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Abstract 
Lead screws are the devices which are used for power transmission or to have linear motion. It is theoretically assumed that 

applied load is evenly distributed among the thread pair in contact. However, practically it is observed that load is not uniformly 

distributed among threads. The first thread carries the maximum load and later the load on each thread reduces. Numerous 

studies have been carried out for analytical calculation of the load distribution using spring stiffness method. But these studies are 

for screw and nut combination. Not much study has been done to find load distribution on threads of a lead screw. The maximum 

load acting on one thread is an important parameter in lead screw design. The load decides the fatigue life of the screw and nut. 

To have better life of threads, the load distribution should be uniform to have fewer loads on single thread. The load is also 

important to know the deflection of thread which affects the positional accuracy of the lead screw drives.     This paper focuses on 

analyzing mathematically the various thread parameters which affects the load distribution in threads and the corresponding 

effect on efficiency. The spring model method proposed in [1], [4] has different constant coefficient which are depending on 

thread geometry and material. If there are n numbers of threads in contact, there will be (n-1) number of equations in (n-1) 

unknowns. These are linear difference equations and can be solved by matrix elimination method. The results obtained from 

analytical solution are validated with the FEM (Finite Elements Method) results. 
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1. INTRODUCTION 

Lead screw drives are simple, efficient, accurate and less 

costly devices for force transmission and linear motion 

applications. The basic principle behind lead screw / power 

screw is simple as that of nut and bolt mechanism. However, 

the thread angle used in nut-bolt is such that it increases the 

frictional contact so that it can be used ideally for fastening 

purposes. However, lead screws are devices for linear force 

transmission or for linear motion. The threads used in lead 

screws are either square threads or trapezoidal threads. 

Square threads have best efficiency but are weaker at the 

root. Also they are costly for manufacturing. Trapezoidal 

threads on the other hand are easy to manufacture and 

thicker at the root of thread so they can carry higher load.. In 

this paper, too, trapezoidal threads are analyzed. Various 

studies have been carried out to find load distribution in the 

threads in the screws. D. Miller [4] proposed spring model 

for load distribution in threaded connectors. He developed 

mathematical equations which were formulated assuming 

thread as a spring and calculated the stiffness in bending. 

The mathematics was verified using finite element analysis. 

He formulated the equations assuming non yielding threads. 

W. Wang & K. M. Marshek [1] modified the equations 

formulated by D. Miller [4] and proposed a model for 

yielding thread conditions. Hua Zhao [3] proposed a new 

virtual contact loading method in order to simulate the 

threaded connections. The model was found to be 

satisfactorily efficient and accurate. David J Murphy [5] 

studied the load distribution in lead screw wearing under 

varying operating conditions. W. Wang & K. M. Marshek 

[2] studied the load distribution in threaded connector 

having dissimilar material and varying thread stiffness. Not 

much study has been carried out to study the effect of 

various thread parameters on load distribution in lead screw 

threads. This paper focuses on how thread parameters affect 

load distribution and efficiency of a miniature lead screw. 

The mathematical data obtained from analytical solution has 

been verified with Finite element methods.  

 

2. MATHEMATICAL MODELLING 

The efficiency of a lead screw is a function of coefficient of 

friction. Lower the coefficient better is the efficiency. Steel 

– Bronze combination is observed to have least frictional 

coefficient. Since screw has to withstand the buckling along 

with the other body stresses as in the nut, lead screw must be 

stronger than nut. This facilitates the fact that when nut 

wears out after long use, it is easy and cheap to replace a nut 

than a screw. In this current paper, steel for screw and 

bronze for nut is used. There are two cases of tension and 

compression as used in [1] & [4].  
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2.1 Case 1: Compression 

In this case, there will be compression of screw spindle. 

This will happen when nut is moving away from the driving 

end of the motor or gearbox under loading conditions. For 

representing screw and nut in a spring model, various 

sections in screw and nut has to be represented in terms of 

springs. Under loading conditions, the thread of the screw 

acts as a cantilever beam under uniformly distributed load. 

The stud section between two consecutive helixes acts as 

simple circular bar of constant cross section (equal to minor 

diameter of screw) under compression. Similar is the case 

for nut. When one thread of a nut is in contact with the 

respective thread of screw, the axial deflection for threads is 

same. So the resulting stiffness is the combined stiffness of 

nut & screw thread in series. 

This is shown in figure below. 

 

Fig -1: Equivalent stiffness of threads in bending 

 

So the helixes of the screw are assumed to be like thread 

rings connected via the resulting spring stiffness. This is 

better explained in the figure. 

 

The load F applied on the stud is carried into threads by load 

P, where 𝑃𝑖  represents load on 𝑖𝑡ℎ  thread. Si is the load on 

the section between the threads i& i+1. 𝐿𝑖   is the load on the 

body section i. Load on 1
st
 thread will be the force applied F 

minus load on stud sections between threads 1&2. The stud 

section between 0
th

 and 1
st
 thread carries full load F. 

So𝑆0=F. Since there are 8 threads in contact the body 

sections between 8
th

& 9
th

 thread carries no load. So 𝑆𝑛=0. 

These are the constants which are useful in solving the 

difference equation.  

 

The load on 𝑖𝑡ℎ thread can be given as 

𝑃𝑖 = 𝑆𝑖−1 − 𝑆𝑖    ,    1 ≤ 𝑖 ≤ 𝑛…                                       (1a) 

 

Fig -2: Spring model for compression case 

The body sections between the threads have a spring 
constant𝐾𝑠 = 𝐿/𝛿𝑠, where 𝛿𝑠 represents axial deflection due 
to load L. Similarly, stiffness of the stud section is given 
by𝐾𝑛 = 𝐿/𝛿𝑛  , where 𝛿𝑛  represents elongation of the section 
under load S. The absolute axial deflection of any thread 
ring is the addition of the individual axial deflections of all 

the previous threads. So the absolute deflection of 𝑘𝑡ℎ  
thread is given by, 
 

𝑢𝑠
𝑘 = 𝛿𝑇

𝑘 =  𝛿𝑠
𝑗𝑘

𝑗=1  , 1 ≤ 𝑘 ≤ 𝑛                                       (2a) 

 
The difference between axial deflections of any two 
consecutive threads will give elongation of the stud section 
between those threads. Therefore  
 

    𝛿𝑛
𝑖 = 𝑢𝑠

𝑖 − 𝑢𝑠
𝑖+1  , 1 ≤ 𝑖 ≤ 𝑛 − 1               …                (3a) 

 
Putting equation (2) in equation (3), 
 

𝛿𝑇
𝑖 − 𝛿𝑇

𝑖+1 − 𝛿𝑠
𝑖+1 = 𝛿𝑛

𝑖  , 1 ≤ 𝑖 ≤ 𝑛 − 1      …                 (4a) 
  
Now, the deflections can be expressed in terms of applied 
loads and spring stiffness. So equation (4) yields, 
 
𝑃𝑖

𝐾𝑇
𝑖 −

𝑃𝑖+1

𝐾𝑇
𝑖+1 −

𝐿𝑖+1

𝐾𝑠
𝑖+1 =

𝑆𝑖

𝐾𝑛
𝑖                                                    … (5a) 

 

The load on body section corresponding to 𝑘𝑡ℎ  thread is the 
load on the remaining threads of the section from thread ring 
k to last thread n. So, 
 

𝐿𝑘 =  𝑃𝑗

𝑛

𝑗 =𝑘

 

 
Using equation (1), 
 
                           𝐿𝑘 = 𝑆𝑘−1 − 𝑆𝑛                                  … (6a) 
 
As discussed earlier, the stud section between last active 
thread and the next corresponding thread carries no load. So 
𝑆𝑛 = 0. The equation (6) gives, 
 
                                      𝐿𝑘 = 𝑆𝑘−1                                …(7a) 
 
Using equation (1) and (7), equation (5) can be modified as 
 

𝑆𝑖−1 − 𝑆𝑖  1 +
𝐾𝑇

𝑖

𝐾𝑇
𝑖+1 +

𝐾𝑇
𝑖

𝐾𝑠
𝑖+1 +

𝐾𝑇
𝑖

𝐾𝑛
𝑖  + 𝑆𝑖+1

𝐾𝑇
𝑖

𝐾𝑇
𝑖+1 = 0             (8a) 

 
                    𝑆𝑖−1 − 𝛽𝑖𝑆𝑖 + 𝛼𝑖𝑆𝑖+1 = 0          …               (9a) 
 

Where,𝛽𝑖 =  1 +
𝐾𝑇

𝑖

𝐾𝑇
𝑖+1 +

𝐾𝑇
𝑖

𝐾𝑠
𝑖+1 +

𝐾𝑇
𝑖

𝐾𝑛
𝑖  , 

 

𝛼𝑖 =
𝐾𝑇

𝑖

𝐾𝑇
𝑖+1

 

 
For 8 threads in contact, n=8. Putting i=1 to eight in 
equation (9), we get corresponding equations in variable S. 
For i=1, 
𝑆0 − 𝛽1𝑆1 + 𝛼1𝑆2 = 0 . 
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Since𝑆0 = 𝐹, the equation becomes, 
−𝛽1𝑆1 + 𝛼1𝑆2 = −𝐹 … (i) 
 
Similarly, for other values of i,  
 
𝑆1 − 𝛽2𝑆2 + 𝛼2𝑆3 = 0 … (ii) 
𝑆2 − 𝛽3𝑆3 + 𝛼3𝑆4 = 0 … (iii) 
𝑆3 − 𝛽4𝑆4 + 𝛼4𝑆5 = 0 … (iv) 
𝑆4 − 𝛽5𝑆5 + 𝛼5𝑆6 = 0 … (v) 
𝑆5 − 𝛽6𝑆6 + 𝛼6𝑆7 = 0 … (vi) 
𝑆6 − 𝛽7𝑆7 + 𝛼7𝑆8 = 0 
 
Since S8 = 0 , the last equation can be modified as 
 
𝑆6 − 𝛽7𝑆7 = 0… (vii) 
 
As the lead screw material is uniform throughout,  
 

𝐾𝑇
𝑖 = 𝐾𝑇

𝑖+1 
 
The value of 𝛽𝑖  can be given as 
 

𝛽𝑖 =  2 +
𝐾𝑇

𝑖

𝐾𝑠
𝑖+1

+
𝐾𝑇

𝑖

𝐾𝑛
𝑖
  

 
The seven equations in seven variables derived above can be 
represented in matrix format 
 

 
 
 
 
 
 
 
−𝛽1 𝛼1 0 0 0 0 0

1 −𝛽2 𝛼2 0 0 0 0
0 1 −𝛽3 𝛼3 0 0 0
0 0 1 −𝛽4 𝛼4 0 0
0 0 0 1 −𝛽5 𝛼5 0
0 0 0 0 1 −𝛽6 𝛼6

0 0 0 0 0 1 −𝛽7 
 
 
 
 
 
 

 
  
 

  
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7 
  
 

  
 

=

 
 
 
 
 
 
 
−𝐹
0
0
0
0
0
0  

 
 
 
 
 
 

 

 
Also for uniform bolt material, 𝛼𝑖 = 1. So the matrix 
becomes, 
 

 
 
 
 
 
 
 
−𝛽1 1 0 0 0 0 0

1 −𝛽2 1 0 0 0 0
0 1 −𝛽3 1 0 0 0
0 0 1 −𝛽4 1 0 0
0 0 0 1 −𝛽5 1 0
0 0 0 0 1 −𝛽6 1
0 0 0 0 0 1 −𝛽7 

 
 
 
 
 
 

 
  
 

  
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7 
  
 

  
 

=

 
 
 
 
 
 
 
−𝐹
0
0
0
0
0
0  

 
 
 
 
 
 

                                                                                (10a) 

 

These matrices can  be solved by elimination method to get 

the values of S. 

 

2.2 Case 2: Tension 

The two cases of compression and tension are similar. In 

tension case, the nut is coming travelling towards motor or 

gearbox end, where the screw is attached, under loading 

condition. This will result in tension in the screw part hence 

the name tension case. For mathematical modeling of this 

case, only difference is with the location of fixing point. In 

compression case, the location of fixing point is near the 

first active thread, whereas in tension case, fixing is done 

near the last active thread. It is worth noting that the 

direction of applied force is same in both the cases. The 

spring model diagram for tension case is shown in the figure 

3. 

 

In tension case, load on body section corresponding to 𝑘𝑡ℎ  

thread is the sum of all the loads from thread 1 to k. So, 

𝐿𝑘 =  𝑃𝑗

𝑘

𝑗 =1

 

From equation (1) 

 

𝐿𝑘 = 𝑆0 − 𝑆𝑘  
 

The absolute deflection of a thread ring is the combination 

of local thread ring deflection and sum of all the deflections 

of the rings from that particular ring in consideration to last 

active thread. Thus,  

𝑢𝑠
𝑘 = 𝛿𝑇

𝑘 +  𝛿𝑠
𝑗

𝑛

𝑗 =𝑘

 

 

Using this equation in equation (3a), 

𝛿𝑇
𝑖 − 𝛿𝑇

𝑖+1 + 𝛿𝑠
𝑖 = 𝛿𝑛

𝑖 … (1b) 

 

The deflections can be expressed in terms of load and 

stiffness as 
𝑃𝑖

𝐾𝑇
𝑖
−

𝑃𝑖+1

𝐾𝑇
𝑖+1

+
𝐿𝑖

𝐾𝑠
𝑖

=
𝑆𝑖

𝐾𝑛
𝑖
 

 

Using equations for Pi&Lk , 

 

𝑆𝑖−1 − 𝑆𝑖  1 +
𝐾𝑇

𝑖

𝐾𝑇
𝑖+1

+
𝐾𝑇

𝑖

𝐾𝑠
𝑖

+
𝐾𝑇

𝑖

𝐾𝑛
𝑖
 + 𝑆𝑖+1

𝐾𝑇
𝑖

𝐾𝑇
𝑖+1

 

 

      = −𝑆0
𝐾𝑇

𝑖

𝐾𝑠
𝑖                                                                  … (2b) 

 

Following the same approach as was done for compression 

case,  

 

𝑆𝑖−1 − 𝛽𝑖𝑆𝑖 + 𝛼𝑖𝑆𝑖+1 = −𝛾𝑖𝑆0                                     … (3b) 

 

Where 𝛾𝑖 =
𝐾𝑇

𝑖

𝐾𝑠
𝑖  
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For all values of i from 1 to 8, we have seven equations in 

seven variables as 

 

−𝛽1𝑆1 + 𝛼1𝑆2 = −𝛾1𝐹    … (vi) 

𝑆1 − 𝛽2𝑆2 + 𝛼2𝑆3 = −𝛾2 … (vii) 

𝑆2 − 𝛽3𝑆3 + 𝛼3𝑆4 = −𝛾3 … (viii) 

𝑆3 − 𝛽4𝑆4 + 𝛼4𝑆5 = −𝛾4 … (ix) 

𝑆4 − 𝛽5𝑆5 + 𝛼5𝑆6 = −𝛾5 …(x) 

𝑆5 − 𝛽6𝑆6 + 𝛼6𝑆7 = −𝛾6 … (xi) 

𝑆6 − 𝛽7𝑆7 + 𝛼7𝑆8 = −𝛾7 

𝑆6 − 𝛽7𝑆7 = −𝛾7             … (xi)  

 

Fig-3: Spring model for tension case 

 

In matrix form 

 

 
 
 
 
 
 
 
−𝛽1 𝛼1 0 0 0 0 0

1 −𝛽2 𝛼2 0 0 0 0
0 1 −𝛽3 𝛼3 0 0 0
0 0 1 −𝛽4 𝛼4 0 0
0 0 0 1 −𝛽5 𝛼5 0
0 0 0 0 1 −𝛽6 𝛼6

0 0 0 0 0 1 −𝛽7 
 
 
 
 
 
 

 
  
 

  
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7 
  
 

  
 

=

 
 
 
 
 
 
 
−𝛾1𝐹
−𝛾2

−𝛾3

−𝛾4

−𝛾5

−𝛾6

−𝛾7  
 
 
 
 
 
 

 

 
 
 
 
 
 
 
−𝛽1 1 0 0 0 0 0

1 −𝛽2 1 0 0 0 0
0 1 −𝛽3 1 0 0 0
0 0 1 −𝛽4 1 0 0
0 0 0 1 −𝛽5 1 0
0 0 0 0 1 −𝛽6 1
0 0 0 0 0 1 −𝛽7 

 
 
 
 
 
 

 
  
 

  
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7 
  
 

  
 

=

 
 
 
 
 
 
 
−𝛾1𝐹
−𝛾2

−𝛾3

−𝛾4

−𝛾5

−𝛾6

−𝛾7  
 
 
 
 
 
 

                                                                              (4b) 

 

Above equations (10a & 4b) are simple difference equations 

in seven variables. These were solved by an online equation 

solver program [6], the solutions obtained from the solver 

were verified by Gaussian Elimination Method manually.  

3. LEAD SCREW DESIGN: 

For determining the dimensions of lead screw and nut, 

ASME/ANSI B 1.8-1988 [7] standards for acme screw were 

used. The accuracy class used was 2G. The nominal 

diameter was kept constant at 5mm and the pitch was varied 

from 1 mm to 1.5 mm. Due to tolerances given on major and 

minor diameters, there are two values (max & min) of each 

diameter. Thus for calculations, average of the diameters 

was taken. 

 

The values of the obtained dimensions are summarized in 

the table 1. 

 

Table 1 : Major & minor diameters of screw & nut for 

different pitch (All dimensions are in mm) 

   SCREW NUT 

 𝐷0 p 𝐷𝑚𝑎𝑗  𝐷𝑚𝑖𝑛  𝐷𝑚𝑎𝑗  𝐷𝑚𝑖𝑛  

1 5 1 4.9750 4.1122 5.2878 4.4250 

2 5 1.1 4.9725 4.0522 5.2878 4.3675 

3 5 1.2 4.9700 3.9922 5.2878 4.3100 

4 5 1.3 4.9675 3.9322 5.2878 4.2525 

5 5 1.4 4.9650 3.8722 5.2878 4.1950 

6 5 1.5 4.9625 3.8122 5.2878 4.1375 

 

The spring stiffness constants are summarized in the table 2. 

 

Table 2: Spring stiffness constant for screw & nut 

(K in X*105 N/mm, p in mm) 

No p 𝐾𝑠𝑏  𝐾𝑠𝑐  𝐾𝑏𝑏  𝐾𝑏𝑐  𝐾𝑇  

1 1.0 1.1943 8.8778 0.9158 35.199 0.5183 

2 1.1 1.4064 7.8369 1.1147 31.999 0.6218 

3 1.2 1.6280 6.9727 1.3346 29.3325 0.7334 

4 1.3 1.8572 6.2443 1.5761 27.0761 0.8526 

5 1.4 2.0922 5.6227 1.8393 25.1421 0.9788 

6 1.5 2.3311 5.0865 2.1248 23.466 1.1116 

 

4. RESULTS: 

4.1: Effect of Pitch: 

4.1.1: Effect on load distribution: 

A load of 100 N was applied and the load carried by each 

thread was plotted against the thread number for both 

tension and compression. 

 

 
Fig-4: Effect of pitch on load distribution in compression 

Case (spring model) 

 

 

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5 6 7 8 9

%
 o

f L
oa

d

Thread number

p=1

p=1.1

p=1.2

p=1.3

p=1.4

p=1.5



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 05 Issue: 04 | Apr-2016, Available @ http://ijret.esatjournals.org                                                                    284 

Fig-5: Effect of pitch on load distribution in tension case 

(Spring model) 

 

For verifying these results in Finite Elements Methods, 

Ansys workbench (15.0) was used. The model was 2D 

axisymmetric, elements size was 0.05mm near the contact 

area. The results were plotted and summarized in the figure 

6 & 7. 

 

Fig-6: Effect of pitch on load distribution in compression 

Case (FEM) 

 

Fig-7: Effect of pitch on load distribution in tension case 

(FEM) 

4.1.2: Effect on Efficiency: 

The efficiency improves as pitch increases. The 

improvement in efficiency can be seen in the figure below. 

 

Fig-8: Effect of pitch on Efficiency. 

 

Actually, the improvement in efficiency with pitch 

continues with a pitch value of 13mm, where efficiency 

reaches maximum of 73.43% and then it reduces. But for a 

pitch value of 1 mm to 1.5 mm, improvement in efficiency 

is linear. This can be seen in figure 9 below. 

 

Fig-9: Effect of pitch on Efficiency for different coefficient 

Of friction 

 

To have more life of threads, the load carried by single 

thread should be as less as possible. This can be achieved by 

even load distribution by keeping the pitch minimum which 

is evident from figures 4 & 5. But the reduction in pitch 

hampers the efficiency which can be seen in figure 8. 

 

Thus to have best efficiency along with minimum load on a 

thread, the ratio (Efficiency /Load) should be as maximum 

as possible. This is compared in the table 3. 

 

Table 3: Variation of Efficiency & Load with pitch 

p(mm) 1 1.1 1.2 1.3 1.4 1.5 

ɳ (%) 32.96 35.2 37.31 39.3 41.18 42.96 

P(N) 24.37 27.31 30.39 33.56 36.78 39.99 

ɳ/P 1.352 1.289 1.228 1.171 1.119 1.074 
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4.2: Effect Of Nominal Diameter ( 𝐃𝟎 ) : 

4.2.1: Effect on Load distribution: 
The nominal diameter was varied from 5 mm to 6 mm with 

a step of 0.2 mm for a constant pitch of 1 mm. The effect of 

this on load distribution is summarized in the figures 9 & 

10. 

 

It is evident from these graphs that the increase in diameter 

does not have much effect on load distribution. There is very 

little improvement in load distribution with increase in 

diameter. But the increase reduces the efficiency. This can 

be seen from the figure 11. 

 

Since effect of diameter is not significant, the results from 

FEM model are not included here. 

 

Fig-10: Effect of Nominal diameter on load distribution in 

Compression case (spring model) 

 

Fig-11: Effect of Nominal diameter on load distribution in 

Tension case (spring model) 

 

4.2.2: Effect on Efficiency: 

Efficiency reduces with increase in nominal diameter. This 

is due to the increase in frictional torque. The variation can 

be seen in figure 10. 

 

Fig-12: Effect of Nominal diameter on Efficiency 

 

5. CONCLUSION 

 The load distribution amongst thread was found to be 

very uneven with the first thread carrying maximum 

load. 

 Increase in pitch causes more unevenness in load 

distribution and load on first thread increases. 

 Change in nominal diameter did not have much effect on 

the load distribution. 

 The spring model presented in [1]& [4] was used for 

calculation of load distribution amongst threads and it 

gave satisfactory results compared with Finite Element 

Methods. 

 Among tension and compression case, the load on first 

thread was maximum in compression case.  

 Form table 3, optimum pitch can be decided depending 

on whether life of thread is important or efficiency is 

important for a particular application. 

 

NOMENCLATURE 

 p = pitch of thread 

𝐷0=Nominal diameter of thread 

P  = Load carries by each thread 

F = external applied load 

𝐾𝑠
𝑖= axial stiffness of the screw section i between the   

         Consecutive threads 

𝐾𝑛
𝑖 = axial stiffness of the nut section i between the  

        Consecutive threads 

𝐾𝑠𝑏 = stiffness of thread of screw in bending 

𝐾𝑛𝑏 = stiffness of thread of nut in bending 

𝐾𝑇   = equivalent spring stiffness in bending of thread pair 

𝐿𝑖    = load on body section i 

n    = no of active threads 

𝑆𝑖    = load on nut section i 

𝑢𝑛
𝑖   = deflection of nut thread ring i 

𝛿𝑠
𝑖= axial deflection of corresponding springs having  

         Spring constant 𝐾𝑠
𝑖  

𝛿𝑛
𝑖  = axial deflection of corresponding springs having  

         Spring constant 𝐾𝑛
𝑖  

𝛿𝑇
𝑖  = axial deflection of corresponding springs having  

         Spring constant 𝐾𝑇
𝑖  

α, β & γ = coefficient used in finite difference equations 
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