ON NON- HOMOGENEOUS BIQUADRATIC DIOPHANTINE # **EQUATION 5** (x^2+y^2) -9xy = 23z⁴ # P.Javakumar¹, V.Pandian² ¹Professor of Mathematics, Periyar Maniammai University, Vallam, Thanajvur -613 403, Tamil Nadu, India. ²Assistant Professor of Mathematics, A.V.V.M. Sri Pushpam College, Poondi -613 503, Thanajvur.TN, India. #### **Abstract** Five different methods of the non-zero integral solutions of the homogeneous biquadratic Diophantine equation with five unknowns $5(x^2 + y^2) - 9xy = 23z^4$ are determined. Introducing the linear transformations x = u + v, y = u - v, $u \ne v \ne 0$ in $5(x^2 + y^2) - 9xy = 23z^4$, it reduces to $u^2 + 19v^2 = 23z^4$. We are solved the above equation through various choices and the different methods of solutions which are satisfied it. Some interesting relations among the special numbers and the solutions are exposed. Keywords: Quadratic, Non-Homogenous, Integer Solutions, Special Numbers, Polygonal, And Pyramidal Numbers *** ## 2010 Mathematics Subject Classification: 11D09 ## Notations used $T_{m,n}$: Polygonal number of rank n with sides m. p_n^m : Pyramidal number of rank m with side n G_n: Gnomonic number of rank n f_{43}^{r} : Fourth dimensional figurate number of rank r, whose generating polygon is a Triangle f_{44}^{r} : Fourth dimensional figurate number of rank r, whose generating polygon is a Square f_{45}^r : Fourth dimensional figurate number of rank r, whose generating polygon is a Pentagon f_{46}^{r} : Fourth dimensional figurate number of rank r, whose generating polygon is a Hexagon f_{47}^{r} : Fourth dimensional figurate number of rank r, whose generating polygon is a Heptagon $f_{4.8}^{r}$: Fourth dimensional figurate number of rank r, whose generating polygon is a Octagon. #### 1. INTRODUCTION The number theory is the queen of Mathematics. In particular, the Diophantine equations have a blend of attracted interesting problems. For an extensive review of variety of problems, one may refer to [1-12]. In 2014, Jayakumar. P, Sangeetha. K, [12] have published a paper in finding the integer solutions of the homogeneous Biquaratic Diophantine equation $(x^3 - y^3)$ $z = (W^2 - P^2)R^4$. In 2015, Jayakumar. P, Meena.J [14, 15] published two papers in finding integer solutions of the homogeneous Biquaratic Diophantine equation $(x^4 - y^4) = 26 (z^2 - w^2)$ R^2 and $(x^4 - y^4) = 40 (z^2 - w^2) R^2$. Inspired by these, In this work, we are observed another interesting five different methods of the non-zero integral solutions of the nonhomogeneous biquadratic Diophantine equation with three unknowns $5(x^2 + y^2) - 9xy = 23z^4$. Further, some elegant properties among the special numbers and the solutions are observed. #### 2. DESCRIPTION OF METHOD Consider the bi - quadratic Diophantine equation $$5(x^2 + y^2) - 9xy = 23z^4$$ (1) eISSN: 2319-1163 | pISSN: 2321-7308 We introduce the linear transformations $$x = u + v, y = u - v, u \neq v \neq 0$$ (2) Using (2) in (1), it gives to $$u^2 + 19v^2 = 23z^4$$ (3) We solved (3) through various choices and the different methods of solutions of (1) are obtained as follows. # 2.1 Method: I Consider (3) as $u^2 + 19v^2 = 19z^4 + 4z^4$ and write it as in the form of ratio $$\frac{u+2z^2}{19(z^2+v)} = \frac{z^2-v}{u-2z^2} = \frac{a}{b}, b \neq 0$$ (4) (4) is equivalent to the system of equations $$6u - 199v + (2b - 19a)z^2 = 0 \tag{5}$$ $$-au - bv + (b + 2a)z^2 = 0 (6)$$ By the cross multiplication method, the above equations yields as $$u = 38a^{2} - 2b^{2} + 38ab v = -19a^{2} + b^{2} + 4ab z^{2} = 19a^{2} + b^{2}$$ (7) Putting a=2pq, $b=19p^2-q^2$ in (7) and using (2), it gives us x=x (p, q) = $-361p^4-q^4+148p^2q^2+1596p^3q-80pq^3$ y=y (p, q) = $-1083p^4-3q^4+338p^2q^2+1292p^3q$ $-64pq^3$ $z=19p^2+q^2$, This gives us the non-zero different integer values to (1) # **Observations:-** 1. x (1, p) + $$f_{4,6}^{p}$$ + 154 p_{p}^{5} - 227 $T_{4,p}$ - G_{798p} = 0 (Mod 2) 2. x (p, 1) + 8664 $$f_{4,3}^{\ p}$$ -7524 $p_p^{\ 5}$ - 357 $T_{4,p}$ - G_{1043p} = 0 3. y (1, p) +72 $$f_{4,8}^{p}$$ -15T_{4,p2} +32 p_{p}^{5} -372T_{4,p} -G_{640p} = 0(Mod2) 4. $$x(1, p) - y(1, p) - 48 f_{4,5}^{p} + 4T_{4,p2} + 72 p_{p}^{5} + 172T_{4,p} - G_{150p} = 1 \pmod{2}$$ 5. $$\frac{6}{7}$$ z(1, 4) is a Nasty number. # 2.2 Method: II In place of (4), let us take the form of ratio as $$\frac{u+2z^2}{z^2-v} = \frac{19(z^2+v)}{u-2z^2} = \frac{a}{b}, b \neq 0$$ (8) The following techniques is similar as in the method - I, The relating integer values to (1) are found as $$x = x (p, q) = 1143p^{4} + 3q^{4} - 342p^{2}q^{2} + 1372p^{3}q - 68pq$$ $$y = y (p, q) = 381p^{4} + q^{4} - 114p^{2}q^{2} + 1516p^{3}q - 84pq^{3}$$ $$z = 19p^{2} + q^{2}$$ #### **Observations:-** 1. $$x(1, q) - y(1, q) - 24 f_{4,4}^{q} - 16 f_{q}^{5} + 31 T_{4,q} + G_{74q} \equiv 0 \pmod{2}$$ 2. x (1, q)+ y(1, q) - 96 $$f_{4,7}^q$$ +16 $T_{4,q2}$ + 416 p_q^5 + 276 $T_{4,q}$ - G_{1448q} = 1 (Mod 2) 3. $$x(1, p) - 36 f_{4,4}^p + 160 p_p^5 + 277T_{4,p} - G_{683p} \equiv 0 \pmod{2}$$ 4. y (1, p) - 6 $$f_{4,6}^{p}$$ +174 p_{p}^{5} +29 $T_{4,p}$ - G_{758p} $\equiv 0 \pmod{2}$ 5. $\frac{5}{7}$ z (1, 4) is a perfect Square. # 2.3 Method: III Take 23 as $$23 = (2 + i\sqrt{19})(2 - i\sqrt{19})$$ (9) Write z as $$z = z (a, b) = a^2 + 19b^2$$ (10) Using (9) and (10) is (3) and applying the factorization process, define $$(u + i\sqrt{19} v) = (2 + i\sqrt{19}) (a + i\sqrt{19} b)^4$$ This give us $$\begin{aligned} u &= 2a^4 + 722b^4 - 228a^2b^2 - 4a^3b + 76ab^3 \\ v &= a^4 + 361b^4 - 114a^2b^2 + 8a^3b - 152ab^3 \end{aligned} \tag{11}$$ Using (11) in (2), the relating integer values of (1) are furnished by $$x = x (a, b) = 3a^4 + 1083b^4 - 342a^2b^2 - 76ab^3 + 4a^3b$$ $y = y (a, b) = a^4 + 361b^4 - 114a^2b^2 + 228ab + 12a^3b$ $z = z (a, b) = a^2 + 19b^2$ #### **Observations:** 1 .x (1, A) + y (1, A) - 8664 $$f_{4,6}^A$$ + 8360 p_A^5 - 5016T_{4,A} + G_{4A} \equiv 1 (Mod 2) 2. $$\mathbf{x}$$ (1, A) – \mathbf{y} (1, A) – 17328 $f_{4,8}^A$ +3610 $\mathbf{T}_{4,A2}$ +32712 p_A^5 –7296 $\mathbf{T}_{4,A}$ – \mathbf{G}_{1452A} = 1 (Mod 2) 3. x (1, A) - 25992 $$f_{4,7}^A$$ + 4332 $T^{4,A2}$ + 30476 p_A^5 - 7315 $T_{4,A}$ - G_{1085A} \equiv 0 (Mod 2) 4. y (1, A) - 8664 $$f_{4,5}^A$$ +722 $T^{4,A2}$ + 6764 p_A^5 -19 $T_{4,A}$ + $G_{367A} = 0$ 5. 5z (1, 1) is a perfect Square. #### 2.4 Method: IV In place of (9) take 23 as $$23 = \underbrace{(67 + i\sqrt{19}) (67 - i\sqrt{19})}_{196}$$ (12) The following techniques is same as in the method-III, the relating integer values of (1) are found as $$x = x (A, B) = 18659A^4 +67359712B^4 -21271488a^2b^2 +10010112ab^3 - 526848a^3b$$ $$y=y$$ (A, B) = $181104A^4 + 5644408B^4 - 20563536a^2b^2 + 17934784ab^3 - 943936a^3b$ $$z = z (A, B) = 196A^2 + 3724B^2$$ #### Observations: 1 .x (1, A) - y(1,A)- 370291824 $$f_{4,6}^A$$ + 42618161 p_A^5 - 88952248 $T_{4,A}$ + $G_{208544A}$ \equiv 1 (Mod 2) 2. x (1, A) +y (1, A) - 175209880 $$f_{4,3}^A$$ +860200096 p_A^5 +414780296 $T_{4,A}$ + $G_{219747752A}$ \equiv 1 (Mod 2) 3. x (A, 1) - 2239104 $$f_{4,4}^A$$ + 2546432 p_A^5 +20931232 $T_{4,A}$ + $G_{5191648A} \equiv 1 \pmod{2}$ 4. y (A, 1)- 4346496 $$f_{4,7}^A$$ +724416 $T_{4,A2}$ + 6958784 p_A^5 + 18351872 $T_{4,A}$ - $G_{9148496A}$ \equiv 1 (Mod 2) 5. z (1, 0) is a perfect Square. # 2.5 Method: V Let us\take (3) as $$u^2 + 19v^2 = 23z^4 * 1$$ (13) Take 1 as $$_{1=}\frac{(9+i\sqrt{19})(9-i\sqrt{19})}{100}$$ (14) Using (9), (10) and (14) in (13) and applying the factorization process, define $$(u + i\sqrt{19} v) = (2 + i\sqrt{19}) (a + i\sqrt{19} b) \frac{(9 + i\sqrt{19})}{10}$$ This gives us $$\begin{split} u &= \frac{1}{10} \left[-a^4 - 361b^4 + 114a^2b^2 + 15884ab^3 - 836a^3b \right] \quad (14) \\ v &= \frac{1}{10} \left[11a^4 + 3971b^4 - 1254a^2b^2 + 76ab^3 - 4a^3b \right] \quad (15) \end{split}$$ In sight of (2), the values of x, and y are $$x = \frac{1}{10} [10a^{4} + 3610b^{4} - 11a^{2}b^{2} + 1664ab^{3} - 84a^{3}b]$$ $$x = [a^{4} + 3610b^{4} - 114a^{2}b^{2} + 1596ab^{3} - 840a^{3}b]$$ (16) $$y = \frac{1}{10} \left[-12a^4 - 4332b^4 + 239a^2b^2 + 1512ab^3 - 832a^3b \right]$$ $$y = \frac{1}{5} \left[-6a^4 - 2166b^4 + 684a^2b^2 + 756ab^3 - 416a^3b \right]$$ (17) As our intension is to find integer solutions, taking a as 5A and b as 5B in (4), (16) and (17), the relating parametric integer values of (1) are found as $$x = x (A, B) = 625A^4 + 225625B^4 - 71250A^2B^2 + 997500AB^3 - 52500A^3B$$ $$y = y (A, B) = -750A^4 - 270750B^4 + 85500A^2B^2 + 94500AB^3$$ 52000A³ B $$z = z (A, B) = 25A^2 + 475B^2$$ #### **Observations:** 1. $$z(A, A) -500T_{4A} = 0$$ 2. $$z(A, 0) - 25 T_{4A} = 0$$ 3. $$z(0, B)$$ - 475 $T_{4R} = 0$ 4. $$\frac{1}{5}z(1,1)$$ is a perfect square 5. 6 x (A, 1) + 5 y (A, 1) + 1150000 $$p_A^5$$ - 57500T_{4,A} - G_{3228750A}+ 1 = 0 6. $$6 \times (A, 1) + 5 \times (A, 1) = 0$$ 7. x(1, 0) is a perfect square 8. $$x (A, 1) -300 f_{4,7}^A + 108410 p_A^5 - 17875T_{4,A} - G_{498875A} \equiv 0 \text{(Mod 2)}$$ Each of the following is a nasty number 9. $$\frac{6}{5}$$ z (1, 0), $\frac{3}{50}$ z (1,1), $\frac{6}{125}$ x (1,0), $-\frac{1}{25}$ y (1,0) #### 3. CONCLUSION In this work, we have observed various process of determining infinitely a lot of non-zero different integer values to the non-homogeneous bi-quadratic Diophantine equation $5(x^2 + y^2) - 9xy = 23z^4$. One may try to find nonnegative integer solutions of the above equations together with their similar observations. # 4. REFERENCES - [1] Dickson, L.E., History of theory of numbers, Vol.11, Chelsea publishing company, New –York (1952). - [2] Mordell, L.J., Diophantine equation, Academic press, London (1969) Journal of Science and Research, Vol (3) Issue 12, 20-22 (December -14) - [3] Jayakumar. P, Sangeetha, K "Lattice points on the cone $x^2 + 9y^2 = 50z^2$ " International Journal of Science and Research, Vol (3), Issue 12, 20-22, December (2014) - [4] Jayakumar P, Kanaga Dhurga, C," On Quadratic Diopphantine equation $x^2 + 16y^2 = 20z^2$ " Galois J. Maths, 1(1) (2014), 17-23. - [5] Jayakumar. P, Kanaga Dhurga. C, "Lattice points on the cone $x^2 + 9y^2 = 50 z^2$ " Diophantus J. Math,3(2) (2014), 61-71 - [6] J [6] Jayakumar. P, Prabha. S "On Ternary Quadratic Diophantine equation $x^2 + 15y^2 = 14 z^2$ " Archimedes J. Math., Math 4(3) (2014), 159-164. - [7] Jayakumar, P, Meena, J "Integral solutions of the Ternary Quadratic Diophantine equation: $x^2 + 7y^2 = 16z^2$ International Journal of Science and Technology, Vol.4, Issue 4, 1-4, Dec 2014. - [8] Jayakumar. P, Shankarakalidoss, G "Lattice points on Homogenous cone $x^2 + 9y^2 = 50z^2$ " International journal of Science and Research, Vol (4), Issue 1, 2053-2055, January -2015. - [9] Jayakumar. P, Shankarakalidoss. G "Integral points on the Homogenous cone $x^2 + y^2 = 10z^2$ International Journal for Scienctific Research and Development, Vol (2), Issue 11, 234-235, January -2015 - [10] Jayakumar.P, Prapha.S "Integral points on the cone $x^2 + 25y^2 = 17z^2$ " International Journal of Science and Research Vol(4), Issue 1, 2050 2052, January 2015. - [11] Jayakumar.P, Prabha. S, "Lattice points on the cone $x^2 + 9y^2 = 26z^2$ "International Journal of Science and Research Vol (4), Issue 1,2050 2052, January -2015 - [12] Jayakumar. P, Sangeetha. K, "Integral solution of the Homogeneous Biquadratic Diophantine equation with six unknowns: $(x^3 y^3)$ $z = (W^2 P^2)$ R^4 "International Journal of Science and Research, Vol(3), Issue 12, December-2014 [13] Jayakumar. P, Meena. J " Ternary Quadratic - Diophantine equation: $8x^2 + 8y^2 15xy = 40z^2$ International Journal of Science and Research, Vol.4, Issue 12, 654 655, December 2015. - [14] Jayakumar. P, Meena.J 'On theHomogeneous Biquadratic Diophantine equation with 5 Unknown $x^4 y^4 = 26(z^2 w^2) R^2$ International Journal of Science and Rearch, Vol.4, Issue 12, 656 658, December 2015. - [15] Jayakumar. P, Meena. J 'On the Homogeneous Biquadratic Diophantine equation with 5 unknown - $x^4 y^4 = 40(z^2 w^2)R^2$ International Journal of Scientific Research and Development, Vol.3, Issue 10 204 206, 2015. - [16] Jayakumar.P, Meena.J "Integer Solution of Non Homogoneous Ternary Cubic Diophantine equation: - $x^2 + y^2 xy = 103z^3$ International Journal of Science and Research, Vol.5, Issue 3, 1777-1779, March -2016 - [17] Jayakumar. P, Meena. J 'On Ternary Quadratic Diophantine equation: $4x^2 + 4y^2 7xy = 96z^2$ International Journal of Scientific Research and Development, Vol.4, Issue 01, 876-877, 2016. - [18] Jayakumar. P, Meena. J 'On Cubic Diophantine Equation " $x^2 + y^2 xy = 39z^3$ " International Journal of Research and Engineering and Technology, Vol.05, Issue 03, 499-501, March-2016. - [19] Jayakumar. P, Venkatraman. R "On Homogeneous Biquadratic Diophantine equation $x^4 y^4 = 17(z^2 w^2) R^2$ International Journal of Research and Engineering and Technology, Vol.05, Issue 03, 502-505, March-2016 - [20] Jayakumar.P, Venkatraman.R "Lattice Points On the Homogoneous cone: $x^2 + y^2 = 26z^2$ International Journal of Science and Research, Vol.5, Issue 3, 1774 1776, March 2016 - [21] Jayakumar. P, Venkatraman. R "On the Homogeneous Biquadratic Diophantine equation with 5 unknown $x^4 y^4 = 65(z^2 w^2) R^2$ International Journal of Science and Research, Vol.5, Issue 3, 1863 1866, March 2016 # **BIOGRAPHY** (1) Dr. P. Jayakumar received the B. Sc, M.Sc degrees in Mathematics from Madras University in 1980 and 1983 and the M. Phil, Ph.D degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 1988 and 2010. Who is now working as Professor of Mathematics, - Periyar Maniammai University, Vallam, Thanajvur-613 403, Tamil Nadu, India. - (2) V.Pandian received the B.Sc, M.Sc,and MPhil degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 2002, 2004 and 2006. Who is now working as Assistant Professor of Mathematics, A.V.V.M. Sri Pushpam College (Autonomous), Poondi -613 503, Thanajvur.T.N, India.