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Abstract 
The paper presents the dynamic characteristics of thin cylindrical shells subjected to unpressurized and pressurized conditions. 

Emphasis is given to develop theoretical models based on LOVE’s first approximations and Donnell’s assumptions to the higher 

order linear differential equations of thin cylindrical shell governing equations to determine Eigen values and Eigen Vectors of 

the shells subjected to uniform internal pressure. The characteristic equation thus obtained from model is a cubic equation and 

results in three roots for the three dimensional shell. Axial, circumferential and radial frequencies and mode shapes are generated 

for different pressurized conditions. The variation of radial frequency at higher values of circumferential nodes is predominant as 

compared to axial and circumferential frequencies. Numerical techniques for pressurized conditions are computed to compare 

with the theoretical model developed. 
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1. INTRODUCTION 

Pressure vessel is a closed container designed to hold gases 

or liquids at a pressure substantially different from the 

ambient pressure. So far pressure vessels under static 

conditions are discussed, when a pressure vessel is 

considered to be as a moving body then it is subjected to 

dynamic or time-independent loading which will force the 

shell to a vibratory motion from its position of static 

equilibrium. The resonance effect is caused due to these 

vibrations. In order to avoid resonance it is necessary to 

study the dynamic characteristics of cylindrical shells.   

Cylindrical shells are widely used for commercial under 

water vehicles, in aerospace applications and in automotive 

sectors as pressure bottles. During operation these 

cylindrical shells are subjected to radial, circumferential as 

well as axial loads, which alter the natural frequency of 

these structures. To avoid resonance due to fluctuating 

component the dynamic behavior of the shell structures has 

to be studied. One such application of pressure vessels for 

studying the dynamic characteristics includes CNG pressure 

vessels, made of fully metal, hoop wrapped with metal liner, 

fully wrapped with metal liner or fully composite.  

 

Pressure vessels are important because many liquids and 

gases are to be stored under high pressure. Emphasis is 

placed upon the strength of the vessel to prevent explosions 

as a result of rupture. Most pressure vessels required to carry 

only low pressures and thus are constructed of tubes and 

sheets rolled to form cylinders. Some pressure vessels must 

carry high pressures, however, and the thickness of the 

vessel wall must be increased in order to provide adequate 

strength. The assemblies, containing thin shells, find wide 

use in modern engineering, especially in ships, aircraft and 

spacecraft industry. The vibration frequencies of shells are 

important in engineering where shell structures are 

commonly used as structural components in engineering 

design. Basically a shell structure is a three-dimensional 

structure. The dynamic characteristics of shells have been 

studied by many researchers. Love employed Kirchhoff 

hypothesis for shells and formulated classical shell theory 

(Love, 1927). The natural frequencies of cylindrical shells 

are clustered in a very narrow band and they are thus prone 

to becoming involved in resonant vibrations. Thin 

cylindrical shells are those whose wall thickness is small 

(less than 1/20 of the diameter of the cylinder) compared to 

the radius of curvature and the corresponding radius of 

twist. Cylindrical and spherical pressure vessels are 

commonly used for storing gas and liquids under pressure. 

A pressurized shell, the main source of vibrations and noise 

is to be designed for high strength, low vibration and noise 

radiation characteristics. Thus, frequencies and mode shapes 

of such structures are important in the design of systems. 

Traditionally the behavior of shells is studied under static 

loading conditions. A shell may also be subjected to 

dynamic or time-dependent loading which will force the 

shell to a vibratory motion from its position of static 

equilibrium. Such a motion is referred to as forced vibration. 
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On the other hand, if a shell vibrates without any external 

loading it is called free vibration (Ramachandran, 1993). 

The destructive effect of resonance with nearby oscillating 

or rotating equipment may be avoided if the fundamental 

frequencies of the structures are known beforehand. 

 

Previous investigations on the vibration of thin-walled 

cylinders seem to be limited mostly to the unpressurized 

case. The free vibrations of thin cylinders in the case of 

negligible bending stiffness have been considered by 

Rayleigh (Timoshenko, 1940). The solution is relatively 

simple inclusion of the bending stiffness of the walls of the 

shells make problem much more complicated. Rayleigh 

derived an expression for the frequencies of thin cylinders in 

which the motion of all cross sections was identical. This 

corresponds to the fundamental axial form for a free ended 

cylinder. The general equations of flexural vibration of the 

walls of cylinders were later investigated by Love but no 

frequency equations for any specific end conditions were 

given. The frequency equation for a cylinder with freely 

supported ends was first proposed by Flugge (Flugge, 1934). 

For freely supported ends, frequency equations based on 

strain energy relations by Timoshenko were experimentally 

verified with considerable accuracy (Arnold and Warburton, 

1953). The natural frequency of thin walls may actually 

decrease as the number of circumferential nodes increases 

due to the proportion of strain energy. The vibration of 

pressurized cylinder has been discussed by Stern under the 

hypotheses that the skin vibrates normal to the static 

position and that the stresses in the vibration modes are 

effectively equal to the stresses generated by the internal 

pressure Later Serb has solved the problem for the lowest 

frequencies for  nearly- inextensible vibration modes by 

Rayleigh method. Rayleigh showed that a great 

simplification in the analysis of shell vibrations can be 

achieved if tangential inertia forces can be neglected. It is 

then necessary to consider only one component of 

displacement-the transverse, or radial component. Reissner 

shows that the simplified equations as “shallow shell” 

theory that gives an accurate description of the transverse 

vibration of cylinders provided that the number of 

circumferential waves, n, is sufficiently large (Reissner, 

1955). Reissner developed theoretical models and applied to 

thin walled circular cylinders subjected to internal pressure 

in which numbers of circumferential modes are relatively 

small and by considering different pressure values. The 

frequency spectra and vibration modes obtained from 

theoretical models are compared with numerical techniques 

(Reissner, 1955). 

 

 The basic assumptions of Love‟s first approximation are 

used. To account for the effect of internal pressure, the 

interaction of the membrane stresses and the change of 

curvature are included in the equations of equilibrium. By 

considering the Hamilton‟s principle the governing 

equations for the vibration of shell is determined. By 

applying the Donell‟s assumptions to the obtained governing 

equations and by considering the axisymmetric case, natural 

frequencies of thin cylindrical shells under free vibrations 

are determined. 

2. MATHEMATICAL MODELING OF THIN 

CYLINDRICAL SHELLS FOR DYNAMIC 

CHARACTERISTICS 

A set of simplifying assumptions that provide a reasonable 

description of the behavior of thin elastic shells is used to 

derive the equilibrium equations that are consistent with the 

assumed displacement field.  

 

The assumptions, known as LOVE‟s first approximations 

are 

(a) the thickness h is quite small when compared with 

other dimensions and also with its radii of curvature. 

(b) the elastic displacements are small in comparison with 

the thickness of the shell. 

(c) the stress normal to the middle surface is negligible. 

(d) The normal to the middle surface before deformation 

remains normal even after deformation. 

 

The curvilinear coordinate system shown in Fig.1. and Fig.2 

represents a thin cylinder with freely supported ends. The x-

axis is directed along the generator of the cylinder, y = aθ is 

measured clockwise in the circumferential direction, and the 

z-axis is directed inward along the positive normal to the 

middle surface of the shell. Let u, v, w be the components of 

the displacement of a point on the middle surface of the 

shell in the x, y and z directions respectively. The governing 

equations of vibration of shells are obtained starting from 

the Hamilton‟s principle. 

 

 
 

Fig.1. Coordinate system 

 

 
Fig.2. Stress resultants 

 

The Hamilton‟s principle states that among the set of all 

admissible configurations of a system, the actual motion 

makes the quantity   stationary, provided the 

configuration is known at the limits t = t1 and t = t2. 

According to Hamilton‟s principle 
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 -  ------------- (3.1) 

 

where T is kinetic energy, U is strain energy and V is work 

potential of all applied loads. The governing differential 

equations, the strain energy due to loads, kinetic energy and 

formulations of the general dynamic problem are derived on 

the basis of Hamilton‟s principle. The equation of motion is 

obtained by taking a differential element of shell with 

internal forces like membrane (N1, N2 and N6) shearing 

forces (Q1 and Q2) and the moment resultants (M1, M2 and 

M6). 

 

3. EQUATION OF EQUILIBRIUM 

By applying the dynamic version of the Hamilton‟s 

principle and substituting the parameters of strain energy 

and the kinetic energy as given in equation (3.1) and 

integrating the displacement gradients by parts, the resulting 

equation is 

 

-

----------------------------------- (3.2) 

The governing equations derived in orthogonal curvilinear 

coordinates for general shell element is reduced for circular 

cylindrical shell. The equations of motion are given as 

 

(3.3) 

 

                                                (3.4) 

 

4. UNPRESSURIZED CYLINDRICAL SHELLS  

According to Donnell‟s assumptions, 

(a) Neglecting the effect of transverse shear force, while 

considering equilibrium of forces in circumferential 

direction  

(b) The effect of stretching displacement may be neglected 

while considering curvature   displacement relations.  

Frequency parameter,   --------

-------------------------------------             ------------------- (3.5) 

 

Membrane stress ,  ---------------

----------------------------------------------              ---------  (3.6) 

 

 ----------                          - (3.7) 

 

Axial wavelength factor,   ----------           ------- (3.8) 

 

Shell parameter,   ---------------                 ----   (3.9) 

 

The following three equations are obtained 

(3.10) 

 

For a non trivial solution the determinant of the coefficients 

of U,V,W in above equations must vanish resulting to the 

following equation 

 -----     ----------------- (3.11) 

 

The characteristic equation (3.11 ) thus obtained from model 

is a cubic equation and results in three roots for three 

dimensional shell. The three roots results in Eigen Values 

and Eigen Vectors in axial, circumferential and radial 

directions. Frequencies and mode shapes are generated for 

both pressurized and unpressurised conditions. 

 

5. PRESSURIZED CYLINDRICAL SHELLS: 

In the case of pressurized thin cylindrical shells the 

frequency equation is similar to that of unpressurized 

cylindrical shells except that the membrane stresses are 

replaced with the pressure terms as 

    ------------------------------- (3.12) 

 

then the characteristic equation becomes  

 

Where reverting to the notations     

Here   

(3.13) 

 

When the internal pressure vanishes, the coefficients 

 reduce to  . 

The expressions are: 
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3.14 

 

The equation so obtained is used in calculating the natural 

frequencies of cylindrical shells subjected to pressurized 

conditions. The theoretical model is programmed in 

MATLAB and validated with numerical technique using 

ANSYS software (Nitin, 2008) for the axial, circumferential 

and radial natural frequencies along with their respective 

mode shapes. In the present study, a CNG pressure vessel 

made of AISI grade 18Ni (200) Maraging steel (annealed) 

material, subjected to internal pressure ranging between 0 to 

200 for varied radius to thickness and length to radius ratios. 

The material properties are as follows: Young‟s modulus, 

E=183GPa, Poisson‟s ratio μ=0.3, Density ρ =7990 kg/m
3
. 

Dimensions of the cylinder:  Length of the cylinder, L=706 

mm, Radius of the cylinder, a = 170mm, Thickness of 

cylinder, h=t=7.89 mm, axial wave length factor is 

calculated as λ=0.756and for circumferential nodes, n=1, 

2,34,5,6,7,8,9,10. Axial nodes, m=1the frequencies are 

calculated respectively. The results obtained from the 

theoretical model from MATLAB codes are tabulated in 

Table. 1. to Table. 13. The model is generated in ANSYS 

and similar boundary conditions are applied. The results 

obtained for a Pressure of P=5 bar and at nodal value n=5 is 

shown in Figure 3 to Fig. 8 and compared with the 

theoretical results in Table.14. The frequency variation 

along the axial, circumferential and radial directions for 

different a/h ratios and for varying number of lobes are 

shown in Figure. 9 to 14 respectively. 

 

 

Theoretical Results: Unpressurized condition for different values of a/h ratio 

Table.1. µ=0.3, a/h = 170/7.89 = 21.54, λ=0.756, ΔP=0bar 

Number of lobes n 1 2 3 4 5 6 7 8 9 10 

Axial frequency f1,  Hz 226.45 346.62 481.41 621.98 765.32 910.39 1056.3 1202.9 1350.0 1497.2 

Circumferential frequency f2, 

Hz 
121.83 193.92 274.45 358.94 445.05 531.78 618.91 706.2 793.7 881.28 

Radial frequency f3, Hz 52.08 70.29 61.055 96.84 147.895 69.66 95.560 125.4 159.2 197.03 

 

Table.2. µ=0.3, a/h = 370/7.89 = 46.89, λ=0.756, ΔP=0bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 304.91 402.12 524.14 656.44 794.10 934.86 1077.6 1221.6 1366.6 1512.2 

Circumferential frequency f2, 

Hz 

173.96 234.16 306.89 384.04 465.05 548.31 632.93 7148.47 804.49 890.95 

Radial frequency f3, Hz 104.80 72.454 137.16 98.62 95.329 115.13 148.29 159.96 175.29 192.51 

 

Pressurized condition for different values of a/h ratio 

Table.3. µ=0.3, a/h = 170/7.89 = 21.54,   λ=0.756, ΔP=100bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 227.30 347.06 481.80 623.04 767.39 910.46 1056.4 1202.8 1350.0 1497.3 

Circumferential frequency f2, 

Hz 

125.02 196.33 273.70 359.84 447.70 531.82 618.9 706.45 793.81 881.42 

Radial frequency f3, Hz 54.32 92.643 93.42 123.11 156.892 72.750 98.62 127.93 163.35 207.19 

 

Table.4. µ=0.3, a/h = 370/7.89 = 46.89, λ=0.756, ΔP=100bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 304.225 400.77 522.92 655.41 793.21 934.34 1077.5 1221.6 1366.6 1512.2 

Circumferential frequency f2, 

Hz 

172.62 245.52 316.48 392.21 471.99 549.7 633.4 718.9 804.89 891.2 

Radial frequency f3, Hz 115.8 71.22 52.50 59.77 76.88 146.19 58.09 71.99 87.98 105.758 
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Table.5. µ=0.3, a/h = 170/7.89 = 21.54, λ=0.756, ΔP=200bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 228.62 348.93 482.70 624.88 768.99 910.52 1056.4 1202.8 1351.9 1497.63 

Circumferential frequency f2, 

Hz 

126.44 197.21 274.65 360.92 448.81 531.91 618.98 706.45 793.96 881.80 

Radial frequency f3, Hz 54.99 94.006 95.903 128.81 59.741 75.583 110.60 141.28 173.44 215.31 

 

Table.6. µ=0.3, a/h = 370/7.89 = 46.89, λ=0.756, λ=0.756, ΔP=200bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 286.37 399.23 521.59 654.32 792.26 934.718 1077.5 1221.5 1366.4 1512.1 

Circumferential frequency f2, 

Hz 

203.96 256.46 326.06 400.44 479.15 549.49 633.98 719.36 805.37 891.66 

Radial frequency f3, Hz 70.76 124.52 60.154 77.883 103.53 54.163 67.408 84.64 103.66 116.22 

 

Theoretical results: Unpressurized condition for different values of l/a ratio 

Table.7. µ=0.3, l/a = 706/170 = 4.15, λ=0.756, ΔP=0bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 226.45 346.62 481.41 621.98 765.32 910.39 1056.3 1202.9 1350.0 1497.2 

Circumferential frequency f2, 

Hz 

121.83 193.92 274.45 358.94 445.05 531.78 618.91 706.2 793.7 881.28 

Radial frequency f3, Hz 52.08 70.29 61.055 96.84 147.895 69.66 95.560 125.4 159.2 197.03 

 

Table.8. µ=0.3, l/a = 906/170 =5.329,   λ=0.589, ΔP=0bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 219.38 340.84 476.85 618.26 762.14 907.78 1054.1 1200.9 1348.1 1495.5 

Circumferential frequency f2, 

Hz 
113.10 187.50 270.32 356.07 442.89 529.98 617.39 704.96 792.5 880.14 

Radial frequency f3, Hz 111.33 46.96 53.95 94.28 47.43 69.184 95.09 124.96 158.7 196.5 

Pressurized condition for different values of l/a ratio 

Table.9. µ=0.3, l/a = 706/170 = 4.15, λ=0.756, ΔP=100bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 227.30 347.06 481.80 623.04 767.39 910.46 1056.4 1202.8 1350.0 1497.3 

Circumferential frequency f2, 

Hz 
125.02 196.33 273.70 359.84 447.70 531.82 618.9 706.45 793.81 881.42 

Radial frequency f3, Hz 54.32 92.643 93.42 123.11 156.892 72.750 98.62 127.93 163.35 207.19 

 

Table.10. µ=0.3, l/a = 906/170 =5.329,   λ=0.589,   λ=0.589, ΔP=100bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 219.58 341.04 476.99 618.37 762.38 907.84 1054.1 1201.0 1345.8 1495.6 

Circumferential frequency f2, 

Hz 
114.16 188.33 342.84 356.56 443.24 530.35 617.71 705.21 804.48 880.4 

Radial frequency f3, Hz 10.44 68.54 106.96 51.23 72.45 95.44 122.65 153.48 152.04 226.36 

 

Table.11.  µ=0.3, l/a = 706/170 = 4.15,  λ=0.756,  λ=0.756 , ΔP=200bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 228.62 348.93 482.70 624.88 768.99 910.52 1056.4 1202.8 1351.9 1497.63 

Circumferential frequency f2, 

Hz 
126.44 197.21 274.65 360.92 448.81 531.91 618.98 706.45 793.96 881.80 

Radial frequency f3, Hz 54.99 94.006 95.903 128.81 59.741 75.583 110.60 141.28 173.44 215.31 

 

Table.12. µ=0.3, l/a = 906/170 =5.329,   λ=0.589, ΔP=200bar 

Number of lobes n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Axial frequency f1,  Hz 219.83 341.26 479.13 511.23 762.50 907.91 1054.2 1201.1 1348.3 1484.7 

Circumferential frequency f2, 

Hz 

115.11 189.20 271.66 358.16 443.66 530.77 618.05 705.49 793.07 930.80 

Radial frequency f3, Hz 34.64 84.66 89.962 112.98 89.60 115.71 145.06 177.41 213.26 76.80 
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Table13. Theoretical calculation of Eigen vectors at different Pressures 

Pressure ΔP, bar 1 20 40 60 80 100 120 140 160 180 200 

U/W 2.1691 2.1687 2.1682 2.1676 2.1665 2.1658 2.1652 2.1645 2.1638 2.1631 2.1624 

V/W 0.8138 0.7382 0.7381 0.7381 0.7380 0.7356 0.7350 0.7344 0.7337 0.7331 0.7326 

 

Numerical Results (ANSYS 

codes)

 
Fig.3 Displacement in x-direction at a pressure of P=5 bar 

 

Fig.4 Displacement in x-direction at a pressure of P=5 bar 

 

Fig.5 Displacement in Y-direction at a pressure of P=5 bar 

 

 

 

 

Fig.6 Displacement in Y-direction at a pressure of P=5 bar 

 

Fig.7 Displacement in Z-direction at a pressure of P=5 bar 

 

Fig.8 Displacement in Z-direction at a pressure of P=5 bar 

Comparison of ANSYS results with the theoretical results, 

For Pressure P=5 bar and at nodal value n=5  
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Table.14. Validation of Eigen vectors with numerical 

technique 

Theoretical results ANSYS results 

U/W V/W U/W V/W 

0.2480 2.408 0.223 2.438 

 

Fig.9 Frequency variation in axial direction for varying 

pressure values and a/h ratios. 

 

Fig.10. Frequency variation in circumferential direction for 

varying pressure values and a/h ratios. 

 

Fig.11. Frequency variation in radial direction for varying 

pressure values and a/h ratios. 

Fig.12 Frequency variation in axial direction for different 

pressure values, with varying number of lobes. 

 

Fig.13. Frequency variation in circumferential direction for 

different pressure values, with varying number of lobes. 

 

Fig.14. Frequency variation in radial direction for different 

pressure values, with varying number of lobes. 
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6. RESULTS AND DISCUSSION 

The results are developed under two categories viz., 

Pressurized and Unpressurised conditions. 

 

7. UNPRESSURIZED CONDITIONS 

By considering the Love‟s assumptions the governing 

equations of thin cylindrical shells is determined and by 

applying certain assumptions to the higher order linear 

differential equations, characteristic equation is formulated. 

The characteristic equation is a cubic equation with three 

constants K0, K1 and K2, that computes the frequency values 

in axial, circumferential and radial direction. Under 

unpressurized condition, the natural frequency values in 

axial, circumferential and radial direction are observed to 

increase at lower rates with the increase in the 

circumferential nodal value „n‟. The percentage increase in 

frequency values gradually decreases when it reaches high 

values of „n‟ (i.e. from 30% to15%). The minimum and 

maximum frequency values computed in axial direction n=1 

is 226.45 Hz and increases to a value of 1497.2 Hz at n=10. 

In circumferential direction the frequency value at n=1 is 

121.83 Hz and increases to a value of 881.28 Hz at n=10. In 

radial direction the frequency value at n=1 is 52.08 Hz and 

increases to a maximum value of 197.03 Hz at n=10. 

 

8. PRESSURIZED CONDITIONS  

By considering the LOVE‟S assumptions the governing 

equations of thin cylindrical shells is determined and by 

applying certain assumptions to the higher order linear 

differential equations and by replacing the membrane 

stresses as a function pressure the characteristic equation is 

determined. The characteristic equation obtained is a cubic 

equation with ten constants K0, K1, K2, a1, a2, a3, a4, a5, b1 

and b2. Under pressurized condition frequency behavior is 

analyzed at different values of pressure ranging from a 

minimum value of 1 bar to a maximum value 200 bar. It is 

observed that with the increase in the pressure value has a 

negligible effect in the natural frequency values in axial, 

circumferential and radial direction. In axial direction the 

frequency value at P=1bar for n=2 is 346.62 Hz and at the 

maximum pressure of P=200bar for n=2 frequency is 348.93 

Hz. In circumferential direction the frequency value at 

P=1bar for n=2 is 193.92 Hz and at the maximum pressure 

of P=200 bar for n=2 frequency is 197.21 Hz, which shows 

that the variation of natural frequency is too small in both 

the directions. It is also noted that with the increase in the 

pressure value the natural frequency values in radial 

direction significantly increases at higher rates, i.e. in radial 

direction the frequency value at P=1bar for  n=2 is 70.29Hz 

and at the  maximum pressure of  P=200 bar for n=2 

frequency is 94.006 Hz . Simulations for cylindrical shell 

subjected to uniform internal pressure of 5bar is carried out 

to compute Eigen vectors and Eigen values for all three 

directions of the shell. It is observed that findings of the 

theoretical model are very close to the results computed 

through the numerical technique, ANSYS. 

 

 

CONCLUSIONS 

The larger the number of circumferential waves „n‟ the 

faster is the rate of increase of frequency with internal 

pressure. The significant increase in the lowest frequency 

with increase in pressure is caused by the fact that „n‟ is 

fairly large at the lowest frequency if the cylinder is short 

and if the wall is very thin typically a/h = 21.54. The 

frequency values gradually increases with the increase in the 

circumferential nodes n at a rate of 0.2 % to 0.3%. The 

variation of Eigen value, φ with pressure value is small for 

small „n‟. At higher values of „n‟ the variation is 

considerably higher than that of the lower nodes. The axial 

and the circumferential frequencies increases in small 

amounts as „n‟ value increases, where as the frequency in 

radial direction rapidly increases with the increase in the 

pressure values. The influence of physical parameter, (a/h) 

(radius to thickness ratio) is prominent and observed to have 

rapid increase in frequencies at lower nodal values rather 

than at higher nodes. The physical parameter, (l/a) (length to 

radius ratio) does not have significant effect on frequencies 

with increase in nodes. The frequency variation in axial and 

circumferential directions of thin shell is constant for varied 

internal pressures. However the frequency variation in radial 

direction of thin shell is observed to be varying mostly at 

lower nodes.  
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NOMENCLATURE 

   a                       radius of cylinder 

    ,   ,   ,    etc   coefficients in  ,   , . 

    E                                                    young‟s modulus 

    f =                             frequency, cycles per sec 

    h                               thickness of the wall 

        etc coefficients in frequency equation 

    L                           length of cylinder  

    m                                number of axial half –waves 

     n                                number of circumferential waves 
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        stress resultants in shell, force 

per unit length 

              membrane stresses due to internal pressure 

                                              

membrane stresses due to internal pressure 

                           

   

                      thickness parameter 

                      shell parameter 

              frequency parameter      

            axial wave length factor 

          Poisson‟s ratio 


