
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 76

AN OPTIMUM SERVICE BROKER POLICY FOR SELECTING DATA

CENTER IN CLOUDANALYST

T. Menakadevi
1
, N. Devakirubai

2

1
Professor, Department of Electronics and Communication, Adhiyaman College of Engineering, Hosur, India

2
Asst. Professor, Department of Computer Science and Engineering, Jayam College of Engineering and Technology,

Dharmapuri, India.

Abstract
Routing request to proper destination is a key consideration in distribution networks. Service broker policy is the essential logic,

which functions with this intention. Choosing the right data center is the promising task for service broker policy. The simulation

tool CloudAnalyst contains few service broker policies with which request is routed to the appropriate destination data center.

Random selection of data center in these service broker policies deteriorates the efficiency of response time parameter. In this

paper, a new service broker policy is proposed which optimally routes the request to a data center and overcomes the issues

raised by random selection of a data center.

Keywords: Cloud Computing; Cloudanalyst; Service Broker Policy; Data Center; Service Proximity Service Broker;

Best Response Time Service Broker.

--***--

1. INTRODUCTION

The Clouds are high configured infrastructure that delivers

platform, infrastructure and software as a service. Cloud

applications have two significant parameters for cogitation:

response time and processing time. It is a tedious task for a

researcher to scale the parameters in the real cloud platform

due to the geographical distribution of cloud servers and its

users. CloudAnalyst is a simulation application that

performs the cloud platform functionalities like service

brokering and load balancing [1].

CloudAnalyst is the extension of CloudSim. Since it is a

GUI tool, it helps the user to focus more on simulation

rather than on programming complexities. It generates

reports on the parameters like, response time, processing

time, cost of data transfer and Virtual Machine (VM) cost.

The traffic routing between the data centers and the user

bases are accomplished by service brokers. Service

brokering sends the request of users to the exact destination

and balances the workload among the nodes in Cloud [2].

CloudAnalyst has three service broker policies, all with their

own advantages and disadvantages. In all the service

brokers, data centers are selected in a random manner.

Random selection of datacenters does not always identifies

the right datacenter, it selects datacenters which is not cost

effective. To overcome the issue raised by random selection

of a data center, a new service broker policy is framed in

this paper. Also, while selecting a destination data center,

latency, and bandwidth are considered in the proposed

algorithm. In all the other service broker policies, only

latency is considered to select a destination data center.

Further, the paper is arranged as: Section 2 reviews about

the related work. Section 3 details about the existing service

broker policies. Section 4 illustrates the proposed service

broker policy. Section 5 analyses the simulation results.

Section 6 concludes and states the future work.

2. RELATED WORK

T-broker, a trust-aware service brokering system is

presented in [3]. T-broker have to trust models: hybrid and

adaptive, to calculate the overall trust degree of service

resources. This work matched the multiple cloud services

with the user requests. A service broker policy based on

Round-Round algorithm with priority is proposed in [4].

They modified the closest data center service broker policy

in a way, when there are two or more data centers in the

proximity list, then based on the usage of each data center, a

priority number is assigned to it. This priority list is used

when selecting a data center with Round Robin scheduling.

A service broker policy named as dynamically reconfigure

peak time policy is framed in [5]. This policy senses the

availability of data centers in the nearest region. If the data

center in the nearest region is busy with handling some other

request, then the user request is redirected to another data

center in the next nearest region which is in off peak time.

The work attempted to reduce the data center processing

time and cost by sharing the load to other data center in off

peak time.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 77

Table-1: A Comparison on the Existing Service Broker Policies.

S.

No

Existing Service Broker

Policy
Mechanism Used Objective

1
Service proximity based service

brokering [2]

Closer datacenter is selected using

latency information.

Reducing response time, datacenter

processing time, data transfer and

VM cost.

2
Performance optimized based

routing [2]

The closer and quickest datacenter is

selected.

Reducing response time, datacenter

processing time, data transfer and

VM cost.

3
Dynamically reconfigurable

routing [2]

The number of VMs are increased or

decreased based on requirement.

Reducing response time, datacenter

processing time, data transfer and

VM cost.

4
Trust aware service brokering

system [3]
Light-weight feedback mechanism.

Matching multiple cloud services to

user requests.

5
Priority based Round Robin

service brokering [4]
Round Robin algorithm Efficient resource utilization.

6
Cost based datacenter selection

policy [5]

User requests were redirected to next

neighboring datacenter.
Reducing the datacenter workload.

7
Cost-effective datacenter

selection [6]

Most cost effective datacenter was

selected.
Reducing VM and datacenter cost.

8 Efficient datacenter selection [7] Weighted round robin algorithm.
Reducing datacenter request service

timing

9 Efficient service brokering [8]
Datacenter is selected based on its

resource handling capacity

Reducing response time, datacenter

processing time.

10
Future load aware service broker

policy [11]

Datacenter load is calculated with

genetically weight optimized Jordan

neural networks.

Reducing datacenter processing time.

The service proximity based routing is modified in [6], by

selecting the cost effective data center within the same

region. The total virtual machine cost in CloudAnalyst is

considered as the main parameter. Service proximity based

routing is implemented in another way in [7]. When there is

more than one data center within the earliest region, then

selection of the data center is based on the processing

capacity of each data center.

The service proximity based routing‟s random selection

strategy is revised in [8]. Since the data center with many

numbers of physical machines can handle many numbers of

requests, instead of selecting random data center, the

multiple data center in the earliest data region is selected

based on the number of physical hardware in each data

center.

The three service brokers are measured up in [9] and [10].

The comparison is based on the parameters: average

response time, average data center processing time and total

cost. Optimize response time is concluded as the prime

choice among all the three polices [9]. A near future load of

a data center as a parameter is considered in [11] while

routing a request to a data center. The future load of a data

center is predicted using genetically weight optimized

Jordan neural network.

Cloud simulators, Cloudsim and CloudAnalyst are

compared and analysed in [12]. They reviewed the service

broker policies, their issues and the available solutions.

In [13], the optimized response time service broker policy is

evaluated with the Throttled load balancing algorithm. The

analysis was done with different experimental setups and

finally concluded that the Throttled load balancing

algorithm produces required efficiency in results when

compared with other load balancing algorithms. The various

Service Broker policies discussed are compared in Table-1.

The predecessor of CloudAnalyst is CloudSim, which is

poor in presentation and graphical outputs. CloudAnalyst

differs from CloudSim, in delivering the graphical results,

separating the simulation environment from programming

environment. With this quality, the CloudAnalyst is able to

produce output for different parameters or for the same set

of parameters.

The introduction about CloudAnalyst is completely dealt in

[1] and discussed about the features, design of the simulator

and illustrated the optimal configurations and load balancing

algorithms about service brokers. In [2], the main objectives,

features and design of CloudAnalyst are dealt. The various

case studies proved that this tool best suits for cloud

computing environments.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 78

Fig-1: CloudAnalyst entities and their interaction

CloudAnalyst environment has three entities: Cloud

information service, service broker and data center. The

interactions between these entities are depicted in Fig-1.

Cloud information service is a kind of registry that holds the

information about data centers. There can be any number of

data centers in the cloud environment and each data center

need to be registered with a cloud information service.

As depicted in Fig.-2, Service broker communicates with

cloud information service and retrieves information about

data centers. The service broker policy routes the user base‟s

request to the suitable data center. Data center controller and

VM load balancer, involves when the user request reached a

particular data center for processing. VM load balancer

helps to distribute the workload among the available VMs.

Fig-2: Request Routing Through Service Broker

Each data center comprises of physical machines, which in

turn have processors, storage devices, memory and internal

bandwidth. A data center will have a number of hosts and

each host will be with different hardware configurations.

Host contains many virtual machines. The users of cloud

were grouped in user base. The user base can contain a

single user or number of users [1].

3. SERVICE BROKER POLICY IN

CLOUDANALYST

The six continents in the world are considered as six regions

in CloudAnalyst. The user bases and data centers are

geographically scattered over the six regions [1]. Request

from a user base need to be routed to a data center, where it

can get serviced. This process decides the efficiency in

terms of response time, data center processing time and cost.

Service broker policy plays an important role in achieving

these parameters with efficient values. There are three

service broker policies involved in CloudAnalyst: closest

data center policy, optimize response time policy and

dynamically reconfigurable routing with load balancing.

The first policy, Closest data center policy is service

proximity based routing algorithm [2]. As its name adverts,

the earliest data center is chosen for servicing the request.

The proximity list of data centers is prepared in terms of

least network latency. When there is more than one closest

data center, then from the proximity list a data center is

chosen randomly. The optimize response time policy is the

performance optimized based routing and an extension of

closest data center policy [2]. Initially, the closest data

center is detected. If the response time of the closest data

center starts degrading, then the data center with better

response time at that particular time is searched and it is

tagged as quickest data center.

If the closest data center is the quickest data center, it will be

selected as the destination data center. If the closest data

center and the quickest data center is not the same, then the

selection of a data center among quickest and closest will be

done randomly by balanced chance to both of the

datacenters. The third service broker policy is the

dynamically reconfigurable routing with load balancing,

which is also the extension of closest data center policy and

works with same routing logic [2]. Additionally, this service

broker policy is assigned with the job of balancing the

workload by increasing or decreasing the number of virtual

machines in the data center.

4. PROPOSED OPTIMUM ROUTING SERVICE

BROKER POLICY

The proposed optimum routing service broker policy adapts

the optimize response time policy and revise the practice of

selecting the data center randomly. The random selection of

datacenter leads to the threat of selecting a data center with

higher cost, higher response time, and higher processing

time [4]. Also, there is a possibility of unbalancing the load

distribution among data centers. In CloudAnalyst, the

latency and bandwidth between regions are given as a

parameter set, which can be represented in two dimensional

form, latency (L) and bandwidth (B). Delay in time between

the request from the user and the response by a service

provider is latency, which is denoted in milliseconds. The

amount of data transmitted during a second is bandwidth,

which is usually denoted in bits per second.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 79

 Regions (Destination)

0 1 2 3 4 5

R
eg

io
n

 (
S

o
u

rc
e)

 0 d0,0 d0,1 d0,2 d0,

3

d0,

4

d0,

5 1 d1,0 d1,1 d1,2 d1,

3

d1,

4

d1,

5 2 d2,0 d2,1 d2,2 d2,

3

d2,

4

d2,

5 3 d3,0 d3,1 d3,2 d3,

3

d3,

4

d3,

5 4 d4,0 d4,1 d4,2 d4,

3

d4,

4

d4,

5 5 d5,0 d5,1 d5,2 d5,

3

d5,

4

d5,

5 Latency (L)

 Regions (Destination)

0 1 2 3 4 5

R
eg

io
n

 (
S

o
u

rc
e)

0 b0,0 b0,1 b0,2 b0,

3

b0,

4

b0,

5 1 b1,0 b1,1 b1,2 b1,

3

b1,

4

b1,

5 2 b2,0 b2,1 b2,2 b2,

3

b2,

4

b2,

5 3 b3,0 b3,1 b3,2 b3,

3

b3,

4

b3,

5 4 b4,0 b4,1 b4,2 b4,

3

b4,

4

b4,

5 5 b5,0 b5,1 b5,2 b5,

3

b5,

4

b5,

5 Bandwidth (B)

Algorithm 1

Proposed optimum routing policy

Input: Requesting user base

Output: Destination data center

Procedure getDestination(requesting user base)

1: DCList ← DataCenterIndex.get(region)

2: if DCList is not Null then

3: closestDC ← closestDataCenterPolicy(DCList)

4: endif

5: LeastEstResTime ← maximum value

6: for all DataCenters → DC do

7: LastRecResTime ← InternetCharacteristics.

getServieLatencies(DC) 8: NWdelay ←InternetCharacteristics.getTotalDelay()

9: if (LastRecResTime=Null) then

10: currEstResTime ← NWdelay

11: else

12: currEstResTime ← LastRecResTime+NWdelay

13: endif

14: if (currEstResTime< LeastEstResTime) then

15: LeastEstResTime ← currEstResTime

16: quickDC ← DC

17: endif

18: endfor

19: if (closestDC=quickDC) then

20: destination ← closestDC

21: else

22: min_lt_index←internetCharacteristics.getLowLt(

requestorRegion, latencyMatrix)
23: max_bw_index←internetCharacteristics.getHighB

w(requestorRegion, bwMatrix)

24: if (min_lt_index=max_bw_index) then

25: destination ←min_lt_index

26: else

27: resTimeLt←estResponseTime(requestorRegion,

min_lt_index)

28: resTimeBw←estResponseTime(requestorRegion,

max_bw_index)

29: if (resTimeLt< resTimeBw) then

30: destination ←min_lt_index

31: else

32: destination ←max_bw_index

33: endif

34: endif

35: endif

CloudAnalyst considers latency as the parameter to choose a

destination datacenter, whereas the proposed optimum

routing service broker policy choose the destination data

center, by considering both latency and bandwidth.

Algorithm 1 is used to implement the proposed policy.

Each source, destination pair of regions have the latency and

bandwidth values in any of the four combinations like, low

latency and high bandwidth (Fig-3), high latency and high

bandwidth (Fig-4), high latency and low bandwidth (Fig-5)

and low latency and low bandwidth (Fig-6).

Fig-3: Low latency and high bandwidth

Fig-4: High latency and high bandwidth

N
o

.
o

f
b
it

s
tr

an
sm

it
te

d

(B
an

d
w

id
th

)

Delay Time (Latency)

N
o
.

o
f

b
it

s
tr

an
sm

it
te

d

(B
an

d
w

id
th

)

Delay Time (Latency)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 80

Fig-5: High latency and low bandwidth

Fig-6: Low latency and low bandwidth

By observing Fig-3 to Fig-6, the source and destination pair

of regions with low latency and high bandwidth is highly

desirable (Fig-3). Our proposed policy finds the minimum

latency node from the requestor region s,

𝒅𝒔,𝒋 = min{𝑫𝒋}

Where j ranges from 0 to 6 and finds maximum bandwidth

node from requestor region s,

𝒃𝒔,𝒌 = max{𝑩𝒌}

Where k ranges from 0 to 6. If j=k then, j is choosen as the

destination region as it has the low latency and high

bandwidth. When j≠k, then estimate the response time of

requestor region s to destination region j and requestor

region s to destination region k. If response time of the pair

(s,j) is less than (s,k), then j is choosen as destination region

or else k is choosen as destination. The response time is

estimated as

latency + (𝒄𝒍𝒐𝒖𝒅𝒍𝒆𝒕 𝒅𝒂𝒕𝒂 𝒔𝒊𝒛𝒆 𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉).

5. RESULTS AND DISCUSSION

CloudAnalyst is used to assess the proposed optimum

routing policy. It is implemented with a graphical user

interface, which helps users to experiment quickly. Fig-7

depicts the visualized output of the simulation, through

which the data center and user base distribution among the

six regions can be seen. Also, it depicts the communication

between a particular user base and data center, along with

the response time. The „configure simulation‟ screen helps

to set the parameters related to user base, data center and

grouping factors.

The „define internet characteristics‟ screen is used to set the

parameters related to latencies and bandwidths. These

parameters can be executed with three different service

broker policies and with the proposed service broker policy.

Three load balancing policies are incorporated in this tool:

Round robin, equally spread current execution load and

Throttled.

The configuration screens of this tool hold the complete list

of all required cloud environment parameters. The initial

configuration parameter setup is listed in Table-2. The

parameter setups can be saved and reloaded for further

simulation. The proposed optimum routing service broker

policy is analyzed with different set of parameters.

Fig-7: Simulation Screen

Table-2: Initial Configuration Parameters

SNo Parameters Values

User base Configuration

1 Name UB1

2 Region 2

3 Requests/User/Hr. 60 No.s

4 Data size/Request 100 bytes

5 Peak hours start 3 (GMT)

6 Peak hours end 9 (GMT)

7 Avg. peak users 1000 No.s

8 Avg. off peak users 100 No.s

Application Deployment Configuration

1 Data Center DC1

2 No. of VMs 5 No.s

3 Image Size 10000 bytes

4 Memory 512 MB

5 Bandwidth 1000 Mbps

Data Center Configuration

1 Name DC1

2 Region 0

N
o
.

o
f

b
it

s
tr

an
sm

it
te

d

(B
an

d
w

id
th

)

Delay Time (Latency)

N
o

.
o

f
b
it

s
tr

an
sm

it
te

d

(B
an

d
w

id
th

)

Delay Time (Latency)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 81

3 Architecture X86

4 OS Linux

5 VMM Xen

6 Cost/VM $0.1

7 Memory Cost $0.05

8 Storage Cost $0.1

9 Data Transfer Cost $0.1

10 Physical HW units 2 (No.s)

Other Configurations

1 User grouping factor 10 No.s

2 Request grouping factor 10 No.s

3
Executable instruction length

/ Request
100 bytes

5.1 Case 1: Multiple User Base and Data centers

Table-3 shows the parameter settings for the multiple user

base and data centers. In this case, there are four user bases

from different regions. Five data centers are configured in

different regions and with different number of virtual

machines. In CloudAnalyst, user base is a term coined to

represent the group of users.

Table-3: Case 1 Configuration Parameters

SNo Parameters Values

User base Configuration

1 Name UB1, UB2, UB3,UB4

2 Region 0,1,2,3

Application Deployment Configuration

1 Data Center DC1,DC2,DC3,DC4,DC5

2 No. of VMs 1,2,3,4,5 (No.s)

Data Center Configuration

1 Name DC1,DC2,DC3,DC4,DC5

2 Region 0,5,4,3,0

3 Physical HW units 1,1,1,1,1 (No.s)

Table-4: Case 1 Results Comparison Table

Service Broker Policy
Overall Response

Time (ms)

Closest datacenter 379.94

Reconfigure dynamically with load

balancing
379.70

Optimize response time 378.06

Proposed optimum routing policy 149.78

Fig-8: Case 1 Simulation Results

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 82

Fig-9: Case 1 Overall response time comparison

Fig-8 is the simulation results for Table-3 parameters. The

value found by our proposed policy is compared in Table-4

and the same was visualized in Fig-9. The proposed service

broker policy shows 60% of betterment in response time

compared to other three service broker policies.

5.2 Case 2: Modified Grouping Factors and

Instruction Length

The user base is the group of users. The traffic generated by

this group of users is treated as a single cloudlet. The

number specified in this parameter, user grouping factor in

user base, is the number of users to be grouped. Request

grouping factor in data centers, specifies the number of

requests to be grouped for processing in a single VM.

Executable instruction length per request, denotes the

execution length of the instruction. Table-5 lists the

modified grouping factors and instruction length per request.

Table-5: Case 2 Configuration Parameters

SNo Parameters Values

Other Configurations

1 User grouping factor 1000 No.s

2 Request grouping factor 100 No.s

3
Executable instruction length /

Request
250 bytes

Table-6: Case 2 Results Comparison Table

Service Broker Policy
Overall Response

Time (ms)

Closest datacenter 382.52

Reconfigure dynamically with load

balancing
382.52

Optimize response time 380.5

Proposed optimum routing policy 151.33

Fig-10: Case 2 Simulation Results

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 83

Fig-11: Case 2 Overall response time comparison

The simulation results for Table-5 parameters is put on view

in Fig-10. The overall response time value attained through

the proposed policy is stated in Table-6 and graphically

compared in Fig-11. When measured up with other three

service broker policies, the overall response time is reduced

about 60% by the proposed policy.

5.3 Case 3: Real Time Value of Grouping Factors

In real cloud applications, each request from each user is

executed individually, CloudAnalyst groups the requests as

the individual traffic might slack the performance of the

simulation. Table-7 have the simulation parameter values

along with the real time value for grouping factors.

Table-7: Case 3 Configuration Parameters

SNo Parameters Values

Other Configurations

1 User grouping factor 1 No.s

2 Request grouping factor 1 No.s

3
Executable instruction length /

Request
1000 bytes

Table-8: Case 3 Results Comparison Table

Service Broker Policy
Overall Response

Time (ms)

Closest Datacenter 378.91

Optimize Response Time 378.90

Reconfigure dynamically with load

balancing
378.88

Proposed optimum routing policy 150.14

Fig-12: Case 3 Simulation Results

Table-7 lists the parameters with the real time grouping

factors. The simulation results are displayed in Fig-12. The

overall response time value obtained through the proposed

policy is stated in Table-8 and compared graphically in

Fig-13. 60% of betterment are evident by our proposed

policy, while comparing with other three service broker

policies.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 09 | Sep-2016, Available @ http://ijret.esatjournals.org 84

Fig-13: Case 3 Overall response time comparison

It is observed that the proposed policy shows an

improvement in the overall response time. Thus the issue

raised due to random selection of data center has been

solved by the proposed algorithm in which random selection

is not involved in any part of the algorithm.

6. CONCLUSION

The proposed optimum routing policy works better in terms

of response time, by avoiding the random selection of a data

center and by considering the bandwidth and latency

parameter, to find the destination. The proposed policy is

analyzed, first, with data centers and user bases at different

region, secondly, with modified values in user grouping

factor in user bases and request grouping factor in data

center.

Finally, with the real time value of both, user grouping

factor in user bases and request grouping factor in data

center. In all the cases, the proposed optimum routing policy

shows 60% of improvement in response time, when

compared with other three service broker policies. The

future scope of this work is to minimize the data center

processing time, load balancing the requests among all the

data centers and to reduce the virtual machine cost and data

transfer cost.

REFERENCES

[1] Bhathiya Wickremasinghe and Rajkumar Buyya.

“CloudAnalyst: A cloudsim-based tool for modelling

and analysis of large scale cloud computing

environments,”, 2009, MEDC Project Report.

[2] Bhathiya Wickremasinghe, Rodrigo N Calheiros, and

Rajkumar Buyya “CloudAnalyst: A cloudsim-based

visual modeller for analysing cloud computing

environments and applications,” In Advanced

Information Networking and Applications (AINA) 2010

24th IEEE International Conference on, pp 446-452,

2010, IEEE.

[3] Xiaoyong Li; Huadong Ma; Feng Zhou and Wenbin

Yao, “T-Broker: A Trust-Aware Service Brokering

Scheme for Multiple Cloud Collaborative Services”,

IEEE Transactions on Information Forensics and

Security, Vol. 10, No. 07 , Jul 2015, pp. 1402 – 1415.

[4] Rakesh Kumar Mishra, Sandeep Kumar, Sreenu Naik

B, “Priority based Round Robin Service Broker

Algorithm for CloudAnalyst”, Advance Computing

Conference (IACC), Pages 878-881, Feb 2014 IEEE

International.

[5] Rekha PM, Dakshayini M. “Cost based data center

selection policy for large scale networks,” Proceedings

of 2014 International Conference on Computation of

Power, Energy, Information and Communication

(ICCPEIC); Chennai.2014. pp. 18–23.

[6] Dhaval Limbani and Bhavesh Oza, “A Proposed

Service Broker Strategy in CloudAnalyst for Cost

Effective Data Center Selection,” International Journal

of Engineering Research and Applications, India, Vol.

2, Issue 1, Jan-Feb 2012, pp.793-797.

[7] Deepak Kapgate, “Efficient Service Broker Algorithm

for Data Center Selection in Cloud Computing,”

International Journal of Computer Science and Mobile

Computing, Vol. 3, Issue 1, Jan 2014, pp. 355-365.

[8] Kunal Kishore and Vivek Thapar, “An Efficient

Service Broker Policy for Cloud Computing

Environment,” International Journal of Computer

Science Trends and Technology, Vol. 2, Issue 4, Jul-

Aug 2014, pp. 104-109.

[9] Mandeep Kaur and Verender Singh Madra,

“Performance Evaluation of Virtual Machines using

Service Broker Policies in Cloud Computing,”

International Journal of Science and Research, Vol 4,

Issue 7, Jul 2015, pp. 344-347.

[10] Mandeep Kaur and Verender Singh Madra, “A review

on Cloud Service Broker Policies,” International

Journal of Computer Science and Mobile Computing,

Vol 4, Issue 5, May 2015, pp. 1077-1081.

[11] Radhakrishnan. A and Kavitha. V, “Future Load Aware

Service Broker Policy for Infrastructure Requests in

Cloud,” Journal of Theoretical and Applied Informatio

n Technology, Vol. 67, Issue. 2, Sep 2014, 345-352.

[12] Hetal V. Patel and Ritesh Patel, “CloudAnalyst: An

Insight of Service Broker Policy,” International Journal

of Advanced Research in Computer and

Communication Engineering, Vol. 4, Issue 1, Jan 2015,

pp. 122-127.

