DESIGN OF A RESIDENTIAL BUILDING FOR 2BHK WITH 2 BLOCKS

Ranjeet. P¹, DVS. Narshima Rao², Md Akram Ullah Khan³

¹Assistant Professor, Civil Department, GNITC, Telangana, India
²Assistant Professor, Civil Department, GNITC, Telangana, India
³Assistant Professor, Civil Department, GNITC, Telangana, India

Abstract
Analyze and designing of a multistoried framed structure for G+4 floors. The analysis of multistoried residential apartment is designed by limited state method. The analysis of frame would be done by kani’s method then it is proposed to design the structural elements according to IS 456-2000. The height of the room is taken as 3mts and walls are provided with 230mm thickness and inner partition walls are constructed with bricks masonry of 70mm thick. The multistoried consists of 4 floors and each floor is having 2 blocks having total area of 105sq.mts each. The analysis and design is done for one single block which is identical for the rest.

Keywords: G+4 Multistoried Building, Design, Plan Etc.

1. INTRODUCTION
Industrial development in India is enormously increasing the shift of population from villages, towns to cities and hence the rapid urbanization. Due to this urbanization, land value increases unbounded and people are going to multi storied buildings/flats to economically utilize the land area available.

By this urbanization the increases of multi storied building rapidly increases.

2. Design of Slab’s
Slabs are plate elements forming floors and roofs of building and carrying distributed loads primarily by flexure. Slabs are to be cast along with the beam and columns. It can be assumed as restrained slabs i.e., corners of the slabs are prevented from lifting.

2.1. Types of Slab’s
There are two types of slabs
- Two way slab
- One way slab

2.1.1 Two way Slab
When ratio of long span is less than two, the slab is designed as two way slab. The loads acting on the slabs are self weight of slab, weight of floor finisher, partition walls and live loads. Live load is taken from IS 875-1987. For bending moment in both directions of the restrained slab, the coefficients are taken IS 456-2000. The coefficient varies with edge conditions of slab and ratio of long span to short span.

Slabs are designed by using limit state method.

2.1.2. One Way Slab
When the ratio of long span to short span is greater than two then the slab design is considered to be one way slab. In this loads are carried only along one direction. The main reinforcement is provided in the span direction. Reinforcement is also provided in the transverse direction, to distribute any unevenness that may occur in loading and for temperature and shrinkage effects in that direction. The main reinforcement is called distribution steel or secondary reinforcements. In the design of corridor, one way slab is considered.

This one way slab is designed as per IS 456-2000 main steel is provided along the width wise of corridor and distribution steel id provided along length wise.

<table>
<thead>
<tr>
<th>Table1: Maximum Span length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support conditions</td>
</tr>
<tr>
<td>Slab Type</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
</tbody>
</table>

3. DESIGN OF MAIN BED ROOM SLAB

3.1. Data
Grade of Concrete =M15
Grade of Steel =Fe415
Characteristic strength of concrete (fck) =15N/mm²
Characteristic strength of steel, (fy) =415N/mm²

3.2. Design Constants
The design constants for M15 concrete and Fe415 steel for a balanced section under as per IS 415-2000 of code are
Xu, max/d =0.48
Mu, lim/bd² =0.13fck
3.3. Effective Depth of Slab
Assume overall depth of slab D = 120mm
Clear cover of slab d' = 20mm
Effective depth of slab d = 1000mm

3.4. Effective Span of Slab
As per IS 456-2000, effective span for framed structure will be the c/c distance between the supports.
Effective span in longer direction, I_L = 4.23m
Effective span in shorter direction, I_s = 4.2m

3.4. Effective Span of Slab
Ratio of spans=longest span/shortest span
= 4.23/4.2 = 1.007 which is less than 2.

Since the aspect ratio is less than 2, the slab design will be two way slab.
Where

1. \(L_y \) = 4.23m
2. \(L_s \) = 4.2m

3.5. Load On Slab
Consideration the width of the slab = 1m
Self weight of slab= volume x density of concrete

\[\text{Weight of the floor finishes} = 0.5 \times 1 \]
\[\text{Live load} = 0.5 \text{kn/m} \]
\[\text{Self weight of partition wall} = 1 \times 1 \]
\[\text{Total Load} = 1.5 \times 7.5 \]
\[\text{Factored total load} W = 11.25 \text{kn/m} \]

3.6. Effective Depth
Calculation the effective depth of slab by equation, \(Mu=M_u, \text{lim} \)

Where \(M_u= \) factored or ultimate or design moment
\[= \alpha_u W f^2 x \text{ or } f^2 x \]

Maximum bending moment
\[= \alpha_u W f^2 x \]
\[= 0.138 \text{fckbd}^2 \]
\[0.037 \times 11.25 \times 4.20^2 \]
\[= 7.342 \times 10^6 \]
\[\alpha_u = (\pi/4 \times 8)^2 \times (\pi/4 \times 8)^2 \]
\[= 59.55 \times 100 \text{mm} \]

Hence it is safe.

However provided effective depth is 100mm
Therefore overall depth of the slab (D) =120mm
Effective depth of slab (d) =100mm

3.7. Bending Moment and Area of Reinforcement
for Short Span at Mid Span
Factored bending moment \(M_u = \alpha_u W f^2 x \)

Positive moment at mid span \[= 0.028 \times 11.25 \times 4.20^2 \]
\[= 5.556 \text{KN-m} \]
\[\alpha_u = 0.87f_u A_{st}(0.42 X_{u,\text{Max}}) \]
\[X_{u,\text{Max}} = 0.87f_u A_{st}(0.36 f_{ak} b) = 0.06686 A_{st} \]
\[M_u = 0.87 \times 415 x A_{st} (100-0.42 x 0.06686 A_{st}) \]
\[= 5.556 \times 10^6 = 361.05 \times 100 A_{st} 10.138 A_{st}^2 \]
\[A_{st} = 161.156 \text{mm}^2 \]

Assuming 8mm dia bars,
Spacing \(= (\pi a/4 x 64)/ 161.156 \times 1000 \]
\[= 311.56 \text{mm} \]

Checking space
For min reinforcement consideration,
1. 311.56mm
2. 3d=3 x 100= 300mm,
3. 300mm

Therefore, provide 8mm diameter bars at 300 mm c/c spacing.

For short span at continuous edge
Factored bending moment \(M_u = \alpha_u W f^2 x \)
\[= 0.037 \times 11.25 \times 4.20^2 \]
\[= 7.34265 \text{Kn-m} \]
\[\alpha_u = 0.87f_u A_{st} \]
\[X_{u,\text{Max}} = 0.87f_u A_{st} (0.36 f_{ak} b) = 0.06686 A_{st} \]
\[M_u = 0.87 \times 415 x A_{st} (100-0.42 x 0.06686 A_{st}) \]
\[= 7.34365 \times 10^6 = 361.05 \times 100 A_{st} 10.138 A_{st}^2 \]
\[A_{st} = 216.533 \text{mm}^2 \]

Assuming 8mm diameter bars,
Area of one bar \(= (\pi/4 \times 8^2) = 50.24 \text{mm}^2 \)

Spacing \(= (\text{Ast of one bar} / \text{total Ast}) \times 1000 \]
\[= (50.24/ 216.533) \times 1000 \]
\[= 232.173 \text{mm} \]

Check for Spacing
For min reinforcement consideration,
1. 230mm
2. 3d=3 x 100= 300mm
3. 300mm

Therefore, provided 8mm diameter bars at 300 mm c/c spacing.

For Long span at Mid Span
Positive moment factored bending moment \(M_u = \alpha_u W f^2 x \)
\[= 0.028 \times 11.25 \times 4.20^2 \]
\[= 5.556 \text{kn-m} \]
\[\alpha_u = 0.87f_u A_{st} \]
\[X_{u,\text{Max}} = 0.87f_u A_{st} (0.36 f_{ak} b) = 0.06686 A_{st} \]
\[M_u = 0.87 \times 415 x A_{st} (100-0.42 x 0.06686 A_{st}) \]
\[= 5.556 \times 10^6 = 361.05 \times 100 A_{st} 10.138 A_{st}^2 \]
\[A_{st} = 161.156 \text{mm}^2 \]

Actual bending moment < limiting bending moment
Hence it is safe.

\[5.556 \times 10^6 = 361.05 A_{st} 100-101.138 A_{st}^2 \]
\[A_{st} = 161.156 \text{mm}^2 \]
Assuming 8mm dia bars,
Spacing = (Ast of one bar / total Ast) x 1000
= (50.24/ 161.156) x 1000
= 311.56mm

Check for Spacing
For min reinforcement consideration,
1. 310mm
2. 3d= 3 x 100= 300mm
3. 300mm
Therefore, provided 8mm diameter bars at 300mm c/c spacing.

For long span at continuous edge
Factored bending moment, \(M_u \) = \(\alpha_y Wl^2 x \)
Positive moment at mid span = 0.03215x 11.25 x 4.20
= 7.343 Kn-m
\(A_{st} \) = 216.533 mm²

Assuming 8mm dia bars,
Spacing = (Ast of one bar / total Ast) x 1000
= ((π/4 x 64) / 216.173) x 1000
= 232.173mm

Check for Spacing
For min reinforcement consideration,
1. 230mm
2. 3d= 3 x 100= 300mm
3. 300mm
Therefore, provided 8mm diameter bars at 230mm c/c spacing.

Characteristics of steel, \(f_y \) =415N/mm²

4.2. DESIGN CONSTANTS
The design constants for M15 concrete and Fe415 steel for a balanced section under as per IS 415-2000 of code are
\(X_u, max/d = 0.48 \)
\(M_u, lim/bd^2 = 0.138fck = 2.07 \)

4.3. Effective Depth of Slab
Assume overall depth of slab \(D = 120mm \)
Clear cover of slab \(d' = 20mm \)
Effective depth of slab \(d = 1000mm \)

4.4. Effective Span of Slab
As per IS 456-2000, effective span for framed structure will be the c/c distance between the supports.
Effective span in longer direction, \(L_y = 3.90m \)
Effective span in shorter direction, \(L_x = 3.60m \)

4.5. Load on slab
Consideration the width of the slab =1m
Self weight of slab= volume x density of concrete
= area x 1 x 25
= 1 x 0.12 x 1 x 25
= 3kn/m

Weight of the floor finishes = 0.5 x 1
= 0.5kn/m
Live load = 3 x 1
Self weight of partition wall = 1 x 1
Total Load = 7.5kn/m
Factored total load \(W = 11.25kn/m \)

4.6. Effective Depth
Calculation the effective depth of slab by equation, \(M_u=M_{u, lim} \)
Where \(M_u= \) factored or ultimate or design moment
= \(\alpha_y Wl^2 x \) or \(\alpha_y l^2 x \)
Maximum bending moment = \(\alpha_y Wl^2 x \)
=0.138fck bd²
0.0428 x 11.25 x 3.60² =6.24 x 10⁶
\(d= \) square root of (6240000/ 15 x 1000)
=54.9 < 100mm
Hence it is safe.
However provided effective depth is 100mm
Therefore overall depth of the slab (D) =120mm
Effective depth of slab (d) =100mm
4.7. Bending Moment and Area of Reinforcement

For Short Span at Mid Span
Factored bending moment $M_u = \alpha_w W_t^2 x$
Positive moment at mid span $= 0.03215 \times 11.25 \times 3.60^2$
$= 4.687 \text{ KN-m}$

$M_u = 0.87f_y A_{sd}(d - 0.42 X_{u,Max})$
$X_{u,Max} = \frac{0.87f_y A_{sd} \div 0.36f_y b}{0.06686 A_{st}}$
$M_u = 0.87 \times 415 \times A_{sd} (100-0.42 \times 0.006686 A_{sd})$
$= 4.687 \times 10^6 = 361.05 \times 100 A_{st} 10.138 A_{st}^2$
$A_{st} = 134.93 \text{ mm}^2$

Assuming 8mm dia bars,
Spacing $= (\text{Ast of one bar} / \text{total Ast}) \times 1000$
$= ((50.24/134.96) \times 1000$
$= 372.56 \text{ mm}$

Checking space
For min reinforcement consideration,
- 372.56 mm
- 3\(d=3 \times 100= 300\text{mm},\)
- 300 mm

Therefore, provide 8mm diameter bars at 300 mm c/c spacing.

For short span at continuous edge
Factored bending moment $M_u = \alpha_w W_t^2 x$
$= 0.0428 \times 11.25 \times 3.6^2$
$= 6.24 \text{ Kn-m}$

$M_{u,lim} / bd^2 = 2.07$

Since $M_{u,h} > M_{u,lim}$, the design is safe

$M_u = 0.87f_y A_{sd} / 0.36 f_y B = 0.06686 A_{st}$
$X_{u,Max} = 0.87 \times 415 \times A_{sd} (100-0.42 \times 0.06686 A_{sd})$
$M_u = 6.24 \times 10^6 = 361.05 \times 100 A_{st} - 10.138 A_{st}^2$
$A_{st} = 182.145 \text{ mm}^2$

Assuming 8mm diameter bars,
Area of one bar $= (\pi/4 \times 8^2) = 50.24 \text{ mm}^2$
Spacing $= (\text{Ast of one bar} / \text{total Ast}) \times 1000$
$= (50.24/182.145) \times 1000$
$= 275.96 \text{ mm equal to 270 mm}$

Check for Spacing
For min reinforcement consideration,
1. 270 mm
2. 3\(d=3 \times 100= 300\text{mm}\)
3. 300 mm

Therefore, provided 8mm diameter bars at 300 mm c/c spacing.

For Long span at continuous edge
Factored bending moment $M_u = \alpha_w W_t^2 x$
$= 0.0377 \times 11.25 \times 3.6^2$
$= 5.39 \text{ Kn-m}$

$M_{u,lim} / bd^2 = 20.7 \times 10^6 \text{ N-mm}$

Since $M_{u,h} > M_{u,lim}$, the design is safe

$M_u = 0.87f_y A_{sd} / 0.36 f_y B = 0.06686 A_{st}$
$X_{u,Max} = 0.87 \times 415 \times A_{sd} (100-0.42 \times 0.06686 A_{sd})$
$M_u = 5.39 \times 10^6 = 361.05 \times 100 A_{st} - 101.138 A_{st}^2$
$A_{st} = 156.25 \text{ mm}^2$

Assuming 8mm dia bars,
Spacing $= (\text{Ast of one bar} / \text{total Ast}) \times 1000$
$= (50.24/156.25) \times 1000$
$= 329.69 \text{ mm equal to 300 mm}$

Check for Spacing
For min reinforcement consideration,
1. 329.69 mm
2. 3\(d=3 \times 100= 300\text{mm}\)
3. 300 mm

Therefore, provided 8mm diameter bars at 300 mm c/c spacing.

Check for Spacing
For min reinforcement consideration,
1. 429.96 mm
2. 3\(d=3 \times 100= 300\text{mm}\)
3. 300 mm

Therefore, provided 8mm diameter bars at 300 mm c/c spacing.

For Long span at Mid Span
Positive moment factored bending moment $M_u = \alpha_w W_t^2 x$
$= 0.0377 \times 11.25 \times 3.6^2$
$= 5.39 \text{ Kn-m}$

$M_{u,lim} / bd^2 = 20.7 \times 10^6 \text{ N-mm}$

Since $M_{u,h} > M_{u,lim}$, the design is safe

$M_u = 0.87f_y A_{sd} / 0.36 f_y B = 0.06686 A_{st}$
$X_{u,Max} = 0.87 \times 415 \times A_{sd} (100-0.42 \times 0.06686 A_{sd})$
$M_u = 5.39 \times 10^6 = 361.05 \times 100 A_{st} - 101.138 A_{st}^2$
$A_{st} = 156.25 \text{ mm}^2$

In the same way Hall, children bed room and other rooms can be designed.
4. Plan Drawings

![Plan Drawings](Fig: 3 Design of Two Way Slab)

CONCLUSION

1. The bedroom and kitchen slab design concludes that the rod 8mm bars at particular c/c spacing can take proper load for long time.
2. The design for rest of the house will be provided with all the proper steel bars c/c for taking proper load. The design of residential building with 2bhk to blocks helps us to find the load by using one way slab design.
3. The one way design helps the design easy to construction the load of the building.

REFERENCES

[2]. Structural Analysis by hibbeler, pearson education ltd.
[3]. Basic Structural Analysis bu cs. Reddy., tata mc graw hill publishers
[4]. Fundamental of Structural Analysis by m.l. garmhir, PHI.
[7]. Design of steel structural by S.K. Sai Ram, Person Education.
[9]. Concrete Technology by Job Thomas, Cengage learning.

BIOGRAPHIES

Ranjeet.P holds M Tech Degree in Transportation Engineering from JNTUH, Telangana, India. Presently working as Assistant Professor in Civil Department in GNITC, Telangana, India.

DVS Narsimha Rao, MSc(Geology), M.Phil working in Civil Department as an Associate professor in Guru Nanak Institutions Technical Campus

Mohd Akram Ullah Khan, Research scholar in the department of Applied Geology in Osmania University and working in Civil Department as an Assistant professor in Guru Nanak Institutions Technical Campus