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 Abstract 
Stepper motors are the perfect tools where accurate locomotion, movement and positioning are needed. The major applications of 
permanent magnet stepper motors are in scanners, robotic controls and most widely, these days, in 3D-printers. The accurate 
rotor position tracking of permanent magnet stepper motor (PMSM) has hence become a very important task. This paper 
approaches this issue from the process control point of view. Consequently, controlling the rotor position requires complete state 
information for investigation.  The rotor position tracking and speed control of PMSM is advanced from the perspective of 
Lyapunov-based control method. The nonlinear estimation technique employs a nonlinear observer along with Lyapunov-
controller to estimate accurately the rotor position through the information from motor phase current and angular velocity.  The 
investigation through simulation demonstrates the effectiveness of the estimation technique, as the improved position tracking is 
achieved upon using Lyapunov-controller in comparison with the current control method under microstepping excitation of the 
motor. 
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1. INTRODUCTION 
According to the robotiksistem, a stepper motor (or step 
motor) is a brushless DC electric motor that can divide a full 
rotation into a large number of steps. The shaft or spindle of 
a stepper motor rotates in discrete step increments when 
electrical command pulses are applied to it in the proper 
sequence, and the motor's position can be controlled 
precisely without any feedback mechanism (an open-loop 
controller), as long as the motor is carefully sized to the 
application [1]. Stepper motors are formed by coils and 
magnets and incorporate a shaft that moves when power is 
applied. Since permanent magnet stepper motors can rotate 
in small step angles and have high precision, they are widely 
used in bio-medical applications, robotics, computer 
peripherals and automotive drive actuators.  In general, a 
stepper motor provides discrete movement by angular 
displacement with successive manner of equal displacement. 
The final position of the rotor is given by the total angular 
displacement which results the number of steps achieved. 
Stepper motor provides precision and high resolution of 
positioning which is the primary requirement of robotic 
automations and controls [2]. The operational efficiency is 
improved on employing various excitation schemes such as 
full stepping, half stepping and micro stepping, as discussed 
by Bellini et al [3].  For high performance stepper motors, 
nonlinear state feedback control is employed with DQ 
transformation. 

The stepper motor speed can be estimated using motor back 
emf voltage and observer under certain operating conditions 
with damping control technique [4].  A number of control 
schemes were developed for rotor position and speed control 
of stepper motor ([5]-[9]). The present work, Lyapunov-
based control scheme is developed ensuring asymptotic 
stability via better convergence of position tracking error. In 
general, position estimation based on current measurement 
is inefficient under mid-frequency operating conditions [10] 
and hence, Lyapunov-based control technique is employed.  
The investigation of simulation results confirms that 
nonlinear observer with Lyapunov controller performs 
efficiently under micro stepping condition without 
performing DQ transformation of the PMSM model. 
 
2. MATHEMATICAL MODEL OF PMSM 
The electromechanical dynamic equations of the PMSM can 
be represented in the state space form, [2] and [3] 
 
ሶࢄ  = ࢄ + ࢅ ,ࢁ = ࢄ +  ,as follows ,ࢁࡰ
 
ሶࣂ = ࣓ 
 ሶ࣓ = ሾ−(ࣂ࢘ࡺ)࢙ࢇࡷ + (ࣂ࢘ࡺ)࢙ࢉ࢈ࡷ −  (1)       ࡶ/ሿ࣓
 ଙࢇሶ = ሾࢇ࢜ − ࢇࡾ + ࣓ࡷ  ࡸ/ሿ(ࣂ࢘ࡺ)ܖܑܛ
 ଙ࢈ሶ = ሾ࢈࢜ − ࢈ࡾ − ࣓ࡷ  ࡸ/ሿ(ࣂ࢘ࡺ)ܛܗ܋
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Where  ࢄ = ሾࣂ, ࣓, ,ࢇ is the state variable ࢀሿ࢈
ࢁ = ሾ࢈࢜,ࢇ࢜ሿࢀ is the input variable 
,ࢇ࢜ ,ࢇ and ࢈࢜  are the voltages (in Volts) and currents (in࢈
Amperes) of the two phases      respectively ࣂ is the rotor angular position of the motor in rad࣓ is the rotor angular velocity in rad/s 
B is the viscous friction coefficient in [N.m.s/rad]
J is the inertia of the motor in [Kg.m2] 
Km is the motor torque constant in [N.m/A] 
R is the resistance of the phase winding in [Ω]
L is the inductance of the phase winding [H] 
Nr is the number of rotor teeth. 
 
The detent torque and magnetic coupling are assumed to be 
zero. The model also ignores the variation in indu
to magnetic saturation. 
 
3. MICROSTEPPING 
The three common modes of excitation are full step, half 
step and microstepping. Microstepping is preferred over the 
previous two for its effectiveness in improving low speed 
smoothness and minimizes low speed resonance effects. 
Since the stepper motors move step by step, their 
smoothness is low. Therefore, an input which sends the 
steps so quickly that it results in the fluid rotation of the 
motor is required. This can be achieved by microstepping 
which is essentially a series of step inputs sent immediately 
one after the other within one complete cycle. It can have 16 
or more steps within one cycle. 
 

Fig - 1: Stepping sequence of microstepping
 
If the number of steps per cycle are increased, then it al
results in a sine wave (as can be seen from Figure 1). Since 
there are two phases, the inputs are designed to be two sine 
waves which are 900 phase shifted from one another. Hence, 
the inputs can be designed as follows: 
ࢇࢂ  = ࢞ࢇࢂ  (ࣂ࢘ࡺ)ܛܗ܋
࢈ࢂ  = ࢞ࢇࢂ .……………………                        (ࣂ࢘ࡺ)ܖܑܛ
 
Where ࢞ࢇࢂ is the maximum amplitude of the 
microstepping input voltage. 
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results in a sine wave (as can be seen from Figure 1). Since 
there are two phases, the inputs are designed to be two sine 

phase shifted from one another. Hence, 

)
…………………….(2) 

is the maximum amplitude of the 

To achieve the desired position 
follows: 
 
܌܉܄ = ܠ܉ܕ܄ ൯܌ીܚۼ൫ܛܗ܋ ܌ܖ܉ 
 
܌܊܄ = ܠ܉ܕ܄  ൯܌ીܚۼ൫ܖܑܛ
 
Where ࢊࢇࢂ and ࢊ࢈ࢂ are the desired input voltages in phases 
a and b respectively. 
 
This ensures that the states of PMSM finally converges to 
ሾࢊࣂ, , ,ࢊࢇ  ሿࢊ࢈
 
Or, 
 
∞→ܜܕܑܔ ી(ܜ) = ી܌ , ∞→ܜܕܑܔ 
∞→ܜܕܑܔ,܌܉ܑ (ܜ)܊ܑ =                       ܌܊ܑ
 
Where ࢊࢇand ࢊ࢈ are the desired input currents in phases a 
and b respectively. 
 

Fig - 2: Microstepping voltages corresponding to reference 
position (Phase a)

 

Fig - 3: Microstepping voltages corresponding to reference 
position (Phase b)

 
The Figures 2 and 3 represent the waveforms of 
 corresponding to the reference positionࢊ࢈ࢂ
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To achieve the desired position ࢊࣂ the inputs are modified as 

൯  (3)..……………………            ܌ܖ܉
൯

are the desired input voltages in phases 

This ensures that the states of PMSM finally converges to 

(ܜ) =  , ∞→ܜܕܑܔ (ܜ)܉ܑ =
                   ……………………..(4) 

are the desired input currents in phases a 

 Microstepping voltages corresponding to reference 
position (Phase a) 

 Microstepping voltages corresponding to reference 
position (Phase b) 

The Figures 2 and 3 represent the waveforms of ࢊࢇࢂand 
corresponding to the reference position discussed later. 
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4. CONTROLLER DESIGN 
The proposed controller is designed based on the Lyapunov 
stability criterion as the objective is to build robust and 
adaptive controllers. In simple notations, the theory states 
that for any system, if the equilibrium point is given by se, then the system is said to be stable if its solutions of the 
system s(t) begin at se and stay around and at se for all values 
of t. 
 
Furthermore, the system is said to be asymptotically stable if 
the solutions are initially at Se, remain around Se and 
converge at the last to Se. This paper deals with this aspect 
of stability. 
 
The Lyapunov conditions for asymptotic stability of a 
system states that the derivative of the function V(s) must be 
strictly less than zero, where V(s) is a scalar function 
continuous in the small region around origin in state space. 
[11] 
 
(࢙)ࢂ < 0, ݏ ≠ 0ሶ                                   ……………………(5) 
 
From the previous section, it can be inferred that (࢚)ࢇ and 
ࢊࢇࢂ converges to (࢚)࢈

ࡾ  and ࢊ࢈ࢂ
ࡾ  respectively. Hence, 

 
ࢊࢇ = ࢊࢇࢂ

ࡾ                                               ………………….. (6) 
 
ࢊ࢈ = ࢊ࢈ࢂ

ࡾ  
 
The desired currents can thus be written as, from (3) and (5) 
 
ࢊࢇ = ࢞ࢇࢂ

ࡾ ൯ࢊࣂ࢘ࡺ൫ܛܗ܋ ܽ݊݀                 …………………. (7) 
 
ࢊ࢈ = ࢞ࢇࢂ

ࡾ  ൯ࢊࣂ࢘ࡺ൫ܖܑܛ
 
The errors can consequently be declared as 
 
ࢇࢋ = ࢊࢇ  −  and                       …………………(8) ࢇ 
 
࢈ࢋ = ࢊ࢈  −   ࢈ 
By Lyapunov’s direct method, a suitable Lyapunov 
candidate function would be 
 
ࢂ = 

 ࢇࢋ + 
                                  ………………….(9)࢈ࢋ

 
Which is a positive definite scalar function. 
 
The time derivative of V1 along any trajectory is given by, 
 
ሶࢂ = (࢈ࢋ,ࢇࢋ)ࢂࢊ

࢚ࢊ  
 
=  . . .ࢇࢋ ሶࢇࢋ + 

 . . .࢈ࢋ ሶ࢈ࢋ  

ሶࢊࢇ൫ଙࢇࢋ= − ଙࢇሶ ൯ + ࢈ࢋ ቀଙࢊ࢈ሶ − ଙ࢈ሶ ቁ                 ……………….. (10) 
 
ࢇࢋ= ቀଙࢊࢇሶ − ሾࢇࡾିࢇ࢜ା࣓ࡷ ሿ(ࣂ࢘ࡺ)ܖܑܛ

ࡸ +ቁ 
 
࢈ࢋ ቀଙࢊ࢈ሶ − ሾ࢈࢜ − ࢈ࡾ − ࣓ࡷ  ቁࡸ/ሿ(ࣂ࢘ࡺ)ܛܗ܋
 
The function V1 is asymptotically stable if 
 
,ࢇࢋ)ࢂ ሶ(࢈ࢋ < , ,ࢇࢋ ࢈ࢋ ≠   
i.e., ࢂ(ࢇࢋ, ሶ(࢈ࢋ  is a negative definite function. 
 
Hence the control inputs va and vb are designed such that 
,ࢇࢋ)ࢂ ሶ(࢈ࢋ   becomes negative definite. 
 
ࢇ࢜ = ࢇࡾ) − ࣓ࡷ ((ࣂ࢘ࡺ)ܖܑܛ + ሶࢊࢇ൫ଙࡸ +  ൯ࢇࢋ࣋
           ……………………….. (11) 
 
࢈࢜ = ࢈ࡾ) + ࣓ࡷ ((ࣂ࢘ࡺ)ܛܗ܋ + ሶࢊ࢈ଙ)ࡸ +  (࢈ࢋ࣋ 
 
Where ࣋ is any positive control gain. 
 
The equation (9) therefore becomes, 
 
ሶࢂ = ࢇࢋ࣋− −                         …………………… (12)࢈ࢋ࣋
 
This ensures that ࢂሶ  is always less than zero and the errors 
converge to zero as࢚ → ∞. 
 
5. OBSERVER DESIGN 
The PMSM model with the above mentioned controller 
inputs assume that all the states are observable. Let us 
assume that only an optical encoder is available which is 
used to observe the position of the motor. Hence, we need 
an observer which can estimate the other unknown states. 
The estimated value dynamics can be written as follows: 
 
ሶࣂ = ෝ࣓ + ࣂ)࢈ −   (ࣂ
ෝ࣓ሶ = ሾ−ࡷଙࢇෝ (ࣂ࢘ࡺ)࢙ + ෝ࢈ଙࡷ (ࣂ࢘ࡺ)࢙ࢉ −  ෝ࣓ ሿ/ࡶ +
ࣂ)࢈ −  )                                      ……………………. (13)ࣂ
 
ଙࢇෝሶ = ሾࢇ࢜ − ෝࢇଙࡾ + ࡷ ෝ࣓ ሿ(ࣂ࢘ࡺ)ܖܑܛ

ࡸ + ࣂ)࢈ −  (ࣂ
 
ଙ࢈ෝሶ = ሾ࢈࢜ − ෝ࢈ଙࡾ − ࡷ ෝ࣓ ሿ(ࣂ࢘ࡺ)ܛܗ܋

ࡸ + ࣂ)࢈ −  (ࣂ
 
Where b1, b2, b3 and b4 are observer gains. 
 
The error between the actual and the estimated values is thus 
given by, 
 
ࣂ = ࣂ −   ෭࣓ࣂ = ࣓ − ෝ࣓                                                          ………. (14) 
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ଙࢇ෭ = ࢇ − ଙࢇෝ  
 ଙ࢈෭ = ࢈ − ଙ࢈ෝ  
 
Substituting the above values in (12), the equation (12) can 
thus be rewritten in terms of error dynamics as follows: 
 
ሶࣂ = ෝ࣓ −   ࣂ࢈
෭࣓ሶ = ሾ−ࡷଙࢇෝ (ࣂ࢘ࡺ)࢙ + ෝ࢈ଙࡷ (ࣂ࢘ࡺ)࢙ࢉ −  ෝ࣓ ሿ/ࡶ −  ࣂ࢈
 
ଙࢇ෭ሶ = ሾࡾିࢇ࢜ଙࢇෝ ାࡷ ෝ࣓ ሿ(ࣂ࢘ࡺ)ܖܑܛ

ࡸ −        ………………….. (15)ࣂ࢈
 
ଙ࢈෭ሶ = ሾ࢈࢜ − ෝ࢈ଙࡾ − ࡷ ෝ࣓ ሿ(ࣂ࢘ࡺ)ܛܗ܋

ࡸ −  ࣂ࢈
 
To prove the stability of the above dynamics, consider the 
Lyapunov candidate function, 
 
ࢂ = 

 ࣂ + 
 ෭࣓  + 

 ଙࢇ෭  + 
 ଙ࢈෭                       ……….. (16) 

 
According to Lyapunov’s direct method, the error converges 
to zero if 
 
ሶࢂ <   
i.e. ࣂ. ሶࣂ + ࣓.෮ ෭࣓ሶ + ଙࢇ.෮ ଙࢇ෭ሶ + ଙ࢈.෮ ଙ࢈෭ሶ <  
Or,ࣂ൫ ෭࣓ − ൯ࣂ࢈ + ෭࣓ ቀሾିࡷଙࢇ෭ ෭࢈ଙࡷା(ࣂ࢘ࡺ)࢙ ି(ࣂ࢘ࡺ)࢙ࢉ ෭࣓ ሿ

ࡶ −
ቁࣂ࢈ +      ଙࢇ෭ (ሾࡾିࢇ࢜ଙࢇ෭ ାࡷ ෭࣓ ሿ(ࣂ࢘ࡺ)ܖܑܛ

ࡸ − (ࣂ࢈ +
ଙ࢈෭ (ሾࡾି࢈࢜ଙࢇ෭ ࡷି ෭࣓ ሿ(ࣂ࢘ࡺ)ܛܗ܋

ࡸ − (ࣂ࢈ <  
 
Or,−࢈ࣂ − 

ࡶ ෭࣓  − ࡾ
ࡸ ࢇ − ࡾ

ࡸ ࢈ + )ࣂ ෭࣓ − ࢈ ෭࣓ − ෭ࢇଙ࢈ −
෭࢈ଙ࢈ ) <                                                  ………………(17) 
 
Hence, the gains are chosen so as to satisfy the condition for 
negative definite; so b1 can be chosen as a positive value, b2 
as 1, b3 and b4 as zero. When these values are substituted, 
we get 
 
ࣂ࢈− − 

ࡶ ෭࣓  − ࡾ
ࡸ ଙࢇ෭  − ࡾ

ࡸ ଙ࢈෭  <        ………………. (18) 
 
This confirms that the error converges to zero, 
 
i.e. ࢚ܕܑܔ→∞ (࢚)ࣂ = ࣂ ܑܔ ∞→࢚ ෝ࣓ (࢚) = ࣓ ∞→࢚ܕܑܔ ଙࢇෝ (࢚) = ∞→࢚ܕܑܔ ࢇ ଙ࢈ෝ (࢚) =  (19) …………………                                ࢈
 
Henceforth, the control inputs ࢇࢂ,  are modified again to ࢈ࢂ
suit the Lyapunov controller augmented with the observer. 
 
ࢇ࢜ = ࢇࡾ) − ࣓ࡷ ((ࣂ࢘ࡺ)ܖܑܛ + ሶࢊࢇ൫ଙࡸ + ൯ࢇࢋ࣋  + +෭ࢇଙࡾ−) ࡷ ෭࣓ (ࣂ࢘ࡺ)ܖܑܛ + ෭ࢇଙࡸ࣋ ) 
 
࢈࢜ = ࢈ࡾ) + ࣓ࡷ ((ࣂ࢘ࡺ)ܛܗ܋ + ሶࢊ࢈ଙ)ࡸ + (࢈ࢋ࣋  + ෭࢈ଙࡾ−) −
ࡷ ෭࣓ ࣂ࢘ࡺ) ܛܗ܋ + ෭࢈ଙࡸ࣋ )                      ………………… (20) 
 

The above equation guarantees that the Lyapunov candidate 
function is negative definite and that the error converges to 
zero. 
 
6. PI CONTROLLER 
A proportional-integral controller is a control loop feedback 
mechanism commonly used in industrial control systems. A 
PI controller basically takes in the error signal (difference 
between process variable and set point) as the input. The 
proportional part amplifies the error by a certain factor (Kp) 
and the integral portion accumulates the error of the past 
(Ki).This is the most conventional method of controlling and 
is the most widely used method until date. The performance 
analysis of both the conventional PI and the proposed 
Lyapunov controller and observer has been compared as 
shown in Table 1. The latter has proved to be better than the 
former. 
 

Table - 1: Comparison between PID and Lyapunov 
Controller 

Parameter PID Controller Lyapunov controller 
ISE 6*10-4 1.52*10-4 
IAE 6.25*10-4 3.25*10-5 
ITAE 6.6*10-4 4*10-5 

 
The formulae for calculating the above parameters are as 
follows: 
 

ܚܗܚܚ۳܌ܚ܉܌ܖ܉ܜ܁ܔ܉ܚ܍ܜܖ۷ = න  ܜ܌܍
 

ܚܗܚܚ۳܍ܜܝܔܗܛ܊ۯܔ܉ܚ܍ܜܖ۷ = න  ܜ܌܍
 

ܚܗܚܚ۳܍ܜܝܔܗܛ܊ۯ܍ܕܑ܂ܔ܉ܚ܍ܜܖ۷ = න  ܜ܌ܜ܍
 
Where e is the error signal 
 
7. RESULTS AND DISCUSSION 
The Lyapunov and PID controllers were designed using 
MATLAB SIMULINK Software. The reference trajectory 
was designed using the following equations: [14] 
ࢌࢋ࣓࢘  = 

ቐ
࢚ +                                      ࢚ ≤ ࢚ ≤ ࢚                                                  ࢞ࢇ࣓࢚ ≤ ࢚ ≤ ࢚)࢚ − (࢚ + ࢚) − ࢚           (࢚ ≤ ࢚ ≤ ࢚

  
 
Where,  = +࣓࢚/࢞ࢇ and 

 = −࣓࢚/࢞ࢇ 
 is the maximum angular velocity࢞ࢇ࣓ 
 
Hence, for the desired angular velocity, the corresponding 
constants are calculated using the above formulae. The 
reference trajectory was given as inputs to both the 
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Lyapunov and PID controller. For the Lyapunov controller, 
as the gain value of ߩ increases, the error keeps decreasing. 
However, the amplitude of input voltage is also decreased 
simultaneously. Since the input voltages must be high 
enough to compensate for the back emf and phase lags, a 
trade-off must be done between the two quantities and the 
optimal value of ߩ has been calculated to be 40000 by trial 
and error method. The PID controller was tuned by ZN-II 
method and the Kp and Ki values were found to be 1000 
and 2 respectively. The motor parameters that were used for 
simulation are shown in Table 2. The tracking performances 
of both the controllers have been shown in the graph. Also, 
their tracking errors have been plotted and shown. The 
performance of the Lyapunov controller along with the non-
linear observer have also been analyzed and the actual and 
estimated values are plotted and compared. 
 

Table - 2: Motor and Controller Parameters 
Parameter Value Parameter Value 
J 8 x 10-5 

kg.m2 N 50 
Km 0.51 N.m/A L 40 mH 
R 14.8Ω Vlim 6.5V 
F 0.006 

N.m.s/rad 40000 ߩ 
 

 Fig - 4: Position tracking of proposed method corresponding 
to angular velocity 13.125 rad/s 

 

 

 Fig - 5: Phase voltages of the proposed method 
 

  

 Fig - 6: Phase currents of the proposed method 
 
The above graphs show the various parameters of the motor 
when it is subjected to the proposed method. The reference 
(desired) position and the actual position of the motor are 
compared in Figure 4. It can be seen that the actual position 
almost tracks the desired trajectory. Figure 5 represent the 
control inputs ܸ and ܸ designed by Lyapunov method and 
Figure 6 represents the actual motor phase currents I and ܫrespectively. 
 

 Fig - 7: Position tracking of PI Controller 
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Figure 7 shows the comparison of the rotor position of the 
motor controlled by PI controller and the desired position. 
From Figure 8, it can be seen that by employing the 
suggested method, the error in position tracking is almost 
halved. 
 

 Fig - 8: Comparison of Position tracking error of PI and 
proposed Controller 

 

 Fig - 9: Estimated position tracking of the observer 
 
Figure 9 shows the comparison of the actual position of the 
motor (reference position) and the estimated value of the 
position using the nonlinear observer (actual position). 
 8. CONCLUSION 
The simulation experiments analyzing Lyapunov control 
and the conventional methods of controlling have thus been 
carried out and the reference trajectories have been tracked 
by both the controllers. The results have verified that the 
proposed control scheme has proven to be more efficient 
and has much lesser error than the conventional (PI) 
controller. Also, a non-linear observer was designed and 
proved stable under Lyapunov stability conditions. The 
errors of the observer (difference between the actual and 
estimated value) have guaranteed to converge to zero 
according to Lyapunov stability conditions. 
 
Stepper motors play an important role in major fields such 
as in robotics and in biomedical instrumentation. In robotics, 
the robotic arm, which plays an important role in the field, 
employs stepper motor in it if it has to perform tasks like 
spreading, fetching, delivering etc. In biomedical, stepper 
motors may be used to drive laser beams in a blood 
circulation scanner for example. It is also used in many 
other fields such as for positioning the satellite system so 

that they can be controlled remotely. In all the above 
examples, one can easily understand the importance of 
accurate positioning of the stepper motors and that is why, 
even though they can achieve precise positioning without 
any feedback mechanism, such advancements are made in 
this control field so that a high level of accuracy is 
maintained. 
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