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Abstract 
The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. 

Several artificial intelligence (AI)-based and non AI-based explicit models have been developed as viable replacement for the 

implicit Colebrook equation. However, it is not obvious which of the models and/or approaches is the best.  In this paper, the 

performances of the available non AI-based explicit models were compared with those of the AI-based models. The results show 

that genetic algorithm has been successfully utilized in optimizing the explicit model parameters with the best improvements being 

from 0.12% to 0.0026% based on maximum relative error index.  Although genetic programming and gene expression 

programming techniques  offer the advantage of producing explicit analytical formulas for determination of output parameters, 

they are found to be grossly inaccurate with errors up to 7% for most accurate model developed. Artificial neural network, a 

prominent AI-based method has been used to significantly improve friction factor predictions with a high accuracy of 0.004% 

equivalent to that obtainable with the non-AI based models. The most accurate models are among those developed using the non 

AI -based techniques with errors up to 1.04 ×10
-1 0 

%.  There is still possibility of improving on the gains made using the artificial 

intelligence techniques.  
 

Keywords: Colebrook Equation, Artificial Intelligence, Genetic Algorithm, Artificial Neural Network and Gene 

Expression Programming 

---------------------------------------------------------------------***---------------------------------------------------------------------

1. INTRODUCTION 

The Colebrook equation [1, 2] is traditionally used to obtain 

friction factor (f) in pipe flows calculations. The friction 

factor, a dimensionless quantity, is a function of the 

Reynolds number (Re) only in the laminar flow regime and 

a function of both Re and relative roughness  𝜀 𝐷   of the 

pipe in the turbulent flow regime. Unfortunately, this 

equation given in (1) is implicit, that is, having the friction 

factor on both sides of the equation and so has to be solved 

iteratively. 

 
𝟏

 𝐟
= −𝟐𝐥𝐨𝐠  

𝛆 𝐃 

𝟑.𝟕𝟏
+

𝟐.𝟓𝟏

𝐑𝐞 𝐟
                                                    (1) 

 

For calculations involving small datasets, the iteratively 

solved Colebrook equation will generally suffice [3]. For the 

simulation of long pipes and networks of pipes, the 

Colebrook equation must be solved a huge number of times 

[4]. Therefore, an iterative solution to the implicit 

Colebrook equation is time consuming. The use of the 

Moody chart [5], as an alternative to the Colebrook 

equation, eliminates the requirement for iteration.  However, 

it is a graphical tool and therefore not convenient for 

computer-based simulations. In order to facilitate computer-

based simulations, the implicit Colebrook equation has been 

resolved using explicit approximations derived from 

numerous analytical approaches [6, 7]. However, artificial 

intelligence (AI) techniques such as genetic algorithm [8], 

genetic programming [9-11], artificial neural network [12-

18] and neuro-fuzzy logic [19] in recent times have been 

applied.  However, it is not obvious which approach is the 

best among the proposed explicit models and the modelling 

techniques.  

 

In this paper therefore, the accuracies of the available AI-

based and non AI-based explicit models for estimating 

hydraulic friction factor in the turbulent regime in the range 

for which the Colebrook equation is valid were closely 

examined. 

 

The remaining sections of this paper are organized as 

follows: Section 2 reviews the accuracy of the available 

friction factor approximations. In section 3, the artificial 

intelligence techniques are examined and the performances 

of these techniques are discussed. Section 4 compares the 

performances of the explicit artificial intelligence-based and 

non artificial intelligence-based friction factor models. In 

the final section, relevant conclusions are drawn and 

recommendations are made.                              

 

2. FRICTION FACTOR MODELS 

Friction factor models are referred to as explicit models by 

some authors [6, 7] that is, those which were developed 

using techniques other than the AI techniques. However, in 

this paper, any model devoid of iterations is regarded to as 

being explicit. Therefore, for the purpose of the study, the 

explicit friction factor models are classified into two groups 

viz: Artificial intelligence (AI)-based and non AI-based 

models. 
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2.1 Non AI-based Explicit Friction Factor Models 

Several non AI-based approximations to the Colebrook 

equation have been developed. These approximations 

however vary in their degrees of accuracy and complexity. 

The most recent reviews include the work of Genić et al. 

[20], Brkić [6], Winning and Coole [7] and, Asker, Turgut 

and Coban [21]. 

 

Genić et al. [20] in their review used the model selection 

criteria (MSC) and the Akaike information criterion (AIC) 

as the performance indices for 16 explicit equations. These 

indices have also been used by Romeo, Royo and Monzon 

[22] for the explicit model selection. However, there is an 

apparent discrepancy in the MSC values reported by Romeo, 

Royo and Monzon [22] and Genić et al. [20] for the same 

models. For example, the MSC values reported by Romeo, 

Royo and Monzon [22] and Genić et al. [20] for models 

developed by Moody [23] and Chen [24] showed a wide 

contrast. They recommended the use of Zigrang and 

Sylvester [25] approximation in lieu of the implicit 

Colebrook equation. 

 

Brkić [6] conducted a review of 26 explicit approximations. 

Based on maximum relative error (MRE) criterion, he 

classified the existing explicit models as extremely accurate 

(MRE ≤ 0.14%), very accurate (MRE up to 0.5%), 

moderately accurate (MRE up to 1.5%), less accurate (MRE 

up to 5%), non advisable (MRE up to 25%) and extremely 

inaccurate (MRE ≥ 80%). The most accurate models in his 

work were those of Serghides [26], Romeo, Royo and 

Monzon [22], Buzzelli [27], Zigrang and Sylvester [25] and 

Vantankhah and Kouchakzadeh [28]. He concluded with the 

remarks that most available explicit models are very 

accurate with the exception of models by Round [29], Eck 

[30], Moody [23], Wood [31] and, Rao and Kumar [32].  

 

The review by Winning and Coole [7] assessed the accuracy 

alongside the relative computational efficiency of 28 explicit 

friction factor approximations. They presented a more 

practical approach of determining computational efficiency 

by comparing the time required by a model to perform a 

given task. Elsewhere, model efficiency or complexity has 

been determined [33] by making reference to either the 

number of algebraic notation calculation key stroke. The 

authors observed that models with greater number of 

internal iterations were more accurate and require a greater 

computational time.  The approximations by Serghides [26] 

and Buzzelli [27] were the most accurate when ordered by 

absolute and relative errors, but when ordered by relative 

computational efficiencies, they ranked very low. The 

overall ranking reported was biased since it was not based 

on actual values of accuracy and relative computational 

efficiency. It was based on the number of available explicit 

models. If this number is altered, the values of the combined 

ranking may change [34].  Unfortunately, neither of the 

above comparative studies considered the approximation by 

Goudar and Sonnad [35]. 

 

Vantankhah and Kouchakzadeh [28] modified the 

parameters in the model earlier developed by Sonnad and 

Goudar [36]. This modification increased the accuracy from 

a maximum relative error of 0.8% to about 0.15% (see Fig-

1) [6].  In 2013, another set of more accurate models were 

proposed [37]. These models given in equations (28) and 

(29) were reported to have accuracy up to 0.02% and 

0.008%, respectively with the latter being more complex 

than the former. The performances of these two models 

were evaluated in this present study. Despite their varying 

complexities, it was observed that they both have 

approximately the same degree of accuracy with maximum 

errors up to 0.05% and 0.059%, respectively. This means 

that the increased complexity of equation (29) does not pay 

off.  Model accuracy is dependent on the complexity of their 

functional form, with the more complex ones providing 

friction factor estimates of higher accuracy [19].  

 
Fig – 1: Relative errors distribution of Sonnad and Goudar [36], Vantankhah and Kouchakzadeh [28] when compared with the 

implicit Colebrook equation 
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Asker, Turgut and Coban [21] conducted a review of several 

explicit approximations of the Colebrook equation. This 

review included the approximations developed by Goudar 

and Sonnad [35]. Based on relative error criterion, their 

models ranked best with very high accuracy when compared 

with other explicit approximations (see Fig-2). Their 

approximations, given in equation (20) and equation (21), 

vary in terms of complexity with (21) being more complex 

than (20). However, this complexity is compensated for by 

its higher accuracy. This review concluded that the need to 

use the implicit Colebrook equation seems eliminated given 

the high accuracy of this model. A list of the available 

explicit approximations is presented in Table-1

 

Fig – 2:  Relative errors distribution of Sonnad and Goudar [35] (eqns. 20 and 21) and Vantankhah [37] (eqns. 28 and 29) 

when compared with the implicit Colebrook Equation 

 

Table -1: Existing Non AI-based Friction Factor Models
Equation 

No. 

Author  

[Reference] 
Explicit Models Applicable ranges of Re and 𝜺/D 

(2) Moody [23] 𝑓 = 0.0055 1 +  2 × 104.
𝜀

𝐷
+

106

Re
 

1/3

  
4 × 103 ≤ Re ≤  108 

0 ≤
𝜀

𝐷
≤  10−2 

(3) Wood [31] 

𝑓 = 0.094  
𝜀

𝐷
 

0.225

+ 0.53 
𝜀

𝐷
 + 88  

𝜀

𝐷
 

0.4

Re−𝐵 

𝑤𝑕𝑒𝑟𝑒 B = 1.62 
ε

D
 

0.134

 

4 × 103 ≤ Re ≤ 5 × 107 

10−5 ≤
𝜀

𝐷
≤  4 × 10−2 

(4) Eck  [30] 
1

 𝑓
=  −2log  

𝜀

3.715𝐷
+

15

Re
  

0 ≤
𝜀

𝐷
≤  10−2 

(5) 
Swamee and Jain 

[39] 

1

 𝑓
=  −2log  

𝜀

3.7𝐷
 

1.11

+  
5.74

Re0.9
   5 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

(6) Churchill [40] 

𝑓 = 8   
8

Re
 

12

+  𝐴 + 𝐵 
−3

2  

1
12 

 ; 

where      A =  −2log  
𝜀

D 

3.70
 +  

7

Re
 

0.9

  

16

,        B =   
37530

Re
 

16

. 

Re > 0 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

(7) Chen [24] 
  1

 𝑓
=  −2log10  

𝜀

3.7065. D
−

5.0452

𝑅𝑒
. log10  

1

2.8257
.  

𝜀

D
 

1.1098

+
5.8506

𝑅𝑒0.8981
   4 × 103 ≤ Re ≤  4 × 108 

10−7 ≤
𝜀

𝐷
≤  5 × 10−2 

(8) Shacham  [41] 
1

 𝑓
=  − 4log  

ε

3.7D
− 

5.02

Re
log  

ε

3.7D
+  

14.5

Re
   4 × 103 ≤ Re ≤  4 × 108 

 

1.E-14

1.E-13

1.E-12

1.E-11
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1.E-09

1.E-08
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1.E-03

1.E-02

1.E-01
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1.E-06 1.E-02 2.E-02 3.E-02 4.E-02 5.E-02
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Equation (21)

Equation (29)

Equation (28)
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Equation 

No. 

Author  

[Reference] 
Explicit Models Applicable ranges of Re and 𝜺/D 

(9) 

 

Round [29] 
1

 𝑓
= 1.8log 

Re

0.135Re 
ε

D
 + 6.5

  4 × 103 ≤ Re ≤   108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

(10) Barr [42] 
1

 𝑓
=  −2 log 

ε

3.7D
+

4.518log  
1

7
Re 

Re 1 +
1

29
𝑅𝑒0.52  

𝜀

𝐷
 

0.7

 
  

Not specified 

(11) 
Zigrang and Sylvester  

[25] 

1

 𝑓
=  −2log10  

𝜀

3.7.𝐷
−

5.02

Re
. log10  

𝜀

3.7.𝐷
−

5.02

Re
. log10  

𝜀

3.7.𝐷
+

13

Re
    

4 × 103 ≤ Re ≤  108 

4 × 10−5 ≤
𝜀

𝐷
≤  5

× 10−2 

(12) Serghides [26] 

𝑓 =   s1 −
 S2 − S1 

2

S3 − 2. S2 + S1

 

−2

 

𝑠1 =  −2log10  
𝜀

3.71𝐷
+

12

Re
 , 𝑠2 =  −2log10  

𝜀

3.71𝐷
+

2.51. 𝑆1

Re
 , 

𝑠3 =  −2log10  
𝜀

3.7𝐷
+ 

2.51. 𝑆2

Re
  

Not specified 

(13) 
Cojbasić and  Brkić 

[8]a 

𝑓 =   s1 −
 S2 − S1 

2

S3 − 2. S2 + S1

 

−2

 

𝑠1 =  −2log10  
𝜀

3.71𝐷
+

12.585

Re
 , 𝑠2 =  −2log10  

𝜀

3.71𝐷
+

2.51. 𝑆1

Re
 , 𝑠3

=  −2log10  
𝜀

3.71𝐷
+ 

2.51. 𝑆2

Re
  

Not specified 

   (14)    
Romeo, Royo and 

Monzon [22] 

1

 𝑓
=  −2log 

ε
D 

3.7065

−
5.0272

Re
 log 

ε
D 

3.827

− 
4.567

Re
 log  

ε
D 

7.7918
 

0.9924

+   
5.3326

208.815 + Re
 

0.9345

    

3 × 103 ≤ Re ≤ 1.5
× 108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(15) 
Cojbasić and  Brkić 

[8]a 

1

 𝑓
= −2log 

ε
D 

3.7065

−
5.0272

Re
 log 

ε
D 

3.827

− 
4.567

Re
 log  

ε
D 

7.7918
 

0.9924

+   
5.3326

208.815 + Re
 

0.9345

    

3 × 103 ≤ Re ≤ 1.5
× 108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(16) Haaland  [43] 
1

 𝑓
=  −1.8log  

𝜀

3.7𝐷
 

1.11

+
6.9

Re
  4 × 103 ≤ Re ≤   108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

(17) Manadilli [44] 
1

 𝑓
=  −2log  

𝜀

3.70𝐷
+

95

Re0.983
−

96.82

Re
  

5.23 5 × 103

≤ Re ≤ 108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

                                                                                                                                                                                                                                                                                                                                                                                

(18) 

Sonnad and Goudar 

[36] 

1

 𝑓
= 0.8686 ln  

0.4587 Re

𝑆 𝑆 𝑆+1   ;   where 𝑆 = 0.124Re ε/D +  ln 0.4587Re  4 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 
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Equation 

No. 

Author  

[Reference] 
Explicit Models Applicable ranges of Re and 𝜺/D 

(19) 
  Vantankhah and 

Kouchakzadeh [28] 

1

 𝑓
= 0.8686 ln  

0.4587 Re

 𝑆−0.31  𝑆 𝑆+0.9633  
  where 𝑆 = 0.124Re ε/D +  ln 0.4587Re  4 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

(20) 
 Goudar and Sonnad 

[35] 

1

 𝑓  
= 𝑎  ln  

𝑑

𝑞
 + δ𝐿𝐴  

Where 𝑎 =
2

ln  10 
; 𝑑 =   

ln  10 

5.02
 . Re; 𝑞 =  𝑠

 
𝑠

 𝑠+1 
 
;  𝑠 = 𝑏𝑑 + ln 𝑑 ; δ𝐿𝐴 =   

𝑔

𝑔+1
 𝑧; 

𝑔 = 𝑏𝑑ln  
𝑑

𝑞
 and z = ln  

𝑞

g
  

4 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(21) 
Goudar and Sonnad 

[35] 

1

 𝑓  
= 𝑎  ln  

𝑑

𝑞
 + δ𝐶𝐿𝐴  

Where δ𝐶𝐿𝐴 =  δ𝐿𝐴  1 +
𝑧/2

 𝑔+1 2+ 𝑧/3  2𝑔−! 
  

4 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(22) Buzzelli [27] 
1

 𝑓
=  𝐴 −  

𝐴+2log 10 
𝐵

Re
 

1+ 
2.18

𝐵
 

  ;  where  A =  
 0.774ln Re  −1.41

 1+1.32 
𝜀

𝐷
 

,  B =  
𝜀Re

3.7𝐷
 + 2.51𝐴 

3 × 103 ≤ Re ≤ 1.5
× 108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(23) 
Fang , Xu and 

Zhou[45] 𝑓 = 1.613  ln  0.234  
ε

D
 

1.1007

−
60.525

Re1.1105
+

56.291

Re1.0712
  

−2

 

3 × 103 ≤ Re ≤ 1.5
× 108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(24) Rao and Kumar [32] 
1

 𝑓
= 2log10  

 2
𝜀

𝐷
 
−1

 
0.444+0.135Re

Re
 𝛽

  where  𝛽 = 1 −  0.55𝑒−0.33 ln 
Re

6.5
  

2

 
Not specified 

(25) Brkić [38] 
1

 𝑓
=  −2log  10−0.4343 .𝛽  +  

𝜀

3.71𝐷
    where 𝛽 = 𝑙𝑛

Re

1.816.𝑙𝑛 
1.1.Re

𝑙𝑛  1 +1.1.Re  
 
 

Not specified 

(26) Offor and Alabi [34] 
1

 𝑓
=  −2log10  

ε

3.71. D
−

1.975

Re
 ln   

ε

3.93. D
 

1..092

+  
7.627

Re + 395.9
     

4 × 103 ≤ Re ≤  108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(27) 
Ghanbari, Farshad 

and  Rieke [46] 
𝑓 =  −1.52log  

𝜀

𝐷

7.21
 

1.042

+  
2.731

Re
 

0.9152

  

−2.169

 

2.1 × 103 ≤ Re ≤  108 

0 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(28) Vantankhah [37] 

1

 𝑓
= 0.8686 ln 

0.4599𝑅𝑒

 𝐺 − 0.2753 
𝐺

𝐺+0.9741 
  

Where  𝐺 = 0.124𝑅𝑒 𝜀 𝐷  + In 0.4599Re  

5 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

 

(29) Vantankhah [37] 

𝑓 =  
2.51 𝑅𝑒 + 1.1513𝛿 

𝛿 −
 𝜀 𝐷  

3.71
− 2.3026𝛿𝑙𝑜𝑔 𝛿 

 

2

 

Where    𝛿 =  
6.0173

𝑅𝑒 0.07 𝜀 𝐷  +𝑅𝑒−0.885 0.109
+

𝜀 𝐷 

3.71
 

5 × 103 ≤ Re ≤  108 

10−6 ≤
𝜀

𝐷
≤  5 × 10−2 

 

a.
 Model Parameters have been modified using AI technique. 

 

3. ARTIFICIAL INTELLIGENCE BASED  

Artificial intelligence (AI) broadly refers to the ability to 

mimic or replicate the human behaviour / reasoning into 

machines and software using cutting edge techniques. AI 

technologies have matured to the point of offering real 

practical benefits in many of their applications [47]. In 

particular, much work has been done to employ AI such as 

artificial neural networks (ANNs), genetic 

algorithm/programming, gene expression programming, 

data mining and evolutionary algorithms (EAs) to calculate 

pipe flow friction factors. Indeed, such technique proves to 
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be a powerful tool in solving non-linear, transcendental, or 

otherwise complex mathematical relations such as the 

Colebrook–White equation [2]. 

 

3.1 Artificial Neural Network (ANN) Model 

Artificial neural network (ANN) is an authoritative 

modelling technique that exhibits analogies to the way 

arrays of neurons function in the biological and learning 

memory. ANN offers numerous benefits over conventional 

modelling techniques because they can model based on no 

assumptions or prior knowledge concerning the 

phenomenological mechanisms and understanding the 

mathematical background of the problem underlying the 

process and the ability to learn linear and non-linear 

relationships between variables directly from a set of 

examples [48].   

 

A typical artificial neural network has three distinct layers 

namely the input, hidden and output layers respectively. It 

can be trained to perform a particular function by adjusting 

the values of the connections (weights) between elements so 

that a particular input leads to a specific target output.  

Several training techniques exist, but the most commonly 

used is the back propagation network [12-18].  Table -2 

gives a list of ANN models and their respective accuracies 

for friction factor estimation.  Besides friction factor 

modelling, the use of ANN has been reported [48-51].  

However, Salmasi, Khatibi and Ghorbani [9], based on their 

research,  are of the opinion that the application of ANN in 

predicting friction factor has not been successful. 

 

The earliest work on the use of ANN for predicting friction 

factor in pipe flow for Newtonian fluids dates back to the 

work of Shayya and Sablani [12]. They used a combination 

of 40 Re and 43 e/D parameters resulting in a total of 1720 

input data points.  The best network architecture for their 

work (with 3 hidden layers) was obtained using the 

transformed input parameters (Re and e/D) to a logarithmic 

scale and has a maximum relative error of about 1.22% 

when compared to the implicit Colebrook equation. 

 

Fadare and Ofidhe [15] also developed an ANN model for 

predicting pipe friction factor estimation in the fully 

developed turbulent flow regime.  A total of 1920 

input/output normalized datasets was used for the training.  

Their results showed that the network with 2-20-31-1 

configuration trained with the Levenberg-Marquardt 

function had the best performance with R
2
-value (0.999), 

maximum absolute error (0.68%), mean square error (MSE) 

of 5.335 ×  10−7 and sum of squared error (SSE) of 

3.414 × 10−4. These error indices show their work has a 

significant improvement over the work of Shaya and Sablani 

[12].   

 

Yazdi and Bardi [16] used 2000 normalized input/output 

datasets. The best network architecture were 2-10-20-1 and 

2-20-25-1 with MSE values of 3.14 × 10−8 and 3.39 ×

 10−9, respectively. However, in terms of relative error, it 

has error up to 3.5%. In addition to the evaluation of the 

network‟s accuracy, this work also considered the training 

time (the time required to process an input/data set to get a 

desired result based on predefined network architecture) for 

developing the network. The computational burden of 

training the data set is of no significance since it does not 

reflect the efficiency (computational speed / complexity) of 

the ANN model when put to use for friction factor 

estimation.  

 

It is observed from the  above studies, that the range of the 

Reynolds number chosen for the inputs all fall outside the 

applicable range of the Colebrook equation [17]. Although 

the works are similar, the differences lie in the 

normalization techniques employed (See Table-2). 

Normalization helps to put the datasets within the same 

order of magnitude.  The quality of an ANN is largely 

dependent on the quantity of available data for training, the 

structure or architecture of the network. 

 

ANN is considered a black box, because while it can 

approximate any function, studying its structure would not 

give any insight on the structure of the function being 

approximated. Most researchers have adopted this approach 

in the development of their ANN models.  Besarati et al. [3] 

views this approach as defeating the aim of explicitly 

resolving the Colebrook equation given the intricate nature 

of these models. Sequel to this, they applied the group 

method of data handling (GMHD) to the development of an 

artificial neural network optimized by multi-objective 

genetic algorithms to find an explicit polynomial model for 

friction factor. A total of 250 input/output datasets were 

used in their work. The polynomial model developed therein 

has error up to 3.4%. 

 

In the recent study conducted by Brkić and Ćojbašić [17], an 

ANN model was developed to predict friction factor.  Their 

research utilized a total of 90,000 data sets of input and 

output, respectively. The best network architecture for their 

work is 2-50-1 with a maximum relative error of 0.07% 

compared with the implicit Colebrook equation.   

 

Offor and Alabi [18] also developed an ANN model for 

friction factor prediction using the multilayer perceptron 

network. The best network architecture obtained in their 

study was a 2-30-30-1 trained with 60,000 datasets with a 

maximum relative error of 0.004% compared with the 

implicit Colebrook equation. 

 

These models[17,18] is found to outperform most of the 

available non AI-based models with the exception of those 

developed by Brkić and Ćojbašić [8], Gouder and Sonnad 

[35], Vantankhah and Kouchakzadeh [28] and Vantankhah 

[37]. 
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Table -2: Available ANN Architectures for approximating the Colebrook equation 

Author 

[Reference] 
Structure R

2 MRE
a 

(%)
 MAE MSE SSE 

     

Max. 

RE 

(%) 

Shayya and Sablani [12] 2-14-14-14-1 0.9996 1.22 2.28e-6 - -  

Sablani, Shayya and  Kacimov [13] 2-8-8-1 0.9870 2.01 0.000079 - -  

Sablani, Shayya and  Kacimov [13] 2- 4-1 0.972 3.16 0.00105 - -  

Shayya, Sablami and Capo [14] 2-12-12-12-1 0.9899 1.73 0.00013 - -  

Ozger and Yildrim [19] 2-6-9-9-1-1 - 0.68 - - -  

Fadare and Ofidhe [15] 2-20-31-1 - 0.68 - 5.335E-7 3.414E-04  

Yadzi and Bardi [16] 2-20-25-1 - 0.35 - 3.339E-9   

Besarati, Myers, Covey and Jamali [3] 2-2-1 0.9954 3.4 - - -  

Brkić and Ćojbašić  [17] 2-50-1 - 0.0018 3.657E-07 4.067E-13 2.440E-08 0.07 

Offor and Alabi [18] 2-30-30-1 1 1.99E-04 3.89E-08 2.46E-15 1.48E-10 0.004 
a

 MAPE (Mean absolute percentage error)  is the same as MRE (mean relative error)  

 

3.2 Evolutionary Algorithms 

This technique uses the mechanisms inspired by biological 

evolution such as reproduction, mutation, recombination and 

selection. These include genetic algorithm, genetic 

programming and gene expression programming. 

 

3.2.1 Genetic Algorithms 

Genetic algorithms are one of the evolutionary 

computational intelligence techniques inspired by Darwin‟s 

theory of biological evolution which is based on the survival 

of the fittest. Given a population of individuals which 

represents possible solutions to a problem, the population is 

modified (evolved) by repeatedly selecting the fittest 

solution and producing new ones from them [52]. This new 

solutions replaces the existing ones until the best is 

obtained.  Genetic algorithms are a global search method 

which works well in any search space.  

 

3.2.2 Gene Expression Programming 

Gene expression programming (GEP) is a technique that 

allows the solution of problems by automatically generating 

algorithms and expressions. These expressions are coded or 

represented as a tree structure with its terminals (leaves) and 

nodes (functions). GP applies GAs to a „„population‟‟ of 

programs, i.e., typically encoded as tree-structure. Trial 

programs are evaluated against a „„fitness function‟‟ and the 

best solutions selected for modification and re-evaluation. 

This modification-evaluation cycle is repeated until a 

„„correct‟‟ program is produced [9]. 

3.2.3. Genetic Programming 

It is an application of genetic algorithm (GA) to problems 

where each individual in a population represents a computer 

program. The programs are then encoded as a set of genes 

that are modified (evolved) using genetic algorithm (GA). 

GA evolves solutions to a given problem while GP aims at 

evolving computer programs that can solve a given problem 

[48].  

 

The fundamental difference between GA, GP, and GEP is 

due to the nature of the individuals: in the GA, the 

individuals are linear strings of fixed length (chromosomes); 

in GP the individuals are nonlinear entities of different sizes 

and shapes (parse trees); and in GEP the individuals are 

encoded as linear strings of fixed length (the genome or 

chromosomes), which are afterwards expressed as nonlinear 

entities of different sizes and shapes [43].  While genetic 

algorithm is solely a search algorithm, genetic programming 

and gene expression programming in addition offers the 

advantage of producing explicit models for determination of 

output parameters [9, 52]. 

 

Salmasi [9] applied the GP technique in developing a 

friction factor model. A total of 2072 data points which 

comprised 74 Re and 28 e/D values ranging from 2000 to10
8 

and 10
-6 

to 0.09, respectively, were used. The reported 

accuracy based on the selected data points was a maximum 

relative error of  2.64 ×  10−12 . This model however, fails 

to reproduce the same level of accuracy over a dataset 

different from that used to develop the model.  Thus, the 

model has a poor generalization capability.   Till date, 

friction factor models developed using the GP and GEP 

techniques have been marked by a high degree of 

inaccuracy. 

 

Samadianfard [10] proposed a model for estimating flow 

friction factor using GEP based technique. However, it has 

been observed [37] that the model is not very accurate and 

has errors up to 7%, which has been attributed to inaccurate 

solution of the implicit Colebrook's equation which was 

used in gene expression programming (GEP) by the author. 

A list of the available GP/GEP models is presented in Table 

-3.  

 

Evolutionary algorithms can be utilized as search algorithms 

to enhance the performances of friction factor models.  

Cojbasić and Brkić [8] have used genetic algorithm to 

optimize the model parameters of the models developed by 

Serghides [26] (12) and Romeo, Royo and Monzon [22] ( 

14) as  shown in Fig-3.  This technique reduced the relative 

errors from 0.1385% and 0.1345% to 0.0026% and 0.0083% 

for (12) and (14), respectively [8]. The modification of (12) 

is not as accurate as reported; however, the accuracy of (12) 

was significantly improved. 
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Table -3: Available GP/GEP Architectures for approximating the Colebrook Equation 
Equatio

n no. 
Author 

[Reference] 
GP/GEP based explicit models 

Applicable ranges of 

Re and 𝜺/𝑫 

30 Salmasi, Khatibi  

and Ghorbani [9] 
𝑓 =  −0.0575 +

𝜀

𝐷
+ 𝑒−11.764 𝜀/𝐷 −log  2Rn   

+ 𝑒
−2.567+9.065

Rn−ε/D 
        

2 × 103 ≤ Re ≤ 108 
10−6 ≤ ε/D ≤  0.05 

 

31 Samadianfard [10] 
𝑓 =   

Re𝜀/𝐷 −  0.6315093

Re1/3 + Re ∗ 𝜀/D
 

+ 0.0275308  
6.929841

𝑅𝑒
+ 𝜀/𝐷 

1/9

+  
10𝜀/𝐷

𝜀

𝐷
+ 4.781616𝑅𝑒

   
𝜀

𝐷
+

9.99701

𝑅𝑒
  

4 × 103 ≤ Re ≤   108  
10−6 ≤ ε/D ≤  0.05 

 

32 Samadianfard, 

Taghi,  

Kisi and Kazemi 

[11] 

f = 152.137 ×  ε D  
3 

+ 1223 ×  ε D  
4 

+
 9.96213 + Re 

Re2
 

+ arctan 
−8.79056 ×  ε D  

2
×  Re − 9.72464 

9.72464 + Re
 

+
0.0834528  ε D  ×  Re 

2
3 

ln   ε D  
3
 

2

+
arctan 8.3663 ×  ε D  ×  Re 

2

ln   ε D  
3
 

2

+ arctan  Re sin  ε D    
2

+  
ln  

Re

 ε D  
 

Re − 9.96213
  

+ arctan

 
 
 
 
 

 ε D  sin  
arctan 

0.447021

 ε D  
 

 ε D  × Re
 

 
 
 
 
 

 

+ sin

 
 
 
 
 

 ε D  × arctan 
arctan 

2.70969

 ε D  
 

 ε D  × Re
 

 
 
 
 
 

 

−2sin   ε D  −
arctan arctan ε D   

arctan arctan Re  
 + sin  

arctan 
0.488525

 ε D  
 

9.98978 + ln Re 
 

2

 

4 × 103 ≤ Re ≤   108  
10−6 ≤ ε/D ≤  0.05 

  

 
Fig – 3:  Relative errors distribution of the models by Romeo, Royo and Monzon [22], Serghides [26] and Cojbasić and Brkić[8] 

when compared with the implicit Colebrook equation 
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Davidson [52] developed a polynomial friction factor model 

using genetic programming to fit the implicit Colebrook 

equation and the model parameters therein were determined 

using numerical method.  A total of 100 transformed data 

sets consisting of 10 data points each of Re and (ε/D) values 

in the ranges 100000-1000000 and 0.001-0.01, respectively 

were used.  The 14-term polynomial was reported to have 

maximum absolute error value of 0.000194 compared with 

the implicit Colebrook equation. This value compares well 

with those obtained from most of the moderately accurate 

non AI- based explicit approximations. 

 

3.2.4 Artificial Neuro Fuzzy Inference System (ANFIS) 

This is a soft computing method in which a given input-

output data set is expressed in a fuzzy inference system. It is 

a kind of artificial intelligence which integrates both neural 

network and fuzzy logic principles i.e. it uses a hybrid 

learning algorithm.  It has the advantage of allowing users to 

insert prior knowledge into a neural network as a rule, which 

is not obtainable with the conventional ANN. The approach 

was used by Ozger and Yildrim [19] to develop an ANN 

model to approximate the Colebrook equation. The best 

network topology from their work gave an MRE value of 

0.68%.  The results obtained from their work compares well 

only with the less accurate non AI-based explicit 

approximations. 

 

4.0 Comparative Evaluation of the Explicit non AI-based 

and AI-based Friction Factor Models 

Using the maximum relative error criterion, a comparison of 

all the available non AI-based models was made. It is shown 

that the most accurate non AI-based models are those by 

Goudar and Sonnad [35] and, Serghides [26] as modified by 

Cojbasić and Brkić [8] (13) using genetic algorithm (see 

Table-4).

 

Table -4: Non AI-based explicit models ordered by maximum relative error  

Equation 

no. 

Author 

[Reference] 

Maximum 

absolute 

error 

MSE SSE 
   Max. 

RE (%) 

(29) Goudar and Sonnad [36] 4.14E-14 3.90E-29 1.17E-24 1.04E-10 

(28) Goudar and Sonnad [36] 1.45E-07 5.99E-16 1.80E-11 3.64E-04 

(13) Cojbasić and Brkić [8] 4.57E-07 1.35E-14 4.06E-10 0.0026 

(15) Cojbasić, and Brkić  [8] 7.21E-06 2.82E-12 8.46E-08 0.0115 

(28) Vantankhah  [37] 1.99E-05 1.93E-11 5.78E-07 0.0499 

(29) Vantankhah [37] 2.38E-05 1.02E-11 3.07E-07 0.0596 

(26) Offor and Alabi [34] 2.36 E-05 2 .86E-11 1.71 3E-06 0.0664 

(12) Serghides [26] 8.97E-05 7.90E-10 4.74 0.1225 

(22) Buzzelli [27] 8.98E-05 9.08E-10 2.73E-05 0.1255 

(11) Zigrang  and Sylvester [25] 8.97E-05 3.47E-09 2.82E-05 0.1255 

(19) Vantankah  and 

Kouchakzadeh [28] 

9 .52E-05 8.80E-10 5.28E-05 0.1332 

(14) Romeo, Royo amd Monzon 

[22] 6.38E-05 

4.82E-10 2.89E-05 

0.1462 

(7) Chen [23] 1.26E-04 1.54E-09 4.78E-05 0.3559 

(10) Barr [42] 3.28E-04 2.11E-09 6.33E-05 0.5247 

(28) Fang, Xu and Zhou [45] 4.61E-04 4.35E-09 1.31E-04 0.5997 

(8) Shacham [41] 3.46E-04 4.41E-09 1.32E-04 0.8678 

(18) Sonnad and Goudar [36] 3.96E-04 1.35E-08 4.04E-04 0.9926 

(16) Haaland [43] 7.31E-04 2.32E-08 6.95E-04 1.4073 

(27) Ghanbari, Farshad and 

Rieke [46] 

2.00E-03 2.11E-07 0.0066 2.7744 

(17) Manadilli [44] 2.10E-03 8.74E-08 0.0026 2.8174 

(25) Brkić [38] 2.18E-03 2.73E-07 0.0094 2.9427 

(6) Churchill [ 40] 2.03E-03 2.86E-07 0.0085 3.2178 

(4) Eck [30] 0.0034 4.28E-07 0.0257 8.1968 

(9) Round [29] 6.00E-03 2.24E-06 0.1341 10.2217 

(2) Moody [23] 0.0123 6.73E-09 0.4036 18.991 

(3) Wood [31] 0.0133 1.32E-06 0.0794 28.2335 

(24) Rao and Kumar [32] 3.84E-02 5.20E-05 1.5587 85.479 
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 Table -5: AI-based GP/GEP explicit models ordered by maximum relative error 

Equation 

no. 

Author 

[Reference] 

Maximum 

absolute 

error 

MSE SSE 
    Max. 

RE (%) 

(30) Salmasi, Khatibi and Ghorbani [9] 0.0057 4.295E-05 2.578 203.26 

(31) Samadianfard [10] 0.0024 2.163E-07 0.0125 7.439 

(32) Samadianfard, Taghi, Kisi and Kazemi [11] 199 3.734E+03 2.241E+08 2.785E+05 

  

The AI-based models developed so far using GP and GEP 

have a high degree of inaccuracy when compared with the 

implicit Colebrook equation as shown in Table - 5. 

However, genetic algorithm has shown to be successful in 

optimization of model parameters. Although, the accuracy is 

largely dependent on the quality of the models whose 

parameters are to be optimized.  

 

 The most accurate among the ANN model developed so far 

for predicting friction factor in the turbulent regime are 

those by Offor and Alabi [18], followed by Brkić and 

Ćojbašić [17]. These  models are in close agreement with 

those of the extremely accurate non-AI based models while 

the rest of ANN models reported (see Table -3) in the 

literature have accuracies equivalent to those of the less 

accurate non AI-based models with the exception of those 

by Round [28], Eck [30], Moody [23], Wood [31] and Rao 

and Kumar [32], which are extremely inaccurate. Neuro- 

fuzzy logic when combined with ANN, despite its advantage 

of offering prior knowledge to the system, has accuracy 

within the range of the less accurate non-AI based models. 

This combination did not yield any significant improvement.   

 

The accuracy margin between the non AI-based and AI-

based models still remains wide, a value of 1.04 × 10−10% 

against 0.004% based on maximum relative error criterion, 

when compared with the implicit Colebrook equation. 

However, the use of genetic algorithm (GA) to optimize 

neural networks parameters has been reported [54]. Based 

on the available literature, this can be used to reduce the 

margin. This can be achieved by adjusting the weights, 

network architecture or the learning rates [55]. The GA-

trained ANN has been shown to give improved accuracy 

over the conventional ANN [55].  

 

Amongst the artificial intelligence techniques so far 

employed in determining friction factor, ANN produced the 

best results while genetic algorithm has shown to be a viable 

tool for model parameters optimization (see (13) and (15) in 

Table-4). This is no surprise since GA has the capability of 

obtaining a global solution while the GEP models developed 

so far are marked by a high degree of inaccuracy 

asshowninTable-5. 

 

In the last 50 years, attempts have been made to resolve the 

implicit Colebrook equation. This was without much 

success initially but at the turn of the 21
th

 century, the 

evolved approximations closed the margin between the 

implicit model and the explicit approximations. Now there 

are models with very high accuracy which eliminates the 

need for the use of the implicit Colebrook equation. 

 

5.  CONCLUSION 

The performances of artificial intelligence (AI)-based and 

non- AI based methods for resolving the implicit Colebrook 

equation were considered.  The available AI-based 

techniques are genetic algorithm, gene expression 

programming and artificial neural networks. The most 

accurate friction factor models fall among the non AI-based 

models with a few exceptions which are highly inaccurate. 

Amongst the artificial intelligence approaches, ANN 

network gives the best accuracy followed by GA-trained 

non-AI based model while GEP and GP techniques are 

marked by a high degree of error, although they offer the 

advantage of producing explicit analytical formulas for 

determination of output parameters. 
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Nomenclature 

f   Darcy friction factor  [dimensionless] 

D  Internal pipe diameter [m] 

ε   Pipe absolute roughness [m]  

ε/D  Relative roughness (dimensionless) 

Re   Reynolds number (dimensionless) 

AI  Artificial intelligence 

ANN  Artificial neural network 

GA  Genetic algorithm 

GEP  Gene expression programming 

GP  Genetic programming 


