
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 202

MULTICORE IMPLENENTATION OF WAVELET TRANSFORM

USING SCILAB

Aneeta S Antony
1
, Sneha Sara Jacob

2
, Anusha Danday

3
,Kavitha S S

4

1
 Department of E &C, NIE, Mysuru, India

2
 Department of E &C, NIE, Mysuru, India

3
 Department of E &C, NIE, Mysuru, India

4
 Department of E &C, NIE, Mysuru, India

Abstract

In this paper, we discuss parallel implementation of Wavelet Transform on multicore platforms. We compare performance of the

wavelet transform implementation on different number of cores. We report the work carried out using Haar Wavelet. We have

selected SciLab as our platform for experimentation. SciLab on Linux supports multiprocessing as function. Linux also supports

enabling and disabling of cores. We use this feature to ensure the same environment for different number of cores. We compare

the performance of the SciLab's inbuilt DWT function and our own function.

Keywords: Multicore, Parallel Algorithm, Wavelet Transform, Haar Wavelet

--***--

1. INTRODUCTION

 Faster computations are always in demand for

many applications. The simplest method is to increase the

clock frequency of the system. Even-though the clock

frequency of the CPU is directly related to the performance,

it increases power consumption thereby increasing the

temperature of the device. Moreover, clock frequency has

reached the plateau and it is impracticable to increase clock

speed exorbitantly. Alternate methods are the need of the

hour to increase the computing efficiency, at the same time

keeping heat of the devices under control.

A good beginning point to increase the performance is to

exploit the multicore feature available in the present-day

computers. Multicore CPUs involve more than one CPU

core fabricated into a single chip. This allows parallel

processing by allowing us to execute multiple tasks

simultaneously. Obviously, as more tasks are executed

simultaneously, computational efficiency would increase.

Since there are multiple cores, the instantaneous power

consumed may be more. But, since the execution takes less

time, the watt-hour (power × time) consumed would be

lesser.

Image transforms, in general,are used in many applications

– including analysis and compression. Wavelets, in

particular, have been used in applications like compression,

segmentation and multiresolution analysis. Wavelet, like

other transforms is compute intensive. Even with the

availability of fast and efficient algorithms, computation

time involved might not be suitable for real-time

applications. But the good thing is the implementation of

wavelet can be parallelized. With the advent of multicore

platforms, the wavelet implementation can shared across

different cores and computation time can be reduced. In this

work, we explore the possibility of parallelizing wavelet

algorithm on multicore platforms. We consider matrices of

different sizes and run it on different number of cores. We

study the computation time in each case. We compare our

code with the standard code available with SciLab[1].

Scilab is a popular open source equivalent of Matlab [2].

Scilab is used extensively in signal processing,

communication, control among other applications. Scilab

has many toolboxes. It has a toolbox of the multicore

applications too. As of now, the multicore support is

available only on Linux and not on Windows[3]. Thus, we

have used Linux (Ubuntu 14.0) for our experimentation

reported in this work.

2. WAVELETS

Wavelets, like Fourier transform, are a class of orthogonal

transforms. Fourier transform has a limitation that we get

either time information (time domain) or frequency

information (in transform domain). We can get both. That

is, in time domain frequency information is lost and in

transform (frequency) domain time information is lost.

There are some applications, like seismology, where we

need both. Even-though we can use Windowed Fourier

transform (WFT)for such applications, fixed window size

becomes bottleneck for WFT. We need a transform that has

a variable window size. Wavelets satisfies these

requirements.

Wavelet transform pair are defined by

W (a ,b)= ∫
− ∞

∞

f (t)
1

√|(a)|
ψ(t

b− a)
 (1)

and

f (t)=
1

Cψ

∫
−∞

∞

∫
− ∞

∞

W f (a ,b) ψab(t)
1

a
2

dadb
 (2)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 203

Where,

Cψ= ∫
−∞

∞ |Ψ(Ω)
2|

Ω
dΩ

 (3)

Wavelets need to satisfy following properties

1.
∫
− ∞

∞

ψ(t)dt= 0
 (4)

2.
∫
− ∞

∞

|ψ(t)2|dt <∞
 (5)

The ψ (t) is called prototype or mother wavelet, and can be

represented as

ψab=
1

√(a)
ψ(t− b

a)⇔Ψab (Ω)
 (6)

As per the Eqn.(4), system should have wavelike property

and as per Eqn.(5), the wave should die out. As per the

Eqn.(6), the parameter b will translate the wavelet along

the time axis and parameter a will scale the wavelet

We observer that W in Eqn. (1) is a function of two

variables, which corresponds to time and frequency. Thus

we can say that wavelets resolve the signal into its time as

well as frequency components. Moreover, unlike Fourier,

where we have complex exponential as the basis, we do not

have a unique basis for the wavelets. Instead the basis is

represented by
ψ (t)

, and as long as it satisfies equations

(4)-(6). This implies that there are many different basis for

wavelets[4]-[6].

In this work, we have used simplest of the wavelet, namely

the Haar Wavelet, defined by I Daubechies[5] as.

ψ(x)={
1, 0≤ x≤ 1/2
− 1, 1/2≤ x≤ 1

0 otherwise }

Then the discrete wavelet of a sequence f is obtained as

inner product of f with ψ (x) as ⟨f ,ψ⟩

3. IMPLEMENTATION

As noted in the previous section, wavelet can be

implemented as an inner product. The summation of inner

product can be parallelised[9] - each part of summation can

be done on different cores[7]. We too, exploit the same

technique, and use ScliLab's parallel processing toolbox.

SciLab allows parallel execution of the code as a

subroutine. It can be called as parallel_run(). The

parameters to be passed include the array to be used in

parallel, size of the array and the name of the function that is

to be executed. The function parallel_run(); will execute the

commands within the function, concurrently. User does not

have the flexibility to balance the load or to schedule threads

for different cores. All the scheduling is done by the SciLab

tool box. We use the function directly and the wavelet

calculation code is written within the subroutine. We

implement wavelet as the inner-product or 1-D wavelet as

the function. This is called from parallel_run();. We have

not used any scheduling algorithms or load balancing

techniques, but have relied on the inbuilt functions.

SciLab has the function etime() and getdate() to estimate the

time of execution. We use it at the beginning and end of our

function call (parallel_run();), the difference in time is noted

as the time of execution. This will ensure time of execution

is evaluated for the core of the algorithm (wavelet transform

calculation), and does not consider other bookkeeping

operations like reading the file. We run the program 10

times and the average of the time is taken as the time of

execution for our program. To ensure sufficient

computation time, we take the wavelet transform of a 2-D

signal (image). We send each row data(i,:); at a time for the

DWT function, followed by each column as data(:,i). This

will ensure enough computation time for the study of

performance.

We use the same code, without any modification to run on

different number of cores. Linux provides command to

enable or disable a core. As a superuser (root), executing

the command

echo 0 >/sys/devices/system/cpu/cpu1/online

will disable core-1. Changing cpu1 to cpu2, we can disable

core-2 and so on. Similarly echoing '1' (instead of 0) will

enable the specific core. Enabling and disabling the cores

thus, and not modifying the code for different cores will

ensure that the environment to execute the program remains

the same and hence, the measured time is accurate.

To test the performance, we also use the built-in dwt()

function, with the same Haar Wavelet. Performance of both

these are studied.

4. RESULTS and CONCLUSIONS

We studied the performance of the parallel algorithm for

three different sizes of images, namely 128x128, 256x256

and 512x512. For each image, we run the algorithm on

single, dual, three and four cores, by disabling the

appropriate number of cores. In each case, time of

execution is calculated as an average of 10 runs. This will

ensure a more realistic timings. The Results of this

experimentation are depicted in the graphs Fig.1-3 The

experiment is repeated for the built-in DWT function also,

and the results are plotted in Fig. 4-6. In all the graphs, X-

axis is the number

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 204

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

Figure-1 Time of execution for 128x128 data

1 2 3 4

0

0.5

1

1.5

2

Figure-2 Time of execution for 256x256 data

1 2 3 4

0

2

4

6

8

10

Figure-3 Time of execution for 512x512 data

1 2 3 40.0
4

0.0
4

0.0
4

0.0
4

Figure-4 Time of execution for 128x128 data using built-in

function

We see that speedup is not significant between 2-4 cores,

but it becomes significant when compared with single core

for different sizes of the inputs. However, there is no

significant improvement for different cores when we use

built-in function. Time taken by built-in function is

significantly less compared to our code. This may be due to

efficient usage of arrays and memory in the built-in

functions. Results of parallization is not as good as the one

reported by Swathi et.al.,[7]. The reason is the use of tools

Swathi uses OpenMP[8], which gives a flexibility for thread

creation, load balancing and sharing. However, our results

show that the DWT can be implement on multicore, using

SciLab also. Also built-in functions does not provide

significant improvement with multicore

Figure-5 Time of execution for 256x256 data using built-in

function

1 2 3 4

0.7

0.75

0.8

0.85

Figure-6 Time of execution for 512x512 data using built-in

function

ACKNOWLEDGEMENT

We acknowledge our sincere thanks to Dr Narasimha

Kaulgud for his relentless support and encouragement in this

endeavour.

REFERENCES

[1] www.scilab.org

[2] www.matlab.com

[3] http://bugzilla.scilab.org/show_bug.cgi?id=8361

[4] Oliver Rioul and Martin Vetterli, “Wavelets and Signal

processing”, IEEE Signal Processing Magazine, 10 (14-38),

1991

[5] I Daubechies “Ten lecture on Wavelets”, SIAM,

Philadelphia, 1992

[6] Ali N Akansu, Wouter Serdijn and Iwan Selesnik,

“Emerging applications of wavelets: A review”, Elseiver

Physical communication, 3, (1-18), 2010

[7] Swathi N, Spriha Deshpande and Narasimha Kaulgud,

Performance measure of multicore systems for orthogonal

transforms, Journal of ISoI, V45,N3, pp:60-63, March 2015

[8] www.openmp.org

[9] Michael J Quinn, “Parallel Programming”, McGraw-

Hill, New Delhi, 2003

http://www.openmp.org/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 205

BIOGRAPHIES

Aneeta S Antony has completed her

M.tech in Signal Processing from VTU

Belegavi and currently works as Assistant

Professor in NIE, Mysuru.

Anusha Danday has completed Mtech in

Communication Systems from Anna

University,Chennai. and currently works as

Assistant Professor in NIE, Mysuru.

Sneha Sara Jacob has completed her

Mtech in Electronics Design & technology

from NIT Calicut and currently works as

Assistant Professor in NIE, Mysuru.

Kavitha S S has completed Mtech in VLSI

Design and Embedded system from VTU

Belagavi and currently works as Assistant

Professor in NIE,Mysuru.

