
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 157

DISTRIBUTED FILE SYSTEMS USING INITIATIVE DATA

PREFETCHING FOR CLOUD COMPUTING

Apurva Vasudeo K
1
, Amulya K

2
, Kruthika P S

3
, Srinivasa H P

4

1,2,3
UG Students, Department of CSE, T. John Institute of Technology, Bengaluru, India.

4
Associate Professor, Department of CSE, T. John Institute of Technology, Bengaluru, India.

Abstract
In this project for cloud computing, prefetching of data concept is proposed on metadata servers in a multi-client environment.

The client file system does not interfere in the process of prefetching technique. The process is carried out by analysing the history

of the requests and then applying algorithms on them and fetches the relevant data which would be accessed by any of the clients

in the future. The information is stored on metadata server, through which client accesses the data. This is to achieve better

performance from storage servers rather than fetching the data from the cloud. In a distributed cloud environment all the clients

can access the information simultaneously, hence it enables parallel execution of programs as data is split into chunks of

information and stored in a hierarchical tree form of nodes.

Keywords: Data Prefetching, Fetching the Data, Cloud Computing.

--***--

1. INTRODUCTION

Distributed File System (DFS) are a system that permits

several organizations to organize many files. It allows the

clients to access information either to read, write, modify,

delete etc. There are many ways to share files in DFS but

each method is suitable only to a specific architecture

depending on the complexity or simplicity of the

application. In early 1980’s Sun’s Network File System was

developed, but before that people used sneakernet method.

This system had a lot of disadvantages and was unsuitable

for such an environment of multi-user. Many clients started

using FTP to share files but that also wasn’t an efficient

method as the files had to be copied from source computer

to a sever an in turn from server to a destination computer.

Therefore the users had to know the physical address of all

computers to which file sharing must be done. Later on, as

technology improved there was large number of Modern

Data centres with many computers having different storage

capacity. The Map reduce framework also showed great

performance with computation of applications in parallel.

Virtualization concepts allow multiple operating systems to

co-exist on same physical server and provide dynamic

resource allocation.

Since many clients can access the same files confidentiality

and integrity should be maintained for security issues.

Measures must be taken not to breach the important

information as users can share resources from anywhere

through any computer or device. The main characteristic of

cloud computing is scalability and elasticity of resources.

The idea of cloud computing is use storage; execute

complex or simple computations without any worries of how

these specially made development areas work internally.

2. EXISTING SYSTEM

In the system which is exists, the applications of the system

have many problems like how to send the data to other

system and where exactly to store the data. The most

common distributed file systems to deal with these kinds of

problems are the Hadoop file system which is a form of

Google file system. But the HDFS has two possible

problems. The first one is, management of almost all the

operations of all the data blocks in the file system is

dependent on a single node and this leads to critical

resources and in turn becomes the point of failure of the

system. The second problem is that, it is dependent on the

transmission control protocol to send data from one system

to another. TCP may not send the complete data at once

even though the links have the capacity to carry the

complete data. It sends packets of data at a time which leads

to under-utilization of the link and the receiver takes more

time to download the complete data.

3. PROPOSED SYSTEM

The proposed system uses a front end server which is made

up of light weight component to connect all the requests

from the client with many name nodes. This server helps to

distribute the load of one node to many other name nodes.

The aim of the proposed system is to use an effective

protocol to send data. The protocol used in the proposed

system can perform better than HDFS and GFS and it can

achieve utilization of full link and faster download times. To

achieve this we face a lot of complex problems like how to

send the data, store the data in real-time, performance

unpredictability, resizable storage, fast scaling for the

workloads which vary, bottlenecks during data transfer etc.

To overcome these problems the applications which are

storage intensive such as social networks and search engines

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 158

needs an effective, strong and scalable algorithms and

protocols. The large distributed systems such as Face book,

Yahoo and Google uses the GFS or HDFS algorithm. Only

one name node is used in these file systems, keeps a list of

all the files and their metadata in the cloud. This node is

called as the i-node. This single i-node has to manage all

the file related operations such as open, copy, move, update,

delete etc. This may lead to a bottleneck of resources due to

its un-scalable property. The use of this node may also lead

to the point of failure of the HDFS. The file system goes

offline when the name node goes down and when the name

node comes back it has to perform all the operations again.

This process of replaying can take half an hour for a big

cluster. The data can also be accessed by unauthorized users

through network interfaces which affects the security of the

data.

In the proposed system we use a better distributed

architecture with frontend serve which use light weight

components and is much more scalable than the HDFS/GFS.

We also use a protocol which efficiently transfers the data

and route the data. It also leads to better link utilization than

TCP used in the existing system and also achieves faster

data transfer time.

In the proposed system for cloud computing, prefetching of

data concept is proposed on metadata servers in a multi-

client environment. In this technique, the client file systems

do not interfere in the process of prefetching. But after

knowing the history of I/O accesses of the disk the server

used for storage can prefetch the data directly and send to

the appropriate client system. The proposed system uses

Random series and Sequential prediction algorithm to

estimate the I/O access which occurs in future.

In this technique the client file system has to only piggyback

their information of the particular I/O requests to the server

used for storage. The servers used for storage have to login

the I/O requests of the disk and has to classify the access

patterns of the I/O requests. After this we can use the two

algorithms to predict I/O access which may occur in the

future and carry out the process of prefetching. Then the

servers used for storage can send the data that was

prefetched to the appropriate client machine and satisfy their

future requests.

The access patterns are divided into two types sequential

and random access. In order to estimate the future I/O

requests of the disk that belongs to different access patterns

as correctly as possible these algorithms are used. The

proposed system yields better I/O performance.

Even though the prefetching scheme puts an extra load on

the servers used for storage as they have to predict the I/O

accesses required in the future by knowing the history of the

I/Os of the disk. But it is a good to build a system for

storage to improve the I/O performance of the system. This

helps the client system which has limited hardware and

software resources. This scheme can be used in multi-client

file system for mobile cloud computing where many smart

terminals and tablets are used. This scheme can be employed

as a backend system for storage which may have few client

systems that have limited resources. The file system on the

client will not perform any work like logging the I/O events

or predicting the I/O requests required in future. Spreading

workload to different and most appropriate systems is more

flexible. Extensible to add resources and software as needed.

4. SYSTEM ARCHITCTURE

This paper proposes a prefetching method in cloud

computing to increase the performance of I/O. Few

assumptions are made in order to propose few mechanisms

of prefetching.

Fig 4.1 System Architecture

4.1 Assumptions

For the proposed system to work, few assumptions must be

met, the proposed prefetching methods can be used only if

the cloud has client systems which have limited resources

and the mechanisms are good for read intensive apps

because these apps will have less access patterns and the

same patterns keep reoccurring.

4.2 Piggybacking

Many proposals made these days concentrated on retrieval

of I/O taking place in CFS,which we can use for studying

the access patterns.Without pertinent details about the

retrieval of I/O it is strenuous to set up the connection

between apps and DFS.Here,data will be prefetched already

from memory to the server and after studying the access

patterns this data will be sent to the CFS for fulfilling the

app’s requests. The information is piggybacked by the CFS

and the server will maintain the information and will record

all the events.This information is nothing but the metadata.

4.3 CFS

The main aim of this CFS is that it provides interface to the

apps. It concentrates on requesting the metadata to the server

which holds the metadata.It also collects data of client and

piggybacks this data to I/O request.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 159

 Fig 4.2 Module Description of CFS

4.4 MDS

The object’s metadata and the servers used for storage are

handled by and monitored by this metadata server and also

the commands to create or remove the stripes on the servers

are issued by this metadata server.

Fig 4.3 Module Description of MDS

4.5 Data Access

Data can be accessed either in sequential manner or random

manner. An algorithm is used to determine how data is

accessed. This algorithm has a set of addresses access which

are referred within a set of time.

Fig 4.4 Module Description of Data Access

4.6 Sequential Prediction (SP)

This algorithm is used to make sure that the data access is

sequential or not. This algorithm monitors the history of the

block access and it checks for the recent events which

occurred after a given setoff time. Also the access events

that occurred previously can be limited by this algorithm.

We define a certain threshold value and if all the access

events is greater than the threshold value,then the system

will verify and decide that the access request is a part of the

sequential pattern.

Fig 4.5 Module Description of SP

4.7 Prefetching

The read requests are maintained by the server used for

storage. The server used for storage usually issues read

request by studying the history of read operations in

advance.This data which is prefetched is sent to the CFS.

Fig 4.6 Module Description of Prefetching

4.8 Analysis of Algorithm

Error on varaying workloads is analysed in this paper.The

total number of read operations and the total number of

prediction hits are recorded and saved in storage server.All

read operations cannot be predicted by our system.

5. CONCLUSION

In this paper, we have suggested a mechanism for

prefetching of data in DFS which is evaluated and

implemented in cloud envirnoment. The I/O access is

analysed by the server used for storage so that the data is

fetched in advance and the future application request can be

satisfied by the CFS. And this can be implemented by

making use of access patterns and sending the data which is

prefetched to CFS.The information about CFS will be

piggybacked and then sent to server nodes from client nodes

which resuts in reduction of network latency and work

traffic increasing the efficiency.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Special Issue: 04 | ICESMART-2016 | May-2016, Available @ http://www.esatjournals.org 160

REFERENCES

[1] J.Gantz and D.Reinsel. The Digital Universe in 2020:Big

Data, Bigger Digital Shadows, Biggest Growth in the Far

East-UnitedStates.

[2] J. Kunkel and T. Ludwig, Performance Evaluation of the

PVFS2Architecture, In Proceedings of 15th EUROMICRO

InternationalConference on Parallel, Distributed and

Network-Based Processing,

PDP ’07, 2007

[3] S. Ghemawat, H. Gobioff, S. Leung, The Google file

system, InProceedings of the nineteenth ACM symposium

on Operatingsystems principles (SOSP ’03), 2003.

[4] IO Signature Plus (IOSIG+) Software Suite[Accessed on

Nov 2012].

[5] UMass Trace Repository: OLTP Application

I/O[Accessed on Jan 2014].

[6] MobiDFS: Mobile Distributed File System[Accessed on

Nov 2014]

[7] E. E. Marinelli. Hyrax: Cloud computing on mobile

devices usingmapreduce. CMU, Tech. Rep., 2009.

[8] P.Sehgal, V.Tarasov, E.Zadok. Evaluating Performance

and Energyin File System Server Workloads. The 8th

USENIX Conferenceon File and Storage Technologies

(FAST ’10) pp.253-266, 2010.

[9] V. Tarasov, S. Bhanage, E. Zadok, et al. Benchmarking

file systembenchmarking: It is rocket science. In

Proceedings of HotOS XIII,2011.

[10] N.Nieuwejaar and D. Kotz. The galley parallel file

system and Parallel Computing.

