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Abstract 
The predictive ability of soft sensors deteriorates over time due to changes in the state of the plant and process characteristics. 

The results from the offline laboratory analyses of samples can be used to determine when a soft sensor requires recalibration; 

however, this approach is time-consuming. This paper presents a systematic approach in which a reverse model is developed for 

an online monitoring of the performance of soft sensor, the forward model. The proposed methodology is illustrated using a 

cement clinker quality parameters soft sensor as a case study. The reverse regression model gave rise to root mean squared error, 

coefficient of determination and worst case relative error values of 17.436, 0.9999 and 4.59%, respectively. Thus, it was 

concluded that, instead of the time-consuming approach of taking samples at the kiln exit for laboratory analysis, the developed 

reverse model can be used to provide plant operators with information about the predictive accuracy of the soft sensor. 
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1. INTRODUCTION 

A soft sensor is a mathematical model that correlates 

process state and product quality variables that are difficult 

to measure online with frequently available process 

measurements. Soft sensors can be easily integrated with 

control systems to provide tighter process performance [1]. 

A soft sensor provides real-time, accurate predictions of 

product quality variables, eliminating additional energy and 

production cost associated with out-of-specification 

products. Also, it can monitor processes, design tighter 

control, provide fault detection and diagnosis [2]. In 

comparison to hardware sensors (analyzers) for online 

estimation of product quality parameters, soft sensor is 

cheaper and has found applications in many industries 

including the cement industry. However, the predictive 

ability of soft sensors deteriorates over time due to changes 

in process characteristics. To maintain soft-sensors 

performance for a longer period of time, model parameters 

have to be re-tuned in an online manner by adaptive 

methods such as recursive principal component analysis, 

PCA [3], local methods [4] and recursive principal least 

square regression, PLS [5]. The recursive methods can adapt 

the model automatically to new operating conditions but 

they are known to function well only with slow changes in 

process characteristics and, if the global model is linear, 

only with mild nonlinearities [6]. Local techniques are 

globally nonlinear, can achieve the required accuracy and 

can be promptly upgraded to automatically include new 

operations. These methods are reported in [6], [7] as tools 

for calibrating or reconstructing the failing soft sensor. 

Unfortunately, there are no reports on how to determine 

when the failing soft sensor model requires reconstruction or 

calibration.  

Therefore, this study develops a general-purpose framework 

for online monitoring of the performance of soft sensor. The 

proposed framework is then applied to a cement clinker 

quality parameters soft sensor, as a case study. The findings 

are expected to aid in the decision making to improve the 

predictive accuracy of the soft sensor and subsequently help 

determine when the soft sensor model should be updated or 

rebuilt.  

 

2. METHODOLOGY 

Sensor failure can be defined as an unpermitted deviation 

from the acceptable condition of at least one characteristic 

property or parameter of the system obtained by the sensor 

[8]. To determine sensor failure, a systematic approach is 

proposed here for online monitoring of the soft sensor 

performance. 

 

Suppose the performance of a multiple-input-multiple-

output (MIMO) soft sensor (model) with inputs 

𝑥𝑠1 , 𝑥𝑠2 , 𝑥𝑠3 …𝑥𝑠𝑛  and outputs 𝑦𝑠1 , 𝑦𝑠2 , 𝑦𝑠3 …𝑦𝑠𝑛  is to be 

monitored online. The systematic approach proposed here 

employs a companion or reverse model that uses the outputs 

of the soft sensor as inputs to predict at least one of the soft 

sensor’s inputs (parameters) as shown in figure 1. 

 

 
Fig -1: Monitoring soft sensor performance with a reverse 

model  
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where 𝑥𝑅1 , 𝑥𝑅2 , 𝑥𝑅3 …𝑥𝑅𝑛  are the reverse model estimated 

values of the soft sensor inputs. These estimated values are 

compared with the original input values to the soft sensor 

based on some performance criteria. Thereafter, a decision 

is made about the state of the soft sensor, depending on the 

magnitude of the deviation or performance criterion. 

 

In summary, the proposed systematic procedure of applying 

reverse modelling technique for monitoring soft sensor 

performance comprises of the following steps: 

1. Use the same datasets from which the soft sensor was 

built to develop the reverse model. 

2. For known values of the input to the soft sensor 𝒙𝒔𝒊, 

determine the values of the output from the soft 

sensor 𝒚𝒔𝒊. 

3. Use the values of the output of the soft sensor as input 

to the reverse model and determine the output values of 

the reverse model 𝒙𝑹𝒊. 

4. Compare the reverse model predictions 𝒙𝑹𝒊, with the 

measured input values 𝒙𝒔𝒊. Based on the maximum 

permissible error value, a decision on whether the soft 

sensor is active or failing can be reached.  

 

The above procedures are applied to datasets collected from 

the simulation of first principle-based cement rotary kiln 

model. The results are given in section 3.  

 

3. CASE STUDY 

The soft sensor whose performance is to be monitored 

online by the proposed reverse model was reported in [14]. 

The steps followed in developing the reported soft sensor 

are summarised in section 3.1. Section 3.2 gives a detailed 

description of the implementation of the proposed reverse 

model for online monitoring of cement clinker quality 

parameters soft sensor. 

 

3.1 Summary of Soft Sensor Development 

The cement clinker quality parameters soft sensor under 

study, was developed by performing statistically designed 

experiment on cement rotary kiln first principle-based 

model. Thereafter, the experimental (simulation) data 

obtained were used to build the soft sensor. Equations (1-14) 

is the first principle-based cement rotary kiln model. 

 

3.1.1 Steady State Material Balance Equations 

The equations that describe the one-dimensional steady-state 

axial evolution of components involved in the clinker 

formation are given as equations (1) - (9) [9], [10], [11]. 

 

Calcium Carbonate (Lime Stone) 

  CaCO3:  
𝑑𝑚𝐶𝑎𝐶𝑂 3

𝑑𝑧
=  −

1

𝑣𝑠
𝑟𝐶𝑎𝐶𝑂3

. 𝑀𝐶𝑎𝐶𝑂3
 

                           =
−1𝑣𝑠[𝑀𝐶𝑎𝐶𝑂3𝑀𝐶𝑎𝑂𝐾𝐶𝑎𝐶𝑂3exp−𝐸𝐶𝑎𝐶𝑂3𝑅.𝑇𝑠𝑚𝐶𝑎
𝐶𝑂3].                (1) 

 

 

 

Calcium Oxide (Quick lime) 

CaO: 
𝑑𝑚𝐶𝑎𝑂

𝑑𝑧
=

1

𝑣𝑠
 𝑟𝐶𝑎𝐶𝑂3  

− 𝑟𝑐2𝑠 − 𝑟𝐶3𝑆 − 𝑟𝐶3𝐴 − 𝑟𝐶4𝐴𝐹  

 
1

𝑣𝑠
[𝐾𝐶𝑎𝐶𝑂3

exp  −
𝐸𝐶𝑎𝐶 𝑂3

𝑅 .𝑇𝑠
 𝑚𝐶𝑎𝐶𝑂3

−

𝐾𝐶2𝑆 𝑒𝑥𝑝  −
𝐸𝐶2𝑆

𝑅.𝑇𝑠
  𝑚2

𝐶𝑎𝑂𝑚𝑆𝑖𝑂2
−

𝐾𝐶3𝑆 𝑒𝑥𝑝  −
𝐸𝐶3𝑆

𝑅.𝑇𝑠
 𝑚𝐶𝑎𝑂𝑚𝑐2𝑠 −

𝐾𝐶3𝐴 𝑒𝑥𝑝  −
𝐸𝐶3𝐴

𝑅.𝑇𝑠
  𝑚3

𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3
−

𝐾𝐶4𝐴𝐹 𝑒𝑥𝑝  −
𝐸𝐶3𝐴

𝑅 .𝑇𝑠
 𝑚4

𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3
𝑚𝐹𝑒2𝑂3

].            (2) 

 

Silicon (IV) Oxide (Silica) 

  SiO2:     
𝑑𝑚𝑆𝑖𝑂 2

𝑑𝑧
= −

1

𝑣𝑠
𝑟𝑐2𝑠 . 𝑀𝑆𝑖𝑂2

 

= −
1

𝑣𝑠
 
𝑀𝑆𝑖𝑂 2

2𝑀𝐶𝑎𝑂
𝐾𝐶2𝑆 𝑒𝑥𝑝  −

𝐸𝐶2𝑆

𝑅 .𝑇𝑠
  𝑚2

𝐶𝑎𝑂𝑚𝑆𝑖𝑂2
 .    (3) 

 

Aluminum Oxide (Alumina) 

   Al2O3: 
𝑑𝑚𝐴𝑙 2𝑂3

𝑑𝑧
= −

1

𝑣𝑠
 𝑟𝐶4𝐴𝐹 + 𝑟𝐶3𝐴 . 𝑀𝐴𝑙2𝑂3

 

=

−
1

𝑣𝑠
  𝐾𝐶4𝐴𝐹 𝑒𝑥𝑝  −

𝐸𝐶3𝐴

𝑅.𝑇𝑠
 𝑚4

𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3
𝑚𝐹𝑒2𝑂3

+

𝐾𝐶3𝐴𝑒𝑥𝑝−𝐸𝐶3𝐴𝑅.𝑇𝑠 𝑚3𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3.                         
(4) 

 

Iron (III) Oxide 

   Fe2O3: 
𝑑𝑌𝐹𝑒2𝑂3

𝑑𝑧
=  −

1

𝑣𝑠
𝑟𝐶4𝐴𝐹 . 𝑀𝐹𝑒2𝑂3

 

= −
1

𝑣𝑠

[
𝑀𝐹𝑒2𝑂3

𝑀𝐶𝑎𝑂

𝐾𝐶4𝐴𝐹 𝑒𝑥𝑝  −
𝐸𝐶3𝐴

𝑅. 𝑇𝑠

 𝑚4
𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3

𝑚𝐹𝑒2𝑂3
]. (5) 

 

Dicalcium Silicate (Belite, C2S) 

   C2S: 
𝑑𝑌𝐶2𝑆

𝑑𝑧
=

1

𝑣𝑠
 𝑟𝐶2𝑆 − 𝑟𝐶3𝑆 . 𝑀𝐶2𝑆  

𝑑𝑌𝐶2𝑆

𝑑𝑧
=

1

𝑣𝑠
 𝐾𝐶2𝑆 𝑒𝑥𝑝  −

𝐸𝐶2𝑆

𝑅 .𝑇𝑠
  𝑚2

𝐶𝑎𝑂𝑚𝑆𝑖𝑂2
−

𝐾𝐶3𝑆𝑒𝑥𝑝−𝐸𝐶3𝑆𝑅.𝑇𝑠𝑚𝐶𝑎𝑂𝑚𝑐2𝑠.𝑀𝐶2𝑆𝑀𝐶𝑎
𝑂.             (6) 

 

Tricalcium Silicate (Alite, C3S) 

C3S: 
𝑑𝑌𝐶3𝑆

𝑑𝑧
=

1

𝑣𝑠
𝑟𝐶3𝑆 . 𝑀𝐶3𝑆  

=
1

𝑣𝑠
 𝐾𝐶3𝑆 𝑒𝑥𝑝  −

𝐸𝐶3𝑆

𝑅 .𝑇𝑠
 𝑚𝐶𝑎𝑂𝑚𝑐2𝑠 .

𝑀𝐶2𝑆

𝑀𝐶𝑎𝑂
.           (7) 

 

                                                                                        

 

Tricalcium Aluminate (Celite, C3A) 

   C3A: 
𝑑𝑌𝐶3𝐴

𝑑𝑧
=

1

𝑣𝑠
𝑟𝐶3𝐴 . 𝑀𝐶3𝐴 

𝑑𝑌𝐶3𝐴

𝑑𝑧

=
1

𝑣𝑠

 𝐾𝐶3𝐴 𝑒𝑥𝑝  −
𝐸𝐶3𝐴

𝑅. 𝑇𝑠

  𝑚3
𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3

 .
𝑀𝐶3𝐴

𝑀𝐶𝑎𝑂

.        (8) 
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Tetracalcium Aluminoferrite (C4AF) 

   C4AF: 
𝑑𝑌𝐶4𝐴𝐹

𝑑𝑧
=

1

𝑣𝑠
𝑟𝐶4𝐴𝐹 . 𝑀𝐶4𝐴𝐹  

𝑑𝑌𝐶4𝐴𝐹

𝑑𝑧
=

1

𝑣𝑠
 𝐾𝐶4𝐴𝐹 𝑒𝑥𝑝  −

𝐸𝐶3𝐴

𝑅.𝑇𝑠
 𝑚4

𝐶𝑎𝑂𝑚𝐴𝑙2𝑂3
𝑚𝐹𝑒2𝑂3

 .
𝑀𝐶3𝐴

𝑀𝐶𝑎𝑂
.  

                                                                                            (9) 

 

3.1.2 Steady State Energy Balance Equations 

The energy balance equations that describe the one-

dimensional steady-state axial temperature profiles of the 

phases involved in clinker formation are given as equations 

(10) - (12) [12]. 

 

Gas (Free Board) Phase 

𝐴𝑔𝐶𝑝𝑔𝜌𝑔𝑣𝑔
𝑑𝑇𝑔

𝑑𝑧
= 𝛽𝐺→𝑤 𝑇𝑤 − 𝑇𝑔 + 𝛽𝑆→𝐺 𝑇𝑠 − 𝑇𝑔 +

𝑄𝑐𝑜𝑚𝑏 .                                                                                    (10) 

 

Solid (Bed) Phase 

𝐴𝑠𝐶𝑝𝑠𝜌𝑠𝑣𝑠
𝑑𝑇𝑠

𝑑𝑧
= 𝛽𝑆→𝐺 𝑇𝑔 − 𝑇𝑠 + 𝛽𝑊→𝑆 𝑇𝑤 − 𝑇𝑠 −

 𝑟𝐶𝑎𝐶𝑂3
. ∆𝐻𝐶𝑎𝐶𝑂3

+ 𝑟𝐶2𝑆 . ∆𝐻𝐶2𝑆 + 𝑟𝐶3𝑆 . ∆𝐻𝐶3𝑆 +

𝑟𝐶3𝐴.∆𝐻𝐶3𝐴+𝑟𝐶4𝐴𝐹.∆𝐻𝐶4𝐴𝐹.                                           

(11)  

Wall Phase 

𝛽𝐺→𝑤 𝑇𝑔 − 𝑇𝑤 + 𝛽𝑊→𝑆 𝑇𝑠 − 𝑇𝑤 + 𝛽𝑊→𝐴𝑖𝑟  𝑇𝑎 − 𝑇𝑤 = 0.  

                                                                             (12) 

 

The residence time and velocity of the solid materials within 

the rotary kiln are described by equations (13) - (14) [11]. 

Velocity of the solid, 

 

𝑣𝑠 =
𝛼𝐷𝑛

60×1.77 𝛽
.                                                                  (13) 

 

Material residence time,  

 

𝜏 =
1.77𝐿 𝛽

𝛼𝐷𝑛
.                                                                      (14) 

 

Where, the heat transfer coefficients 

(𝛽𝐺→𝑤 , 𝛽𝑠→𝐺𝛽𝑊→𝑠 , 𝛽𝑤→𝐴𝑖𝑟 ), heat released by fuel 

combustion (𝑄𝑐𝑜𝑚𝑏 ), enthalpy of the chemicals (∆𝐻𝑖 ) and 

other parameters where obtained from [9], [10], [12]. 

 

3.1.3 Experimental Design 

Data in the range of the plant’s operating conditions and the 

values of some process parameters for a typical cement 

manufacturing plant were obtained from [10], [12] and [13]. 

The operating conditions used for the simulation are as 

shown in table 1. 

 

 

Table 1: Operating conditions for simulation of the cement 

rotary kiln 

S/N 
Raw Meal 

Quality 

Operating 

Conditions 

Kiln 

Operating 

Variables 

Operating 

Conditions 

1 

Quick 

Lime 

(CaO) 

0.30 - 0.50 

Kiln Feed 

Rate, 𝑚𝑠  

(kg/s) 

35 - 45 

2 
Silicon 

(IV) Oxide 
0.10 - 0.20 

Feed Inlet 

Temperatu

re, 𝑇𝑠
  (K) 

990 - 1120 

3 
Aluminum 

Oxide 
0.02 - 0.05 

Fuel Feed 

Rate, 𝑚𝑓  

(kg/s) 

1.5 - 1.9 

4 
Iron (III) 

Oxide 
0.01- 0.04 

Mass Flow 

rate of 

Air, 𝑚𝑎  

(kg/s)  

27 - 33 

 

With these operating conditions, a central composite 

response surface design (with ½ fraction) was used to 

generate one hundred and fifty four (154) data points. These 

data points were then entered into the rotary kiln simulation 

platform to determine the response variables for a 

combination of the inputs/factors.  

 

Furthermore, with the aid of Design Expert 7.0 statistical 

tool, these 154 data points were then used (after outlying 

data points had been removed based on the method 

described in [14]) to build the regression model (soft 

sensor). The soft sensor is of the form: 

 

𝑅 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎12𝑥1𝑥2 +
𝑎13𝑥1𝑥3 + ⋯ + 𝑎11𝑥1

2 + 𝑎22𝑥2
2 + ⋯                            (15) 

 

where R is the estimated response variable (clinker quality 

parameters): Lime Saturation Factor (LSF), Silica Moduli 

(SM), Alumina Moduli (AM), Free Lime (FCaO) and Alite 

(C3S); 𝑥1, 𝑥2, 𝑥3 ... are the input parameters (CaO, SiO2, 

Al2O3, Fe2O3, mass flow rate of solid, feed inlet temperature, 

mass flow rate of fuel and mass flow rate of air), 𝑎0 

represents the mean (intercept); 𝑎1,𝑎2 , 𝑎3 … are the linear 

effects; 𝑎11 , 𝑎22 , 𝑎33 … are the quadratic effects while 

𝑎12 , 𝑎13 , 𝑎23 … are the interaction effects.  

 

3.2 Reverse Model Development and 

Implementation 

Clinker samples at the kiln exit may be taken to the 

laboratory for quality parameters analysis to verify the 

prediction ability of the soft sensor. The problem of large 

measurement delay necessitates the development of a model 

which uses the predictions (clinker quality parameters) to 

estimate at least one of the corresponding easy-to-measure 

kiln operating variables. Any significant difference between 

reverse model predictions and the corresponding measured  

kiln operating input variable of interest may necessitate 

reconstruction of the soft sensor (see figure 2).  
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Fig -2: Monitoring the performance of clinker quality parameters soft sensor using a reverse model  

 

In this study, the reverse model was built using the same 

data set used for building the eight (8)-input-five (5)-output 

soft sensor (model). The inputs to the reverse model are: the 

four (4) raw meal parameters (CaO, SiO2, Al2O3 and Fe2O3), 

three (3) out of the four (4) kiln operating variables 

(ms ,mf , ma  ) and the five (5)-clinker quality parameters 

(LSF, SM, AM, FCaO, C3S). With the steps outlined below, 

(for building the soft sensor), these inputs were used to 

predict the feed inlet temperature of the kiln (𝑇𝑠
 ).  

 

The following steps in Design Expert 7.0 software were 

used to build this model: 

 The values of the responses (for each design run) in the 

simulation platform were copied into the central 

composite design layout view of the Design Expert 

software. 

 Each response variable was transformed for cases 

where the ratio of maximum to minimum response 

value was above 10. Otherwise, transformation was not 

necessary. 

 The fit summary environment was viewed to access 

information about the goodness of fit of the model 

(such as degree of freedom, F-value, P-value) and the 

model summary statistics 

(such as standard deviation, R2
adj , PRESS). Also, it 

gives information on which model is aliased. With F-

test, one can know if a group of variables are jointly 

significant. P-value, which must be less than the alpha 

level is the probability that the results have happened by 

chance. Predicted Residual Error Sum of Squares 

(PRESS) statistic estimates how the model performs on 

hold-out data, using only in-sample data [15]. 

 Backward elimination regression (with alpha = 0.05) 

was employed at model process order (which could be 

linear, 2FI, quadratic, cubic) for automatic elimination 

of undesired model terms. 

 Analysis of variance (ANOVA) platform which 

analyzes the chosen model gave a view of the results of 

analysis. 

 Diagnostic platform which evaluates the model fit and 

transformation choice with graphs (such as normal plot, 

residual vs prediction, etc.) was viewed to make the 

final choice on the model type. 

 

In addition to the above-stated statistical criteria, the 

performance of the model developed in this study was 

determined by evaluating the percent relative error  𝜀𝑟 , 

coefficient of determination (R
2
) and the root mean of 

squared error (RMSE) values produced by the model to the 

trained data (i.e. data used to build the model) and untrained 

data (i.e. data different from the model data). The equations 

(16–18) were used to calculate the above mentioned 

performance criteria. 

 

𝑅𝑀𝑆𝐸 =  
 (𝑦−𝑦𝑝 )2𝑛

𝑖=1

𝑛
                                                    (16) 

 

where, yP , is the predicted value of the independent variable 

and y is the simulated value. 

 

               𝜀𝑟 =  
 𝐴𝑐𝑡𝑢𝑎𝑙 −𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

𝐴𝑐𝑡𝑢𝑎𝑙
 × 100                               (17) 

 

              𝑅2 = 1 −
 (𝑦−𝑦𝑝 )2𝑛

𝑖=1

 (𝑦−𝑦 )2𝑛
𝑖=1

                                            (18) 

 

3.2.1 Reverse Model Performance Evaluation 

Interpolation test (datasets different from the original 

datasets used to build the model but within the range of the 

plant’s operating conditions) was performed to evaluate the 

performance of the reverse model. The data was obtained 

through two (2)-level factorial design (Res IV) to evaluate 

the performance of the model.  The model predictions were 

compared with the first principle-based simulation data used 

for building the model. 

 

3.2.2 Results and Discussion 

3.2.2.1 Estimation Capability of the Reverse Model 

The multiple-input-single-output reverse (second order 

regression) model having the potentials for monitoring the 

performance of the soft sensor is given in equation (19). 

Table 2 shows the performance of the reverse model.  
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Table -2: Performance of the reverse model 

Model 

Type 

Worst-

Case 

Relative 

Error 

RMSE R
2
 

Interpolation 

Test 

(Maximum 

% Relative 

Error) 

Quadratic 4.59 17.436 0.9999 4.83 

 

F = 1010.10876 + 935.99688 * A + 2155.27204 * B + 

15208.26768 * C + 8772.25489 * D + 2.86582 *E -

919.59003 * G - 4.05511 * H + 0.92872 * LSF - 

11.15669 * SM - 23.73571 * AM + 14.18909 * FCaO + 

7.16906 * (C3S)-21699.43573 * A * C + 7419.02111 * A 

* D - 10.04479 * A * E - 9.53823 * A * SM + 42.00079 * 

A * AM-14.06879 * A * FCaO - 21951.12021 * B * C - 

60.32698 * B * E + 1086.08576 * B * G - 42.48767 * B * 

H-2.44172 * B * LSF + 23.88024 * B * FCaO - 44.61101 

* B * (C3S) + 143.48303 * C * E - 385.25341 * C * 

H+38.37239 * C * LSF + 353.43583 * C * SM + 

289.47393 * C * AM - 92.81846 * C * FCaO + 91.32457 

* C * (C3S)+330.39683 * D * E - 12863.51311 * D * G 

+ 320.08797 * D * H - 336.47638 * D * SM-20.22942 * 

D * AM + 210.4378 * D * FCaO + 6.83205 * E * G - 

0.50337 * E * H + 0.80686 * E * SM-0.24707 * E * 

FCaO + 0.38212 * E * (C3S) + 29.14296 * G * H - 

15.14362 * G * SM - 17.66147 * G * AM+4.25904 * G * 

FCaO - 5.93557 * G * (C3S) - 0.083247 * H * LSF + 

0.92156 * H * AM - 0.51454 * H * FCaO+0.054188 * H 

* (C3S) - 0.035894 * LSF * SM - 0.095144 * LSF * AM - 

0.62118 * SM * AM + 0.40745 * SM * FCaO-0.14122 * 

SM * (C3S) + 0.42843 * AM * FCaO + 0.027997 * AM * 

(C3S) - 0.15805 * FCaO * (C3S)-289990 * D 
2
 + 

0.00669147 * LSF 
2
 + 0.033111 * SM 

2
 - 0.010626 * 

FCaO 
2
 + 0.056167 * (C3S) 

2
 

                                                                                          (19) 

 

The reverse model (4) is a relationship between the feed 

inlet temperature (an inlet condition of the forward model), 

the clinker quality parameters and some of the input 

variables of the forward model. 

 

The performance of this model was evaluated by comparing 

its predictions with the simulated data. Using the statistical 

criteria earlier mentioned, the model is found to be accurate 

with coefficient of determination, R
2
 = 0.9999. Moreover, 

the model predictions have worst case relative error of 

4.59% which is deemed accurate enough for practical 

applications. In addition, the interpolation ability of the 

reverse model was tested with the same data used for 

evaluating the forward (soft sensor) model. The estimated 

temperature from the reverse regression model closely 

matches simulated feed inlet temperature with worst case 

relative error of 4.83%. Although, this error level has to be 

taken into consideration during its online monitoring of the 

forward model, the reverse model is deemed adequate for 

online monitoring of the forward model (soft sensor). 

 

The developed regression model monitors the performance 

of the soft sensor (forward model) by predicting the feed 

inlet temperature of the rotary kiln. Therefore, the reverse 

model has the potential to deal with the time-consuming and 

labour-intensive approach of taking samples at the kiln 

outlet on weekly or monthly basis. This is usually done to 

determine if there are changes in process characteristics 

which could necessitate the soft sensor recalibration. 

 

4. CONCLUSION 

The predictive ability of soft sensors deteriorates over time 

due to changes in the state of the plant and process 

characteristics. For effective quality control, it is important 

to determine when the soft sensor requires recalibration. 

This paper presents a systematic approach for online 

monitoring of the soft sensor performance. The proposed 

methodology was illustrated through its application to a 

cement clinker quality parameters soft sensor. The case 

study reveals the effectiveness of the systematic framework 

in developing a reverse model for online monitoring of the 

performance of soft sensor developed for cement clinker 

quality parameters. The reverse regression model gave rise 

to root mean squared error, coefficient of determination and 

worst case relative error values of 17.436, 0.9999 and 

4.59%, respectively. Thus, it is concluded that, instead of 

the labour-intensive approach of taking samples at the kiln 

exit for laboratory analysis, the developed reverse model can 

provide plant operators with information about the 

performance of the soft sensor and subsequently help 

determine when the soft sensor should be updated or rebuilt. 
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