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Abstract 
It is well known that design loads vary randomly during equipment operations. Similarly, material properties such as yield 

strength, tensile strength, fatigue strength, etc. are random variables. Design analytical models are approximations of reality and 

failure mode models are also approximations. Consequently, design solutions are not exact. Practical design must therefore, 

consider the random nature and statistical variability of design parameters. Reliability-based design models are developed to 

provide practical design methods. This paper develops a lognormal reliability-based design model that can be coded in Excel 

Spreedsheet. Two design examples are considered in demonstrating the application of the formulated model. In the first example, 

our result differs from the result from [7] by 0.9% on the conservative side. The weight of the beam in the second example differs 

from [9] by 14.53% positively for a reliability target of z = 3. This variance is largely due to differences in reliability targets. 

When the beam size is adjusted to closely match the reliability levels of [9], the weight of the beam becomes 1.4% lower for our 

model. Therefore the results from our reliability model give comparable but slightly conservative and realistic solutions. 
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1. INTRODUCTION 

In engineering design, parameters such as loads, material 

properties, component geometry, manufacturing precision, 

service environment, and product usage are subject to 

variability [1, 2]. In order to accommodate variability in 

design parameters and analytical models, probabilistic 

design methods are used. When quality, reliability, and 

safety are paramount, probabilistic design becomes the 

preferred method desired [3]. According to Wang [1], 

reliability-based design is the most robust and economical 

design when design parameter statistics are well defined. 

When means and or standard deviations of design 

parameters have uncertainties, reliability-based robust 

design is useful in minimizing the impact of such 

uncertainties. 

 

The use of probabilistic design methods requires some 

appropriate probability density distribution [4].  Commonly 

used probability density distributions in mechanical and 

structural designs are normal, lognormal, and Weibull 

distributions.  The beta and Gumbel (type 1 extreme value) 

distributions are occasionally applied. However, the 

Weibull, beta, and Gumbel distribution functions do not 

lend themselves to closed form solutions like the normal or 

lognormal distributions. Design models generally have sums 

and products of the relevant parameters.  The sum of 

variates from any distribution tends asymptotically to 

approach normal and the sum of normal variates is normal.  

The products and quotients of lognormal variates are 

lognormal.  Real powers of a lognormal variate are 

themselves lognormal. Products of variates from any 

distribution tend asymptotically to approach lognormal. The 

multiplication of variates that have normal distribution 

yields results that tend to be lognormal in distribution [5]. 

The lognormal probability density function is appropriate 

for random quantities representing the product of 

independent random variables and like the normal 

probability density function; it is applicable to the sum of 

random variables. 

 

Hess et al. [6] suggested that the lognormal probability 

density function is appropriate for yield strength for steels 

used in ship building.  A chi-square goodness of fit test at 

95% confidence level on a histogram of 1000 ultimate 

tensile strength tests of 1020 steel did not reject the null 

hypothesis of lognormality [5].  Fatigue strength data are 

very often described with lognormal probability density 

function [4, 7]. The lognormal distributions are frequently 

used for material properties and fatigue lives [8]. A 

lognormal probability density function may be assumed for 

the Young’s modulus on the basis of its limitation to non-

negative values [6]. Similarly, the Poisson’s ratio may be 

associated with the lognormal probability density function. 

Castillo et al. [9] based their design study of a crane on the 

mixed frequency distributions of Gumbel and lognormal for 

design parameters.  Lu, He, and Zhang [10] used the 

lognormal probability density function for the robust design 

of an arbor. Lognormal probability density function is 

typically adopted for load variable in the analysis of ship 

structural reliability or random variables that always take 

positive values [11]. Histograms of data from many 

manufacturing processes exhibit the “bell-shaped” pattern of 

the normal distribution [12]. Component and assembly 

dimensions are positive numbers, so the lognormal 

probability density function is equally an appropriate choice 

for dimensional variables. 

 

The lognormal probability density function can be used 

where the normal probability density function is used. It is 

somewhat more accurate compared to the normal probability 

density function [13]. From the cited references above, it 

may be concluded that the lognormal probability density 
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function is, in most cases, a good approximation for design 

capacity models, mechanical strengths or capabilities, load, 

and component dimensions. Therefore, from the perspective 

of accuracy and universality, the lognormal probability 

density function appears to be a strong candidate of choice 

for probabilistic design and more attractive than the normal 

probability density function. 

 
Most probability density function can be summarized by 
dominant parameters and the most common parameters are 
the mean and variance or standard deviation. The cov or 
COV is the ratio of standard deviation to the mean value. It 
is a dimensionless parameter and is a particularly useful 
measure of uncertainty because it can be used to summarize 
the variability of a group of materials and equipment in an 
industrial sector [13, 14].  A small uncertainty would 
typically be represented by a cov of 0.05 while a 
considerable uncertainty would be indicated by a cov of 
0.25 [15].  A variable with a zero value cov reduces to a 
deterministic parameter.  Thus the cov may be considered as 
a quality parameter and could be used in the selection of 
material vendors or suppliers in some other design and 
manufacturing business transactions 
 
Deterministic design traditionally uses a safety or design 
factor to accommodate uncertainties in design parameters.  
A safety factor is subjectively assigned in practice so this 
approach does not provide a logical basis for addressing 
uncertainties or variability.  With the safety factor method, 
the level of reliability cannot be assessed quantitatively; 
therefore the safety margin in a design is practically 
unknown.  Hence this approach can lead to over-design and 
under-design issues.  The globalization of the economy and 
technology and the need to assure consumer safety are 
rendering this approach uncompetitive. 
 
The goal of this study is to develop a lognormal reliability 
design model that can be used in component design. 
Because the lognormal probability function provides closed 
form solutions and can be more accurate than the normal 
probability function, it can be potentially used in component 
design when high reliability is desired. The design 
parameters are assumed to have lognormal probability 
density function and the uncertainty associated with each 
design parameter is estimated using sensitivity analysis of 
the first order Taylor’s series expansion. This approach 
reduces the usually difficult and expensive probabilistic and 
sensitivity analysis in reliability-based and optimization-
based designs into algebraic equations that can be coded in 
Spreadsheet programs such as Microsoft Excel. The need for 
highly specialized skills and advanced mathematical 
analysis can, therefore, be minimized at the initial or 
preliminary design stages. Both the use of general purpose 
Spreadsheet programs and lower skilled design personnel 
can lead to cost savings in design projects. 

 

2. A LOGNORMAL RELIABILITY MODEL 

The lognormal reliability model is summarized in this 

section. A detail presentation of the development of the 

model is in the Appendix. Please refer to it if in doubt of any 

relationship summarized here. 

Consider a capacity model of the form: 

 

,...),,( 321 xxxfCM   (1) 

 

,...),,( 321 xxxCM f    (2) 

 

When design capacity models are evaluated using mean 

values of significant parameters, the expected result has a 

reliability of 50%, which corresponds to unit normal variate 

of 0. Increased reliability needs higher values of the unit 

normal variate. 

 

The standard deviation of CM can be estimated using 

sensitivity analysis of the first order Taylor’s series 

expansion. This approximately given by: 
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The cov of CM  is: 
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Now consider a random variable that is a sum of some 

independent random variables. That is: 

 

.....)( 321 xxxfCM   (5) 

 

Applying the rules of Eqs. (2), (3), and (4) to Eq. (5), we 

have: 
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Next consider a random variable that is a product of 

independent random variables: 
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Applying the rules of Eqs. (2), (3), and (4) to Eq. (6), we 

have: 
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Specific forms of relationship between design parameters in 

Eq. (2) are dependent on the type of failure under 

consideration. Most practical design capacity models 

generally consist of a combination of Eq. (6a) and Eq. (8a). 
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Successive application of Eqs. (6b) and (8b) can help in 

deducing the covs of design capacity models by inspection. 

 

Every component in an assembly or sub-assembly has a 

limit in its ability to resist imposed load. This limit is here 

called “mechanical capability” which is the maximum load 

capacity of component. Load is construed in generic term 

that may mean axial force load, lateral force load, bending 

moment load, and twisting moment (torsional) load. Design 

loads can be determined by constructing load diagrams such 

as axial force diagram, shear force diagram, bending 

moment diagrams, etc. A mechanical capability may be the 

yield strength, tensile strength, fatigue strength, critical 

lateral deflection, critical torsional deformation, critical 

axial deformation, critical frequency, etc. of a component. 

 

Suppose we associate MC  with a mechanical capability FC  

that has statistical parameters CF and CF as mean and 

cov, respectively. We may define a random capability ratio 

as: 

 

M

F

C

C
n   (9) 

 

The reliability factor is defined as: 
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When FC  and MC  are assumed to have lognormal 

distributions, n will have a lognormal distribution too. In 

the Appendix, a conservative standard deviation of n is 

proposed and from Eq. (A7): 

 

 )1)(1( 22
CFCMz Ins    (11) 

 

Failure of a component occurs if 1n and the unit normal 

variate for failure is from Eq. (A11): 
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The design reliability for  z ≥ 1.28 or Rz ≥ 90% is: 
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3. DESIGN PARAMETERS VARIABILITY 

The proposed reliability design model uses the mean and 

cov values of design parameters. Mean vales of design 

parameters are much easier to generate than cov values, 

since data on covs have not been generally documented. 

Design capacity models are subject to variability due to 

assumptions made in their formulations and so are 

approximations of reality. Simplified models in engineering 

design are generally sufficiently accurate and may deviate 

from reality by about ±10% [16]. Assuming the error spans 

4 standard deviations, this approximates to a coefficient of 

variation of 5% for machine design. In structural design, 

typical values of cov for analytical model uncertainties are 3 

– 15% [17]. 

 

Variability in service load is usually the largest in most 

design problems but most difficult to predict, especially at 

the design phase [18]. The user may not follow guidelines; 

service environment may be different from that assumed 

during design, and in fact, a host of variables completely 

outside the control of the designer come into play. The cov 

of rated load may be in the range of 3 to 20% [19]. 

Estimations of dead weights of building materials based on 

tabulated data or reported in codes are prone to error due 

differences between data values in tables and those of 

material manufacturers. Therefore estimate of dead loads in 

buildings during preliminary design can be in error by 15% 

to 20% [20]. 

 

Failure mode models for uniaxial tension, uniaxial 

compression, biaxial stress state, triaxial stress state, fatigue 

damage, etc. are applied in the design of many components. 

These failure models have varying degrees of accuracy but 

variability information about them is generally lacking. If 

uniaxial stress state failure is the case, then accurate failure 

theories are available and Ullman [21] suggest a cov of 2% 

where they are applicable. For a static biaxial stress failure 

mode, such as combined bending and shear stresses, a cov 

of 5% is assumed here. Shear yield strength failure 

prediction from tensile yield strength has a cov of 3% for 

steel materials [7]. 

 

Allowable lateral deflection is commonly based on 

experience or the deformation that may be tolerated by 

supporting bearings. Variation obviously exists but 

quantification does not seem to exist at this time. Using 

judgment, a cov of 5% to 10% is suggested, the lower values 

being for machine design and higher values for structural 

designs. Geometric parameter variability is generally small: 

the cov for mating dimensions in mechanical components is 

about 0.1% [5], cov of principal dimension for standard 

structural shape is about 1.5%, cov of principal dimension 

for fabricated structural shape is about 2%, and component 

length dimension has a cov in the range of 0.1 to 0.3%. 
 

4. DESIGN SIZING AND VERIFICATION 

The design analysis of a component generally involves 

iteration in two basic tasks: design sizing and design 

verification as depicted in Fig. 1. The task in design sizing is 

determining the form and size of a member for a desired 

reliability level. The form of a member is defined by its 

length and cross-sectional shape and dimensions over its 

length. In general, the cross-section may vary along the 

length of a member but this makes analysis more 

complicated and costly. Components with constant cross-

sectional shapes are usually the first choice, especially 
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during preliminary design but modifications often occur 

later in the design process. 

 

The length of a member is often based on space limitation 

and may be estimated in a preliminary design layout 

diagram but can be refined later, perhaps from rigidity or 

strength considerations. The cross-section can be sized for 

an assumed shape based on yield strength, fatigue strength 

or other serviceability criteria. Design sizing involves use of 

suitable serviceability criteria such as strength, transverse 

deflection, torsional deformation, buckling, etc. along with 

the type of load and its configuration in the estimation of the 

dimensions of components or assembly. 

 

 
Fig. 1: Design Analysis 

 

In some design situations such as fatigue design, CM  

cannot be accurately evaluated until dimensions of a 

component are known due to the influence of stress 

concentration. In such cases, an approximate value CO of 

CM may be used in Eq. (11) to obtain an approximate 

lognormal standard deviation. That is: 

 

 )1)(1( 22
CFCOzo Ins    (14) 

 

From Eq. (12) a design factor on  that is statistically based 

may be estimated as: 

 

 )5.0(exp zoozoo szsn   (15) 

 

Geometric properties of cross-sectional shape such as area, 

section modulus, and second moment of area (area inertia) 

can be reduced to be a function of one dimension through 

proportional design. Hence it may be generalized that: 

 

),,,,( oCFPGLg nf    (16) 

 

Design verification deals with the assessment of the 

adequacy of a component or assembly design on the basis of 

a desired reliability target. In deterministic design approach, 

the safety factor or design factor is used for design adequacy 

assessment. Design verification is done to ensure that the 

selected form and dimensions of a component or assembly 

meet design requirements. A design is accepted as adequate 

if the evaluated expected reliability level is at least equal to 

a desired target. A factor of reliability greater than unity is 

necessary for failure avoidance. 

 

Generally in machine and structural designs, design capacity 

models are functions of load and component geometry. That 

is: 

),,,( PGLgCM f    (17a) 

 

Formal acceptance of design adequacy is established by use 

of Eqs. (10) and (12). For acceptable design: 
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The requirement of oz nn   satisfies traditional design 

adequacy based on “safety factor” and ozz  satisfies a 

reliability target value. 

 

5. DESIGN EXAMPLES 

In order to demonstrate how to use the reliability model 

developed, two design examples are considered next. The 

first example is very simple, being chosen to clarify the 

concept and application of the reliability model for design 

sizing and verification tasks. The second example extends 

the application of the reliability model by considering 

several failure modes. 

 

5.1 Example 1: Design Sizing and Verification 

A cold drawn steel round bar with a yield strength 540(1, 

0.074) MPa is subjected to a static force 220(1, 0.082) kN. 

(a) What is the diameter of the bar if a reliability of 99.9% 

(zo = 3.09) is desired? (b) Estimate the design reliability for 

a chosen diameter size [7]. 

 

5.1.1 Solution for Example 1 

a) Design sizing requires a numeric value for the design 

factor. This is evaluated from the target reliability and 

design capacity model variability. The tensile stress capacity 

model gives the average tensile stress in the bar and is: 
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Using the rules of Eq. (8), by inspection of Eq. (18): 

 
222 4 dsf    (19a) 

 
222
maCM     

(19b) 

 

The, applied static load is considered so no stress 

concentration factor is required. Since design capacity 

model is that of uni-axial stress, accuracy is known to be 

high, so model accuracy cov of 3% will be assumed. The 

design load has a cov given as 0.082. The geometric 

parameter cov will be neglected in this example. Without 

stress concentration factor, sk is zero in Eq. (A15). The 

adjustment model accuracy cov sa , is zero, as well as the 

miscellaneous cov, sm . Thus Eq. (A15) reduces to: 
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sosf    (19c) 

 

The yield strength cov is given as 0.074. No adjustment in 

the tensile yield strength of the rod is necessary, assuming 

the rod is used in ordinary environment. Hence in Eq. (A16) 

from the Appendix, the value fsC is unity and fc
 
is zero in 

Eq. (A17).  The miscellaneous cov is zero and Eq. (A17) 

reduces to: 

 

22
faytCF    (20) 

 

074.0 ytfo   
 

 

Uni-axial tensile failure is expected and the failure model is 

well understood, so a variability of 2% [21] is assumed. 

That is: 

 

fa 0.02  

 

The design input data are summarized in Table 1. 

 

Table 1: Input Data for Example 1 

Capacity model accuracy cov 03.0ma  

Design load cov 082.0sf  

Rod diameter cov 0d  

Yield strength cov 074.0yt  

Failure mode model accuracy cov 02.0fc  

Design load (N) oF 220x10
3

 
Tensile yield strength (MPa) ytS 540

 

 

For design sizing, Eq. (18) is modified as: 
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And: 
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Eqs. (19b), (20), and (14) are used to obtain zos . Eq. (15) is 

used to on  and Eq. (22) is used to estimate the rod diameter. 

(b) For a chosen diameter size, the expected stress is 

obtained from Eq. (18) and the reliability factor is obtained 

from Eq. (10). Finally the unit normal variate and reliability 

level are obtained from Eq. (12) and and (13) respectively. 

Table 2 summarizes the computational results for design 

example 1. 

 

Table 2: Results for Example 1 
Estimated diameter size (mm) 27.34 

Diameter size of [7] (mm) 27.10 

Chosen diameter size (mm) 28.0 

Design factor 1.441 

Reliability factor 1.513 

Reliability level (%) 99.98 

Reliability level (%) of [7] 99.92 

 

The diameter design size d = 28 mm is acceptable since the 

estimated Rz = 99.98% for a desired value of 99.9% is 

acceptable. The solutions for this problem in [7, p. 251 - 

252] are d = 27.1 mm and Rz = 99.92% (z = 3.157). This 

design example considers only tensile failure mode but the 

next example involves other failure modes such as shear and 

bending. 

 

5.2 Design Example 2 

Fig. 1 shows an overhead travelling crane (OTC) with a 

single bridge girder. The crane consists of a bridge girder 

mounted on two end trucks that run on runway girders. The 

bridge girder is perpendicular to the runway girders and 

supports a trolley which carries the hoist. The hoist is used 

to lift the load vertically [22] Fig 2 shows four possible 

modes of failure [9] of the girder and it is desired to design 

it as a plate girder as shown in Fig. 3. The load on the girder 

is 600 kN and the allowable maximum deflection is l/888, 

where l is beam span which is 6 m. The plates for the gilder 

construction are from steel material with yield strength 

 

 
Fig. 1: Bridge crane [9] 

 

 
Fig.2: Crane girder failure modes [9] 
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of 395 MPa. Design the girder assuming a minimum 

reliability goal of 3.0 standard deviations; subject to 8 mm 

≤ wt ≤ 38 mm, 8 mm ≤ ft ≤ 38 mm, and fb ≥ 300 mm. 

Consider the design parameters as random variables with 

coefficient of variation 1% for the geometric parameters 

shown in Fig. 3 The coefficient of variation for yield strength 

of steels is 7% and that of the Young’s modulus is 3% [9]. 

 

5.3 Solution Analysis 

In providing solution to design problem 2, it is assumed that 

the crane bridge girder is loaded by a combination of 

concentrated and distributed loads. The concentrated load 

comes from the weight of the load being hoisted, the weight 

of the hoist and the weight of the trolley. The distributed load 

comes from the weight of the plate girder. Plate girders are 

built-up beams used when standard rolled products are not 

adequate. The depth of the girder ranges from one-fourteenth 

to one-sixth [23] of the span depending on configuration. 

Web depth–web thickness ratio and width-flange thickness 

ratio (see Fig. 3) are limited depending on specific design 

conditions; recommendations are available from American 

Institute of Steel Construction (AISC). 

 

5.4 Flange Geometric Properties 

Fig. 3 shows the dimensional parameters of a plate girder. 

The dimensions can be related proportionally. 

 

 
Fig. 3: Girder section parameters 

Referring to Fig. 3, and assuming proportional design: 
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Based on AISC recommendations [23] and from [9]: 
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Eqn. 24a is valid for unstiffened web. For a failure mode in 

initial design, it is assumed that: 
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The area inertia xI  for the girder is [9]: 
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Substitute Eq. (23) in Eq. (26): 

 

4

12
w

I
x hI


  (27a) 

 

 

 

where: 
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The section modulus Zx is: 
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where: 
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Referring to Fig. 3: 
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wfb AAA  2  

 

bo gAq   
(31) 
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(32) 

 

5.5 Flange Bending Stress Design 

The lower surface of the bottom flange or the upper surface 

of the top flange experience tensile and compressive bending 

stresses. The bending stress is: 
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Applying the rules of Eqs. (6) and (8) by inspection to Eqs. 

(33) and (34), we have: 

 















1

)( 2222222
ZlqZlsf

b  (35a) 
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                                          (35b) 

 

 

The cov of dead weight will be taken as 5% ( q 0.05) [20]. 

The crane load is described as being the maximum, so no 

service factor is necessary. From the Appendix, Eq. (A15) 

reduces to: 

 

sosf    (36a) 

 

And: 

 

22
mabCM    (36b) 

 

No adjustment in tensile yield strength is necessary, assuming 

crane is used in ordinary environment. Hence in Eq. (A16) 

from the Appendix, the value fsC is unity and fc
 
is zero in 

Eq. (A17).  The miscellaneous cov is non-zero due to 

combination of normal and shear stress based on distortion 

energy theory and Eq. (A17) reduces to: 

 

222
fmfaytCF    (36c) 

 

With values from Eqs. (36b) and (36c); Eqs. (11), (12) and 

(13) are used for reliability assessment of the flange for 

bending stress failure. 

 

For design sizing the bending stress should not exceed the 

yield strength of the component material divided by the 

design factor. That is: 

 

o

yt

x

x

n

S

Z

M
  (37) 

 

From Eq. (35b), the weight of the bridge girder is required 

before b can be determined. However, the cross-sectional 

dimensions of the beam are unknown at initial design stage in 

the design process, so an approximate value of  b  ( bo ) is 

necessary in order to estimate the design factor, on . By 

assuming a load-beam weight ratio, bo can be determined.  

Therefore: 

 

22
maboCO    (38) 

 

Using evaluated values from Eq. (36c) and Eq. (38) in Eq. 

(15), on can be estimated. Substitute Eq. (28a) in Eq. (37), 

and transform into: 
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5.6 Beam Transverse Deflection Design 

The beam deflection is estimated as: 
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Applying the rules of Eqs. (6) and (8) by inspection to Eq. 

(40a), we obtain: 
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Where 
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No adjustment in allowable deflection. From the Appendix, 

Eq. (A19) reduces to: 

 

22
faACF    (42b) 

 

With values from Eqs. (42a) and (42b); Eqs. (11), (12) and 

(13) are used for reliability assessment for deflection failure. 

 

For design sizing: 
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From Eq. (41b), the weight of the bridge girder is required 

before b can be determined. However, the cross-sectional 

dimensions of the beam are unknown at this point in the 

design process, so an approximate value of    ( o ) is 

necessary in order to estimate the design factor, on . By 

assuming a load-beam weight ratio, o can be determined.  

Therefore: 

 

22
maoCO     (43c) 

Using evaluated values from Eq. (42a) and Eq. (43c) in Eq. 

(15), on can be estimated. Substitute Eq. (27a) in Eq. (43a) 

and rearrange to obtain: 
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5.7 Beam Global Buckling Design 

Lateral instability in thin deep beam is possible in plate 

girders and can be assessed through the critical buckling 

moment [9]. This moment may be obtained as: 
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where: 

 

tys III   (46) 

 

and: 

 

 332
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Neglecting the cov of Poisson’ ratio, apply the rules of Eq (8) 

by inspection to Eq. (45a): 

 

  2/1222
IlEcr    (48a) 

 

The cov of Mx in Eq. (45b) is obtained from Eqn. (34) which 

is given by Eq. (35a). That is: 

 

bM x
   (48b) 

 

Then: 

 

22
mabCM    (49a) 

 

No adjustment in tensile elastic modulus is necessary, 

assuming the crane is used in ordinary environment. From the 

Appendix, Eq. (A17) reduces to: 

 

22
facrCF    (49b) 

 

With values from Eqs. (49a) and (49b); Eqs. (11), (12) and 

(13) are used for reliability assessment of the beam for 

buckling failure. 

 

5.8 Combined Bending and Shear Stresses 

The upper surface of the bottom flange or the lower surface 

of the top flange experience both bending and shear stresses. 

The combined tensile stress on the flanges can be evaluated 

and checked based on distortion energy failure of ductile 

materials: 
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Apply the rules of Eqs. (3) and (4) to Eq. (50a):
 

 (53a) 
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Then: 
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Apply the rules of Eqs. (6) and (8) by inspection to Eq. (51b): 
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The prediction of shear yield strength from tensile yield 

strength based on deformation energy theory for ductile 

materials introduces a miscellaneous cov in the mechanical 

capability of the beam. Thus from the Appendix, Eq. (A17) 

reduces to: 

 

222
fmfaytCF    (54c) 

 

With values from Eqs. (53c) and (54c); Eqs. (11), (12) and 

(13) are used for reliability assessment for flange failure. 

 

5.9 Web Stress Design 

The web needs to be checked for shear failure. This is done 

using the applied load and the weight of the beam. 
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The cov of the web shear stress is obatained as in Eq. (54a). 

Then: 

 

22
mawCM     (56a) 

 

No adjustment in tensile yield strength is necessary, assuming 

the crane is used in ordinary environment. However, the 

prediction of shear yield strength from tensile yield strength 

based on deformation energy theory for ductile materials 

introduces a miscellaneous cov in the mechanical capability 

of the beam. Thus from the Appendix, Eq. (A17) reduces to 

Eq. (54c). 
With values from Eqs. (56a) and (56b); Eqs. (11), 

(12) and (13) are used for reliability assessment of the web 

for shear stress failure. 

 

5.10 Solution Results for Example 2 

For a simply supported beam carrying a concentrated load, 

the maximum bending moments occurs at midspan (l/2) and 

mcK 1/4; scK 1/2; and cK 1/48. For uniformly 

distributed weight load, the maximum bending moment also 

occurs at mid span with mdK  1/8; sdK  1/2; and dK  

5/384.  The value of κ = 3.1416 [9] in Eqn. 24b.  The 

coefficient of variation of the load is approximated as 0.117 

from information in [9]. The Young modulus of steel is taken 

as 210x10
3
 MPa. Eqns. (24) to (56) were coded into Excel 

spreadsheet and used for the design sizing and design 

verification of the plate girder. Two pages were developed: 

one for design sizing and the other for design verification. 

 

Table 3: Design Sizing for Example 2 

Design 

Parameter 

Estimate 

Flange 

Bending 

Lateral 

Deflection 

Web Size 

wh  (mm) 763.26 919.09 

wt  (mm) 5.80 7.00 

wA  (mm
2
) 4426.50 6418.33 

Flange Size 

fb  (mm) 254.42 306.36 

ft  (mm) 16.57 19.95 

fA (mm
2
) 4215.37 6112.23 

Beam Size 

h  (mm) 796.40 959.00 

bA (mm
2
) 12857.20 18642.80 

oq  (N/m) 990.00 1435.50 

oW  (N) 5940.03 8612.97 

 

Table 3 shows the initial size estimates for the beam size 

based on flange bending stress and lateral deflection. The 

solution for the bending stress seems to be a lower bound 

case while that for deflection appears to be an upper bound 

case. Both solutions fall short of the required minimum size 

for the web thickness and flange width. Table 4 shows the 

design verification iterations. In iteration column 1, the web 

thickness and flange width are forced at their minimum 

required values while the web depth is reduced. Four 

iterations yielded the chosen solution on iteration column 4 

for a minimum of z = 3. The iteration column 5 is for the 

solution from reference [9]. Iteration 6 is done for the 

purpose of comparing the reliability model being presented 

with that of reference [9]. 
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Table 4: Beam design iterations for Example 2 

Design Parameters 
Iteration Comparison 

1 2 3 4 [9] Current 

wh (mm) 750 750 750 735 726.10 730 

wt (mm) 8 10 10 10 8 8 

fb (mm) 300 310 310 310 355.9 330 

ft  (mm) 20 25 30 30 23.44 25 

h  (mm) 790 800 810 795 773.44 780 

oW  (N) 8316.0 10626.0 12058.2 11988.8 10467.58 10321.01 

z (Flange bending) 5.200 6.804 7.827 7.682 6.886 6.801 

z (Flange combined stress) 4.831 6.525 7.511 7.362 6.325 6.269 

z (Lateral deflection) 0.409 2.188 3.356 3.075 2.045 2.014 

z(Lateral buckling) -0.502 2.937 5.295 5.292 3.943 3.651 

z (Web shearing) 9.016 10.363 10.361 10.239 8.815 8.848 

 

In Castillo et al [9], the “reliability index” was used for 

design adequacy assessment. The reliability indices for 

combined stress, lateral deflection, lateral buckling and web 

shear stress are respectively 4.277, 1.700, 3.100, and 6.832 

for the optimum solution. Wang [1] indicated that the “safety 

or reliability index” parameter is problem dependent and 

often controversial. Since the unit normal variate is not 

problem dependent and non-controversial, it was felt that it 

might be informative to evaluate the unit normal variate 

based on the beam size solutions of [9] using the reliability 

model in our approach. The respective unit normal variates 

obtained for combined stress, lateral deflection, lateral 

buckling and web shear stress are respectively 6.325, 2.045, 

3.943, and 8.815. Clearly, there are noticeable differences 

between the “reliability index” and unit normal variate 

values, so it is concluded that the “reliability index” is not 

equal to or is the same as the unit normal variate. 

6. SUMMARY 

In design Example 1, the diameter value in our solution is 

27.34 mm while that of [7] is 27.1 mm.  The result from our 

model differs from the cited reference value by 0.9% on the 

conservative side. Thus the reliability model being presented 

appears slightly conservative but realistic. This problem is a 

simple one but helps to illustrate how the formulated model 

can be applied logically and systematically in more complex 

situation such as design example 2. 

 

Design Example 2 solution is shown in iteration 4 in Table 4. 

In this solution,  10.33 and   73.5, and they are less 

than the respective critical values, which according to AISC 

recommendation, are c 25.08 and c 215.3 for the steel 

strength of 395 MPa. The beam depth-span ratio is 0.123, and 

it is in the range of 0.071 to 0.167 for plate girders [23]. 

Therefore, the solution obtained in this study seems quite 

acceptable. The beam weight for our solution is 14.53% 

higher than that of [9] for minimum value of z = 3. However, 

when the beam size is adjusted to approximate the reliability 

levels of [9] as shown in the current column of Table 4, the 

beam weight is 1.4% lower. The beam sizes in the two 

comparison columns of Table 4 indicate very close 

agreement between our model results and those of [9]. 

It has been that realistic design solutions can be achieved by 

using a probabilistically obtained “safety factor” which is 

called “design factor”, an approximation of the “reliability 

factor”. The design or reliability factor depends on two 

parameters: coefficient of variation and quality or reliability 

goal specified in units of standard deviation. Based on the 

good agreement between the results from our model and the 

cited references, the lognormal distribution is deemed 

satisfactory in the probabilistic design of mechanical and 

structural components. Design adequacy in reliability-based 

design should be assessed based on the unit normal variate. 

That is, the quality goal requirement should always be used 

for design verification in probability-based design unless 

when relevant codes and or regulations suggest otherwise. It 

is concluded that the unit normal variate and “reliability or 

safety index” are not the same parameter or equal in design 

adequacy assessment. Probabilistic designs normally require 

special software and are sometimes very computationally 

intensive. This study shows, however, that reliability-based 

design can be performed with Excel: Microsoft Spreedsheet 

program, providing opportunities for cost reductions in 

design projects. 

 

7. CONCLUSION 

A lognormal reliability-based model has been presented. The 

model considers design parameters as random variables and 

characterizes them with a mean value and a coefficient of 

variation (cov). The cov of each design parameter is 

estimated using sensitivity analysis of the first order Taylor’s 

series expansion. The absolute values of design parameters 

are not required in the reliability model which is surprisingly 

simple because it is a function of only two parameters: the 

reliability parameter (z) and the variability parameter ( zs ). 

The reliability parameter is the unit (standard) normal variate 

and defines the level of risk acceptable in a design task. The 

variability parameter is the lognormal standard deviation of 

the assumed lognormal probability density function. It 

combines all the significant uncertainties in the design 

capacity model into one value. The reliability and variability 

parameters define the reliability factor for a specific design. 

Thus, if the variability of the significant factors in a design 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

________________________________________________________________________________________________________ 

Volume: 05 Issue: 08 | Aug-2016, Available @ http://ijret.esatjournals.org                                                                   255 

model can be estimated with reasonable accuracy, it is 

possible to design to a risk level through a reliability factor. 

The design approach reduces the usually difficult and 

expensive probabilistic and sensitivity analysis in reliability-

based and optimization-based designs into algebraic 

equations that can be coded in Spreadsheet programs such as 

Microsoft Excel. This offers a low-cost based solution to 

reliability-based design. 
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NOMENCLATURE 

MC random variable of design capacity 

model for a failure mode 

FC random variable of mechanical capability for a failure 

mode 

ix i
th

 random design parameter 

(...)f function of 

CMs standard deviation of design capacity 

model 






i

M

x

C
partial derivative of design capacity 

model with respect to i
th

 random 

design parameter 


ixs  standard deviation of i

th
 random design 

parameter 

n capability ratio random variable for a 

failure mode 

zn reliability factor 

zs  standard deviation of n  

z  unit normal variate corresponding to failure 

zR design reliability at z 

zos approximate standard deviation of design capacity 

model 

on design factor (approximate value of zn ) 

https://web.mscsoftware.com/support/library/conf/auc97/p02597.pdf
https://web.mscsoftware.com/support/library/conf/auc97/p02597.pdf
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oz unit normal variate for desired reliability level 

d diameter of bar 

fb flange width 

ft flange thickness 

wh web height 

wt web thickness 

h beam depth 

oh  characteristic design dimension 

fA  cross-sectional area of flange 

wA  cross-sectional area of web 

bA  cross-sectional area of beam 

oq  weight per unit length of beam 

xI = area inertia of beam about x-axis 

xM  maximum bending moment about x-axis 

xZ = section modulus of beam about x-axis 

/
xZ = section modulus of beam about x-axis at end of web 

g acceleration due to gravity (9.81 m/s
2
) 

E tensile elastic modulus 

cK concentrated load deflection factor 

dK distributed load deflection factor 

crM critical buckling moment 

xM maximum bending moment 

sI stability or buckling area inertia 

yI area inertia about y-axis 

tI area inertia for twisting resistance 

scK concentrated load direct shear factor 

sdK distributed load direct shear factor 

mcK concentrated load moment factor 

mdK distributed load moment factor 

l   length of beam 

oW weight of beam 

ytS mean yield strength of component material 

sK service load factor 

soK rated load overload or external 

dynamic load factor 

skK  stress concentration factor 

zC  size factor 

rC  surface roughness factor 

tC temperature factor 

ts standard deviation value of t 

t lognormal variable of n

 ft  normal variate corresponding to a failure 

probability 

fz unit or standard normal variate corresponding 

to a failure probability 

n  capability-load ratio random variable 

 flange width-thickness ratio 

c critical flange width-thickness ratio 

o  initia design value for   

 web height-thickness ratio 

c critical web height-thickness ratio 

o  initia design value for   

 web height-flange width ratio 

I area inertia factor 

Z section modulus factor 

  mass density of beam 

 critical buckling factor 

 Poisson’s ratio 

t expected tensile stress 

 maximum deflection of beam 

A maximum allowable deflection for component 

design 

 bending moment weight-load ratio 

 deflection weight-load ratio 

s direct shear stress 

s shear stress ratio 

w web shear stress 

 shear stress weight-load ratio 

b maximum bending stress 

s direct shear stress 

w web shear stress 

xi  mean value of i
th

 random design   parameter 

L  mean value of generic independent design load 

G  mean value of generic independent geometric 

parameter
 

P  mean value of generic independent material 

property parameter
 

g generic dependent geometric design parameter 

CM mean value of design capacity model 

CF mean adjusted value of mechanical capability 

CFs standard deviation value of mechanical 

capability 

CMs standard deviation of design capacity model 

CM cov of design capacity model 

CF  cov of mechanical capability 

fo cov of nominal mechanical capability value 

fa = cov of failure mode model accuracy 
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fm cov of miscellaneous effects on capability 

fc  cov for mechanical capability correction 

ct  cov of temperature factor 

cz  cov of size factor 

cr  cov of surface roughness factor 

sf cov of service load 

so cov of rated load or external dynamic load 

factor 

sa cov of service load factor model accuracy 

sm  cov of miscellaneous effects on service load 

sk  cov of stress concentration factor 

ma cov of design model capacity accuracy 

b cov of bending stress capacity model 

 cov of normal tensile stress load factor 

d cov of bar diameter 

F cov of design load 

l cov of beam length 

Z cov of beam section modulus 

bo  approximation of b  

 cov of deflection capacity model 

E cov of tensile elastic modulus 

q cov of beam distributed weight 

o  approximation of   


xM cov of bending moment 

cr cov of critical buckling moment 

t cov of effective tensile stress 

 cov of direct shear stress 

w cov of w  

n mean value of n 

t mean value of t

 n cov of capability ratio 

 

APPENDIX 

A Lognormal Reliability Model Development  

This section explores the application of the lognormal 

probability distribution function in developing a design 

model for reliability factor. The lognormal probability 

distribution function has inherent properties that make it an 

attractive choice for engineering design applications. For 

instance, the products and quotients of lognormal variates are 

lognormal and real powers of lognormal variates are also 

lognormal [5]. Now most design formulas are products and 

sums of design parameters; so they can be assumed to have 

lognormal distribution as a first approximation. A lognormal 

random variable is a random variable whose natural 

logarithm has a normal distribution. 

 

Suppose in a design model MC and FC represent applied load 

random variable and design model capability random 

variable, respectively, in the physical or linear domain. 

MC is associated with statistical parameters CM , CMs , 

and CM . Likewise, FC is associated with statistical 

parameters FM , CFs , and CF . Then: 

 

CM

CM
CM

s


 

 

                 (A1a) 

 

CF

CF
CF

s


 

 

                 (A1b)

 
 

A random variable n with parameters nn  and μ  can be 

defined as the ratio of ML and FC . That is: 

M

F

C

C
n              (A2) 

22
CFCMn              (A3) 

 

To preclude failure, n must be greater than unity: that 

is, FM CC  .If FM CC  , then failure has occurred. 

 

Assuming that
FC and MC  have lognormal distributions, 

respectively, then the quotient ,n will be lognormal in 

distribution [24]. If t is the random variable for the 

quotient n in the lognormal domain, then: 

 
















M

F

C

C
nt ln)(ln            (A4) 

 

Based on the properties of lognormal distribution, if the 

parameters of t  are t and ts , then: 

 

  25.0ln tnt s             (A5) 

 


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









  2 1 nt Ins   













  22   1 CFCMIn             (A6) 

 

An engineering model can be deduced from Eq. (A6) if a 

slight modification on the expression for ts
 
is introduced by 

changing it to the value predicted by the overlap in 
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probability density functions of ML and FC [24]. This is given 

by: 

 













  ) 1)( 1( 22

CMCFt Ins 













  2222   1 CMCFCMCFIn           (A7) 

 

Notice the additional product term (
22
CMCF ) in Eqn. (A7) 

which is absent from Eq. (A6). This implies that the value of 

ts from Eq. (A7) will be slightly higher than that from Eq. 

(A6). For small values of load and capability covs, results 

from Eqs. (A6) and (A7) will hardly be different. However, 

as values of the covs increase, then a difference will show up. 

At high reliability, this difference may be important. 

 

The probability density distribution of t is normal and is 

depicted in Fig. 1a.  Fig. 1b depicts the corresponding unit 

normal variate distribution. The failure probability associated 

with the unit normal variate is represented by the area under 

the normal distribution curve (shaded in Fig. 1b) and 

corresponds to the failure region in Fig. 1a (shaded). 

t

t
t f

0
z

-z f

Failure

region

Failure

region

 
a) Normal                b) Unit normal 

 

Fig. 1: Random variable with normal distribution 

 

The failure zone of a component or product is the region of 

0t  where 1n . Referring to Fig. 1b, any normal 

variate ft on the left of t in Fig. 1a corresponding to fz  

on the left of the origin in Fig. 1b can be obtained as: 

 

tftf szt               (A8) 

 

Hence when 0ft : 

 

t

t
f

s
z




t
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s

s25.0)(ln 



                 (A9) 

 

By definition from Eq, (2): 

 

CM

CF
zn




                   (A10) 

 

For design application, it may be assumed that zn n  

[24, 29] in Eq. (18): 

 

t

tz
f

s

sn
z

25.0)(ln 
             (A11) 

 

Eq. (A11) gives the unit normal variate z , based on the 

reliability factor and design model parameters variability. 

The modification of ts in Eq. (A7) slightly increases the 

denominator and simultaneously decreases the numerator of 

Eq. (A11). The overall effect of this is the reduction of the 

unit normal variate or z-variable, so that the predicted 

reliability is conservative. 

 

From Eq. (A11): 

 

  tftz szsn 5.0exp                 (A12) 

 

Eq. (A12) is used to obtain a reliability factor for a desired 

reliability target corresponding to z. The modification of 

ts in Eq. (A7) slightly increases the reliability factor in Eq. 

(A12). Hence Eqns. (A11) and (A12) should yield 

conservative results for zR and zn  so that the model may 

perhaps apply in high reliability situations. The reliability 

for a known zn is obtained from Eqs. (A11) and (11). 

 

The reliability estimate based on the unit normal variate is 

commonly read from Tables given the value of the variate. 

Since table values are discrete, interpolation may be needed 

occasionally. For use in a spreadsheet, it is more convenient 

to code a formula. Using data from [5], a curve fitting study 

was done with the following results. 
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For 0.728.1  z : 

 

)3818.02299.02006.0( 2

101  zz
zR             (A13) 

 

Eq. (A13) summarizes the data often presented in tables for 

the cumulative distribution function of the standard or unit 

normal probability function for reliability level of at least 

90%. 

 

Eqns (A11) and (A12) are remarkable in simplicity because 

they are functions of only a reliability parameter (z) and 

variability parameter ( ts ). The absolute values of design 

parameters are not required. Eqn. (A7) combines all the 

uncertainties in a design task into one parameter: the 

reliability factor.  From Eq. (A12), if the variability of the 

significant factors in a design model can be estimated with 

reasonable accuracy, it is possible to design to a reliability 

target through a reliability factor. 

 

Service Load Factor 

Actual loads on equipment in service vary to different 

degrees depending on the environment, application, 

assembling accuracy, and proper installation. They are only 

known after the product is placed in service and as such are 

not easy to predict at the design stage. Experience shows 

that forces acting on equipment in service are generally 

higher than the rated or nominal values. These higher values 

are due to mechanical defects and or imperfections in 

manufacturing, assembling, installations, and operations. 

Allowed tolerances and inaccuracies in manufacturing, 

operations, and maintenance activities influence the external 

and internal dynamics of equipment and so is the 

misalignment that may arise during assembly and 

installation. These lead to load increases above rated values 

so that the design load is often estimated by multiplying the 

rated load with a service load factor. The service load factor, 

thus capture the influences of manufacturing, assembly and 

installation deficiencies and other operating factors 

influencing the service loads if derived from tests. 

 

In cross-sectional stress design capacity models, the 

variability of the applied load and stress concentration factor 

should be considered. Stress concentration arises from 

geometric changes in component cross-section along its 

length. Influence of stress concentration is local and must be 

evaluated section by section. A service load factor for cross-

sectional stress based design may be expressed as: 

 

sksos KKK      (A14) 

 

2222
smsasksosf     (A15) 

 

Mechanical Capability Adjustment 

The laboratory test samples for mechanical capabilities like 

tensile strength, fatigue strength, etc. are very carefully 

prepared and under closely controlled conditions. Field 

conditions hardly ever match or correlate exactly with 

laboratory conditions. For practical applications, 

modification factors for size, temperature, etc., are applied 

to laboratory results in a multiplicative capability correction 

model. For fatigue strength for instance, temperature, size, 

and surface roughness are very important. More factors may 

be considered as influencing mechanical capability in 

specific design situations. When a particular factor is not 

applicable, then the value is set to unity and the cov is set to 

zero. 

 

Stress-based design capacity models are of two types: cross-

sectional and surface stress models. The design examples 

considered in this paper belong to the cross-sectional stress 

type. The mechanical capability of a component with a 

cross-sectional stress design capacity model may be 

expressed as: 

 

fsCFCF C/          (A16) 

 

CF adjusted mechanical capability 

/
CF nominal mechanical capability 

fsC service capability adjustment factor 

2222
fmfafcfoCF         (A17) 

 

rztfc CCCC          (A18) 

 

222
crczctfc          (A19) 

 

In fatigue design for example, an adjustment multiplicative 

model with a correlation coefficient of 0.85 [7] is commonly 

used. Thus a model variance should be considered when 

these adjustment factors are used, including the variance of 

each adjustment factor. Based on the correlation coefficient 

mentioned, model correlation accuracy cov of 0.05 appears 

reasonable here. This will be considered as miscellaneous 

cov for mechanical capability where adjustment factors are 

applied, since fatigue data generally have more scatter than 

other modes of failure. That is 05.0fm . 


