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Abstract 
The wide range of contamination sources is one of many factors contributing to the complexity of groundwater quality 

assessment. Contaminants containing different chemicals will pass through different hydrologic zones as they migrate through the 

soil to the water table. Mathematical analysis is presented for simultaneous dispersion and adsorption of a solute within 

homogenous and isotropic porous media in steady unidirectional flow fields. The dispersion systems are adsorbing the solute at 

rates proportional to their concentration and are subject to input concentrations that vary exponentially with time. In this study, 

the advection-dispersion equation has been solved analytically to evaluate the transport of pollutants which takes into account of 

distribution coefficient and porosity by considering input concentrations of pollutants. The solution is obtained using Laplace 

transform, moving coordinates and Duhamel’s theorem is used to get the solution in terms of complementary error function. 

Mathematical solutions are developed for predicting the concentration of contaminants in adsorbing porous media for prescribed 

media and fluid parameters. 
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1. MATHEMATICAL MODEL 

The Advection-Dispersion equation along with initial 

condition and boundary conditions can be written as 
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Initially, saturated flow of fluid of concentration, C = 0, 

takes place in the porous media. At t = 0, the concentration 

of the upper surface is instantaneously changed to C=C0. 

Thus, the appropriate boundary conditions for the given 

model   
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The problem then is to characterize the concentration as a 

function of z and t.  

Figure 1 : Physical Layout of the Model 

 

where the input condition is assumed at the origin and a 

second type or flux type homogeneous condition is assumed. 

C0 is initial concentration. To reduce equation (3) to a more 

familiar form, we take 
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Substituting equation (3) into equation (1) gives    

2

2

z
D

t 







                        (4) 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org                  319 

The initial and boundary conditions (2) transform to    
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Equation (4) may be solved for a time dependent influx of 

the fluid at z = 0. The solution of equation (4) may be 

obtained readily by use of Duhamel’s theorem (Carslaw and 

Jaeger, 1947).  

 

If  tzyxFC ,,,  is the solution of the diffusion 

equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at 

concentration unity, then the solution of the problem in 

which the surface is maintained at temperature  t is 
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This theorem is used principally for heat conduction 

problems, but the above has been specialized to fit this 

specific case of interest. Consider now the problem in which 

initial concentration is zero and the boundary is maintained 

at concentration unity. The boundary conditions are 
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The Laplace transform of equation (4) is  
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Hence, it is reduced to an ordinary differential equation 
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The solution of the equation is  
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where, 
D

p
q  .               

The boundary condition as z → ∞  requires that B = 0 and 

boundary condition at z = 0 requires that 
p

A
1

   thus the 

particular solution of the Laplace transformed equation is 
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The inversion of the above function is given in any table of 

Laplace transforms. The result is  
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Using Duhamel’s theorem, the solution of the problem with 

initial concentration zero and the time dependent surface 

condition at z = 0 is  
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Since 
2e is a continuous function, it is possible to 

differentiate under the integral, which gives 
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The solution to the problem is  
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Putting 
 


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 then the equation (7) can be 

written as  
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particular solution of the problem may be written as 
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where,  
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2. EVALUATION OF THE INTEGRAL 

SOLUTION 

The integration of the first term of equation (9) gives 
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For convenience the second integral may be expressed on 

terms of error function (Horenstein, 1945), because this 

function is well tabulated. 
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The second integral of equation (9) may be written as 
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Since the method of reducing integral to a tabulated function 

is the same for both integrals in the right side of equation 

(11), only the first term is considered. Let a  and the 

integral may be expressed as  

 



























 






0

2

2
1 dExpeI      





































 

/

2

2

2 1 daa
a

Exp
a

e  



























 

/

2

2 daa
a

Expe                                          (12) 

 

Further, let, 







 a

a


   

in the a
a



 first term of the above equation, then 

 






































 
 daa

a
ExpedeeI

2

22
1

2

    

(13) 

Similar evaluation of the second integral of equation (11) 

gives 
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Again substituting a
a



  into the first term, the 

result is 
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Noting that 
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Substitution into equation (11) gives 
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Thus, equation (9) may be expressed as 

 

 
 
















































 




















 





deedeee

t
n

tnK

D

tw
Exp

C
tz d

22 222

2

0

2

1

2

.
1

4

2
,

  (15) 

However, by definition, 
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Writing equation (15) in terms of error functions, we get 
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Thus, Substitution into equation (3) the solution is  
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Re-substituting for  and  gives 
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where boundaries are symmetrical the solution of the 

problem is given by the first term the equation (17). The 

second term is equation (17) is thus due to the asymmetric 

boundary imposed in the more general problem. However, it 

should be noted also that if a point a great distance away 

from the source is considered, then it is possible to 

approximate the boundary condition by   0, CtC  , 

which leads to a symmetrical solution. 

 

3. RESULTS & DISCUSSIONS: 

The main limitations of the analytical methods are that the 

applicability is for relatively simple problems. The geometry 

of the problem should be regular. The properties of the soil 

in the region considered must be homogeneous in the sub 

region. The analytical method is somewhat more flexible 

than the standard form of other methods for one-

dimensional transport model. Figures 1 to 4 represents the 

concentration profiles verses distance along the media for 

different values of porosity n. It is seen that for a fixed 

velocity w, dispersion coefficient D and distribution 

coefficient Kd, C/C0 decreases with depth as porosity n 

decreases due to the distributive coefficient Kd, whereas 

concentration profile versus time for different values of 

depth z. For a fixed z it is seen that concentration increases 

in the beginning due to lesser effect of dispersion coefficient 

D and reaches a steady-state value for larger time.  

 
Fig. 1: Break-through-curve for C/C0 v/s depth 

for n=1.0, Kd=0.5 &  = 0 

 

 
Fig. 2: Break-through-curve for C/C0 v/s depth 

for n=1.0, Kd=0.5 &  = 0.25 

 

 
Fig. 3: Break-through-curve for C/C0 v/s depth 

for n=1.0, Kd=0.5 &  = 0.5 

 

 
Fig. 4: Break-through-curve for C/C0 v/s depth for n=1.0, 

Kd=0.5 &  = 1.0 

 

The figures represent C/C0 verses time for different values 

of distribution coefficient Kd. It is seen that for a fixed Kd, 

concentration increases slowly up to t=10 days because of 

the less adsorption of pollutants on the solid surface and 

then reaches a constant value for larger time where the 

effect of distribution coefficient Kd is small. We conclude 
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that the integral transform method is a powerful method to 

derive analytical solutions for solute transport of a 

adsorption in homogeneous porous media and under 

different flow conditions. Steady-state concentration 

distributions and temporal moments can be directly derived 

from these solutions and transient concentration distribution 

is accessible via numerical inversion. The derived solutions 

are of great value for bench-marking numerical reactive 

transport codes. 
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