the current provisions for earthquake resistant design. The paper reports the results of Linear Static Analysis adopting Equivalent Static Load Method is adopted because of symmetry of the structure, both in geometry and in mass. This symmetrical RC frame subjected to four different earthquake ground motions. The main results of the analytical program work are here presented and discussed.

***______*

Keywords: Equivalent Static Load, Masonry, Infill.

1. INTRODUCTION

Earthquake resistant design of RC buildings is a continuing area of research since the earthquake engineering has started not only in India but in other developed countries also. The buildings still fail due to some one or the other reason during earthquakes. In spite of the deficiencies in the structure, either due to code imperfections or error in analysis and design, the structural configuration system has played a vital role in catastrophe.

It is seen that the design of a multi-storey building is governed by lateral loads and it should be the prime concern of the designer to provide adequate safety to structures against lateral loads. The behavior of the building during earthquake depends critically on its overall size, geometry, and how the earthquake forces are carried to the ground. Symmetry in plan of building is more important as it reduces torsion in buildings, thus causing less damage to the columns. In addition to this, the building design must be such as to ensure that the building has adequate strength, high ductility and will remain as one unit, even while subjected to very large deformations. Hence, at the planning stage, Architects and Structural Engineers must work together to ensure that the unfavorable features for susceptible deficiency are avoided and a good building configuration is chosen.

2. MATERIALS AND METHODS

Fig 1 : plan of RC frame

Fig 2: 3D view of RC Frame

Grade of concrete = M 25 Grade of steel = Fe 500

CROSS SECTIONS OF STRUCTURAL ELEMENTS

COLUMN SIZE i. Square columns for interior panels at the plinth and ground floor level: 700mmx700mm Square columns for all other position: 600mmx600mm Square columns are selected because they offer equal resistance in X and Y directions, irrespective of the direction of earthquake forces. **BEAM SIZE** ii. All beams are of uniform size of 450mmx600mm for all frames considered. iii. PLINTH BEAM SIZE All plinth beams are of uniform size of 450mmx600mm for all frames considered. SLAB THICKNESS iv. For Conventional RC Beam Slab System : 190mm MASONRY WALL THICKNESS v. For all frames considered: 230mm MASS SOURCE vi. As per Clause 7.3.1 & Table 8 of IS 1893 (Part I) : 2002, for uniformly distributed live loads intensities of upto 3kN/m², 25% of imposed loads has been considered and above $3kN/m^2$. 50% of the imposed loads has been considered.

vii. SUPPORT CONDITION

The support is assumed to be fixed at the end. TYPES OF PRIMARY LOADS

The structural systems are subjected to 3 types of Primary Load Cases as per the provisions of Indian Standard Code of Practice for Structural Safety of Buildings loading standards IS 872-1987 (Part I). They are:

- 1. Dead Load Case denoted as 'DL'
- 2. Live Load Case denoted as 'LL'
- 3. Wall Load Case denoted as 'WaL'
- 4. Seismic Load in X-direction (Lateral or Earthquake Load), denoted as 'EQX'
- 5. Seismic Load in Y-direction (Lateral or Earthquake Load), denoted as 'EQY'

The gravity loads (dead, superdead and live load) on the frame have been calculated based on the provisions of Indian Standard Code of Practice for Structural Safety of Buildings loading standards IS 872-1987 (Part II). The dead load consists of self-weight of structural elements and the superdead load consists of the masonry wall load acting on the structure. The live load is assumed to be varying as per different requirements as $3kN/m^2$, $4kN/m^2$ and $5kN/m^2$.

The lateral loads (Seismic loads) on the frame have been calculated based on the provisions of IS 1893 (Part I):2000 that deals with 'Criteria for Earthquake Resistant Design of Structures'. The aim is to carry out the seismic analyses of all the structural systems by "Equivalent Static Frame Method".

Load Combinations

The structural systems were subjected to 14 types of Load Combinations are per the provisions of IS 1893 (Part I) Clause 6.3.1, that deals with "Criteria for Earthquake Resistant Design of Structures", they are:

- a) Non-Seismic Load Combination:
- 1. 1.5(DL+LL)
- b) Seismic Load Combination:
- 2. 1.2(DL+LL+EQX)
- 3. 1.2(DL+LL-EQX)
- 4. 1.2(DL+LL+EQY)
- 5. 1.2(DL+LL-EQY)
- 6. 1.5(DL+EQX)
- 7. 1.5(DL-EQX)
- 8. 1.5(DL+EQY)
- 9. 1.5(DL-EQY)
- 10. (0.9DL+1.5EQX)
- 11. (0.9DL-1.5EQX)
- 12. (0.9DL+1.5EQY)
- 13. (0.9DL-1.5EQY)
 - Also, the software by default creates a load combination as:
- 14. 1.5(DL)
- 15. CRITICAL Combination created manually such that an envelope is created considering all the above mentioned load combinations to obtain maximum values for each parameter

3. METHOD OF ANALYSIS

Linear Static Analysis adopting Equivalent Static Load Method is adopted because of symmetry of the structure, both in geometry in mass.

3.1 Seismic Zone

The behavior of all models for different load combinations is studied considering all the 4 Seismic Zones of India, details of which are as per IS 1893(Part I):2002 are given below:

		1)-2002		
SEISMIC	II	III	IV	V
ZONE				
SEISMIC	LO	MODERAT	SEVER	VERY
INTENSIT	W	E	E	SEVER
Y				E
ZONE	0.10	0.16	0.24	0.36
FACTOR				
(Z)				

Table 1: Seismic Zones & Zone Factors as per IS 1893 (Part D 2002

3.2 Maximum Allowable Horizontal Displacements

& Storey Drifts Values

According to Clause 7.11.1 of IS 1893-Part I:2002 and Clause IS 456:2000, the maximum allowable drift is 0.04h for a partial safety factor of 1.0.

Hence, the allowable displacements of a particular height of the building and maximum allowable storey drifts are as per the table given below for a storey height of 3m.

 Table 2: Limiting values of horizontal displacements and storey drifts for different heights of buildings

NO OF	TOTAL	Maximum	Maximum
STOREYS	HEIGHT OF	allowable	allowable
	THE	deflection,	storey
	BUILDING,	H/250 mm	drift, h/250
	Hm		mm
6	18	72	12
8	24	96	12
10	30	120	12
15	45	180	12
20	60	240	12

4. RESULTS AND DISCUSSION

4.1 Tabulation of Analysis Results & Presentation

of Charts

The values obtained after analyzing the models are tabulated below and correspondingly, their graphs are plotted.

Those models which do not satisfy the above conditions are highlighted in red color in the tables.

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 06 HEIGHT OF BUILDING: 18m ZONE: II and III

Table 3: Six storey	Beam-slab system	for Zone II	and Zone
	III		

ZONE: II				ZONE : III			
Live	3	4	5	3	4	5	
Load							
(kN/m^2)							
Max	15.	15.	16.24	24.3	25.4	25.90	
Displace	12	85		1	8		
ment							
mm							
Storey	3.1	3.3	3.36	4.99	5.23	5.34	
Drift mm	3	0					
Column	493	518	5464	4911	5181	5451.	
Axial	4	9		.19	.49	80	
Force kN							
Column	192	202	208.1	301.	317.	323	
Shear	.72	.48	7	46			
Force kN							
Column	379	401	408	602.	635	645	
Bending				78			
Moment							
kNm							
Beam	215	201	231.2	263.	270	273	
Shear	.92	9.5	0	37			
Force kN		8					
Beam	124	135	145.7	131.	140.	151	

Bending	.92	.35	7	64	5	
Moment						
kNm						
Base	359	377	3836.	5717	6015	6126
Shear,	0.3	2.0	16			
kN	8	8				

TYPE OF SLAB SYSTEM:Conventional Beam-SlabSystemNO OF STOREYS:06HEIGHT OFBUILDING:18m

 Table 4: Six storey Beam-slab system for Zone IV and Zone

 V

ZONE: IV and V

ZONE: IV			ZONE : V			
Live Load (kN/m ²)	3	4	5	3	4	5
Max Displace ment mm	36. 46	38.22	38. 85	54.6 9	57. 33	58.2 8
Storey Drift mm	7.4 7	7.85	8.0 0	11.2 1	11. 78	11.9 9
Column Axial Force kN	491 1.1 9	5181. 49	545 1.8 0	4911 .19	518 1.4 9	5451 .80
Column Shear Force kN	451 .79	475.2 3	484 .07	677. 29	712 .44	725. 71
Column Bending Moment kNm	903 .81	950.6 9	968 .37	1355 .36	142 5.6 8	1452 .20
Beam Shear Force kN	327. 06	336. 60	340 .11	422. 59	436. 60	442. 16
Beam Bending Moment kNm	142. 77	149. 90	159 .78	164. 01	170. 64	176. 74
Base Shear, kN	8576 .11	9021 .80	918 9.9 8	1286 4.17	135 32.6 9	137 84.9 7

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 08 HEIGHT OF

NO OF STOREYS: 08 BUILDING:24m ZONE: II &III

Table 5: 8 storey Beam-slab system for Zone II and Zone III

ZONE: II				ZONE : III		
Live Load (kN/m ²)	3	4	5	3	4	5
Max Displac ement mm	22.1 8	23.30	23. 72	35.4 9	37.2 9	37. 95
Storey Drift mm	3.52	3.71	3.7 8	5.63	5.93	6.0 5
Column Axial Force kN	645 6.83	6833. 08	721 1.3 3	6454 .83	6833 .08	672 11. 33
Column Shear Force kN	203. 0	213.8 5	218 .00	324. 29	341. 63	348 .29
Column Bending Moment kNm	406. 46	428.2 1	436 .55	649. 90	684. 70	698 .04
Beam Shear Force kN	229. 16	234.0 2	244 .14	284. 18	291. 96	294 .93
Beam Bending Moment kNm	125. 57	135.4 6	145 .81	135. 18	143. 56	153 .36
Base Shear, kN	384 1.80	4036. 90	409 3.3 5	6146 .88	6476 .59	658 5.1 6

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 08 HEIGHT OF BUILDING:24m ZONE: IV&V

Table 6: 8	storey Beam-slab system for Zone IV and Zone
	V

ZONE: IV				ZONE : V		
Live Load (kN/m ²)	3	4	5	3	4	5
Max Displac ement mm	53.2 4	55.93	59. 92	79.8 9	83.89	85.38
Storey Drift mm	8.46	8.91	9.0 8	12.6 8	13.35	13.61
Column Axial Force kN	645 4.83	6833. 08	721 1.3 3	6454 .83	6833. 08	7211.3 3

Column	486.	512.0	521	728.	767.5	782.56
Shear	00	2	.99	56	9	
Force						
kN						
Column	974.	1026.	104	1461	1539.	1569.6
Bending	47	67	6.6	.34	63	5
Moment			8			
kNm						
Beam	357.	369.2	373	467.	485.0	491.76
Shear	54	1	.66	58	9	
Force						
kN						
Beam	148.	153.3	164	174.	181.5	187.33
Bending	00	0	.37	75	7	
Moment						
kNm						
Base	919	9714.	990	1383	14572	14816.
Shear,	5.33	89	4.5	0.48	.33	61
kN			9			
			1			

TYPE OF SLAB SYSTEM: Conventional Beam-SlabSystemNO OF STOREYS: 10HEIGHT OFBUILDING:30mZONE: II&III

 Table 7: 10 storey Beam-slab system for Zone II and Zone

			111				
ZONE: II	ZONE: II ZONE : III						
Live Load (kN/m ²)	3	4	5	3	4	5	
Max Displac ement mm	29.8 1	31.36	31. 94	47.6 9	50.1 7	51.10	
Storey Drift mm	3.81	4.01	4.0 9	6.09	6.42	6.55	
Column Axial Force kN	798 7.79	8473. 08	895 8.3 8	7987 .79	847 3.08	8958. 38	
Column Shear Force kN	214. 97	226.6 6	231 .18	343. 38	362. 09	396.3 3	
Column Bending Moment kNm	430. 88	454.3 7	463 .46	688. 94	726. 52	741.0 6	
Beam Shear Force kN	237. 59	242.9 8	252 .33	297. 03	305. 66	308.9 9	
Beam Bending Moment	126. 93	136.6 0	146 .28	137. 33	145. 38	155.2 3	

kNm						
Base Shear, kN	406 4.73	4286. 82	437 2.8 0	6503 .56	685 8.92	6996. 48

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 10 HEIGHT OF

NO OF STOREYS: 10	HEIGHT	U
BUILDING:30m ZONE: IV&V		

 Table 8: Six storey Beam-slab system for Zone IV and Zone

 V

ZONE: IV		ZONE : V				
Live Load (kN/m ²)	3	4	5	3	4	5
Max Displac ement mm	71.5 5	75.26	75. 65	107. 32	112 83	114.9 8
Storey Drift mm	9.14	9.63	9.8 3	13.7 0	14.4 5	14.74
Column Axial Force kN	798 7.79	8473. 08	895 8.3 8	7987 .79	847 3.08	8958. 38
Column Shear Force kN	514. 060	52.66	553 .52	771. 42	813. 51	829.8 0
Column Bending Moment kNm	103 3.01	1089. 39	111 1.2 0	1549 .13	163 3.69	1666. 41
Beam Shear Force kN	376. 28	389.2 2	394 .23	495. 51	514. 57	522.0 8
Beam Bending Moment kNm	152. 05	159.1 9	167 .17	181. 23	188. 19	194.1 6
Base Shear, kN	975 5.35	1028 8.38	104 66. 27	1459 3.36	153 90.7 5	1566 99.47

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 12 HEIGHT OF BUILDING:36m ZONE: IV & V

 Table 9: 12 storey Beam-slab system for Zone II and Zone III

ZONE IV

ZONE V

Live Load (kN/m ²)	5	3
Max Displacement mm	97.95	136.94
Storey Drift mm	10.45	14.57
Column Axial Force kN	10683.46	9501.97
Column Shear Force kN	580.44	808.14
Column Bending Moment kNm	1166.21	1624.22
Beam Shear Force kN	408.89	514.90
Beam Bending Moment kNm	169.52	185.87
Base Shear, kN	10996.74	15318.04

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 15

HEIGHT OF BUILDING:45m ZONE: IV & V

 Table 10: 15 storey Beam-slab system for Zone IV and Zone V

ZONE IV		ZONE V
Live Load	5	3
(kN/m^2)		
Max	132.89	185.51
Displacement		
mm		
Storey Drift mm	11.29	15.72
Column Axial	13213.36	11724.00
Force kN		
Column Shear	615.08	855.51
Force kN		
Column	1237.07	1721.22
Bending		
Moment kNm		
Beam Shear	425.25	537.15
Force kN		
Beam Bending	172.58	191.19
Moment kNm		
Base Shear, kN	11640.75	16199.32

TYPE OF SLAB SYSTEM: Conventional Beam-Slab System NO OF STOREYS: 20

HEIGHT OF BUILDING:60m ZONE: IV & V

Table 11: 20 storey Beam-slab system for Zone IV	' and
Zone V	

ZONE IV		ZONE V
Live Load	3	4
(kN/m^2)		
Max	185.39	195.58
Displacement		
mm		
Storey Drift	11.58	12.25
mm		
Column	15271.99	16259.75
Axial Force		
kN		
Column	614.27	648.98
Shear Force		
kN		
Column	1237.34	1307.34
Bending		
Moment kNm		
Beam Shear	422.19	438.28
Force kN		
Beam	163.07	170.52
Bending		
Moment kNm		
Base Shear,	11607.13	12264.54
kN		

CONVENTIONAL BEAM-SLAB SYSTEM - 6 STOREY BUILDING FOR DIFFERENT ZONES AND DIFFERENT LIVE LOAD INTENSITIES

Chart 1: Displacement v/s Zone for Different Live Loads

Chart 2: Displacement v/s Live Loads for Different Zones

Chart3: Maximum Storey Drift v/s Zone for Different Live Loads

Chart 4: Maximum Storey Drift v/s Live Loads for Different Zones

Chart 5: Column axial force v/s Zone for Different Live Loads

Chart 6: Column axial force v/s Live Loads for Different Zones

Chart 7: Column shear force v/s Zone for Different Live Loads

Chart 8: Column shear force v/s Live Loads for Different Zones

Chart 9: Column bending moment v/s Zone for Different Live Loads

Chart 10: Column bending moment v/s Live Loads for Different Zones

Chart 11: Beam shear force v/s Zone for Different Live Loads

Chart 12: Beam shear force v/s Live Loads for Different Zones

Chart 13: Beam bending moment v/s Zone for Different Live Loads

Chart 14: Beam bending moment v/s Live Loads for Different Zones

Chart 15: Base shear v/s Zone for Different Live Loads

Chart 16: Base shear v/s Live Loads for Different Zones

5. CONCLUSION

In the present investigation, an attempt has been made to understand the behavior of conventional beam-slab for varying live load intensities, storey heights, seismic zone factors .The variation of all the models with respect to their maximum displacements, maximum storey drifts, column axial forces, column shear forces, column bending moments, beam shear forces, beam bending moments and base shears are tabulated in order to predict an order of preference of the slab systems for any particular case.

- 1. As a increasing zones like zone II, III, IV, V of particular model, displacement of structure will gradually increase.
- 2. If the increase of height of the building, base shear will decrease and displacement will gradually increases.
- 3. If we increase the live load intensity of particular model with respect to different zones, the displacement will gradually increases.
- 4. If increase the live load intensity of particular model, and particular column and beam, column axial force, column shear force, column bending moment, beam shear force and beam bending moment will increases with gradual increase of live load intensity and with respect to different zones.

REFERENCES

- [1] IS: 456-2000 Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
- [2] IS:1893 (Part I) 2002 Code of Practice of Criteria for Earthquake Resistant Design of Structures.

- [3] Virote Boonyapinyo, Nuttawut Intaboot, Pennung Warnitchai and Nguyen Hong Tam (2004), "Seismic Capacity Evaluation of Post-tensioned Concrete Slab-Column Frame Buildings by Pushover Analysis".
- [4] Pankaj Aggarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", PHI Learning Private Limited, New Delhi.