
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 05 Issue: 04 | Apr-2016, Available @ http://www.ijret.org 28

AUTOMATIC TEST PACKET GENERATION IN NETWORK

Dipty Trimbak Survase
1
, Aparna Prakash Chandgude

2
, Surekha Babasaheb Kerulkar

3
,

Pranali Prakash Vichare
4
, Mohan V. Pawar

5

1
Computer Engineering, JSCOE, Maharashtra, India

2
Computer Engineering, JSPMCOE, Maharashtra, India

3
Computer Engineering, JSCOE, Maharashtra, India

4
Computer Engineering, JSCOE, Maharashtra, India

5
Faculty of Computer Engineering, JSCOE, Maharashtra, India

Abstract
Now a day’s we see that networks are widely distributed so administrators depends on various tools such as ping and traceroute

to rectify the problem in the network. We proposed an automated and systematic approach for testing and debugging network

called "Automatic Test Packet Generation"(ATPG). Initially ATPG reads router configuration and then generates a model which

is device freelance. The model is used to generate the minimum number of test packets to cover every link and rule in network.

ATPG is capable for detecting both functional and performance problems. Test packets are sent at regular intervals and special

technique is used to localize faults.

Keywords: Test Packet Generation Algorithm; Network Troubleshooting; Data Plane Analysis.

--***--

1. INTRODUCTION

It is not an easy task to debug a network. The network

engineers face problems like router misconfigurations, Fiber

cut, mislabeled cables, software bug, Faulty interfaces etc.

Network engineers try to solve these issues using mostly

used tools such as ping and trace route. Debugging networks

is getting more and more complex as not only size of

networks but also their level of complexity [32] is increasing

day by day. ATPG produces a model which is not dependent

on devices after reading configuration from routers. Another

advantage of ATPG system is that it covers each link and

every rule in network with minimum number of test packets.

Uniformly the test packets are send, and if any fault is

detected, it is triggered by separate mechanism namely fault

localization. ATPG can cover both functional and

performance fault.

Fig1:- Network State

2. Table No: 1

YEAR OF

PAPER

REFERNCES

2008 A. Markopoulou, G. Iannaccone, S. Bhattacharyya,

C.-N. Chuah, Y.Ganjali, and C. Diot[26], N.

McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner[27], A.

Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J.Wang,

Z. Ge, and C.

T. Ee[24], C. Cadar, D. Dunbar, and D. Engler[6]

2009 F. Le, S. Lee, T. Wong, H. S. Kim, and D.

Newcomb[21]

2010 D. Turner, K. Levchenko, A. C. Snoeren, and S.

Savage[34], B. Lantz, B. Heller, and N.

McKeown[20]

2011 H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T.King[25], S. Shenker[32], A.

Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J.

Emmons, B.Huntley, and M. Stockert[23], P. Gill,

N. Jain, and N. Nagappan[12]

2012 M.Reitblatt,N.Foster, J. Rexford, C. Schlesinger,

andD.Walker[31], M. Kuzniar, P. Peresini, M.

Canini, D. Venzano, and D. Kostic[18], P.

Kazemian, G. Varghese, and N. McKeown[16], M.

Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford[7],

2013 I.Pomeranz,S.M.Reddy,J.Rajski,Kwang-Ting

Cheng,J.A.Abraham[3]

2014 Hongyi Zeng ,Peyman Kazemian, George

Varghese, ACM and Nick McKeown[2]

2015 Dipty survase,Pranali Vichare,Mohan V. Pawar[1]

IJRET: International Journal Of Research In Engineering And Technology Eissn: 2319-1163 | Pissn: 2321-7308

Volume: 05 Issue: 04 | Apr-2016, Available @ http://www.ijret.org 29

3. ALGORITHMS AND TECHNIQUES USED

1) Algorithm: we have a tendency to assume a collection of

take a look at terminals within the network will send and

receive take a look at packets. Our goal is to come up with a

collection of take a look at packets to exercise each rule

each switch perform, in order that any fault are determined

by a minimum of one take a look at packet. This can be

analogous to software package take a look at suites that

attempt to take a look at each potential branch in a very

program. The broader goal will be restricted to testing each

link or each queue. Once generating take a look at packets,

ATPG should respect 2 key constraints: a) Port: ATPG

should solely use take a look at terminals that square

measure available;

b) Header: ATPG should solely use headers that every take

a look at terminal is allowable to transfer. for instance, the

network administrator might solely enable employing a

specific set of VLANs.

2) Algorithm: Our algorithmic program for pinpointing

faulty rules assumes that a take a look at packet can succeed

as long as it succeeds at each hop. For intuition, a ping

succeeds provided that all the forwarding rules on the trail

behave properly. In a same way, if a queue is full, associate

degreey packets that travel through it'll incur higher latency

and will fail an end-to-end take a look at. Formally, we've

got the subsequent. Assumption one (Fault

Propagation)R(pk)=1: if and as long as For all r

Є(p,k).history,R(r,k)=1, ATPG is use to pinpoint a faulty

rule by initial computing the stripped set of probably faulty

rules. Formally, we've got drawback a pair of. drawback a

pair of (Fault Localization): Given an inventory of

(pk0,(R(pk0),(pk1,R(pk1)….tuples, notice all r that satisfies

Ǝpki,R(pki,r)=0.

4. ATPG SYSTEM

ATPG is one in every of the systematic approach uses for

debugging network. ATPG generates stripped variety of

take a look at packets in order that each forwarding rule the

network is exercised and coated by a minimum of 1 take a

look at packet.A fault localization algorithmic program is

use by ATPG to see the failing rules or failing links.

Fig3.ATPG block diagram

5. PROPOSED SYSTEM

Automatic take a look at Packet Generation (ATPG)

structure that consequently produces a negligible

arrangement of bundles to check the basic's livener’s

topology and also the coinciding between data plane state

and style determinations. The equipment will likewise

naturally produce bundles to check execution affirmations,

for instance, parcel dormancy. It will likewise be specific to

provide a negligible arrangement of parcels that solely take

a look at every association for system liveners.

• A survey of network operators revealing common

failures and route causes take a look at packet generation

algorithmic program.

• A fault localization algorithmic program to isolate faulty

device and rules.

• ATPG use cases for useful & performance testing

• Evaluation of an example ATPG system victimisation

rule sets collected from the Stanford and internet2

backbones.

6. FUTURE SCOPE AND RELATED WORK

Many of the newest techniques used for mechanically

generating take a look at packets square measure given.

nearest technologies illustrious square measure few offline

tools. These offline tools square measure use to envision

invarients in network. It additionally supports Automatic

take a look at Packet Generation one in every of the logged

REFERENCES

2008

2009

2010

2011

2012

2013

2014

IJRET: International Journal Of Research In Engineering And Technology Eissn: 2319-1163 | Pissn: 2321-7308

Volume: 05 Issue: 04 | Apr-2016, Available @ http://www.ijret.org 30

off utensils that square measure utilised for modify take a

look at parcels automatically up to the mark plane is nice.

Header house analysis [16] uses geometric model to

envision reachability, discover loops and verify slicing.

SOFT was projected [18] to verify consistency between

completely different openflow agent implementations that

square measure to blame for bridging management and

information planes in SDN context. in service with

discharge stream arrangement somebody should be urged to

impact difficulties like expansive place of switch state, large

place of elbow grease bundle, tremendous flexibility of

occasion requesting and then on to beat these difficulties

NICE is of unimaginable utilization. operating of NICE is

incontestible. good somebody brings to the table controller

program close topology of framework that joins state of

switches and hosts. The somebody has the independence to

connect inquiry approach that is needed by him. At long last

NICE [7]offers the hints of benefits contradiction or

property to be up to the imprint with their evidences as

yield.The instrument NICE chips away at high of things

plane equally within the data plane there is another

disconnected from cyber web equipment which will be

utilised significantly Anteater[25]. Insect consumption

animal accumulates the setup and causation data bases

(FIBs) of methodology, and depict them as scientist

capacities. At that time a screw up to be checked is set by

administrator against the system, such lapses are consistency

of causation tenets among switches[12], reachability or

circle free forward. Insect consumption animal makes the

mix of those slips and proselytes them into tests of scientist

satisfiability downside (SAT), and makes utilization of a

weekday issue problem solver to execute study.Actually our

work is expounded to figure in programming languages and

symbolic debugging.

7. RESULT

(a)

(b)

(c)

CONCLUSION

Nowadays network engineers depend upon recent tools like

ping and traceroute to right the system. However networks

are becoming larger and additional advanced, so that they

would like additional refined instrument for right system.

because of vast network access administrator face some

problems in testing animateness of system. to beat such

variety of problems we have a tendency to developed

ATPG. By testing all tips comprehensive in any respect drop

rules ATPG has capability to check reachability

methodology. ATPG employments easy issue restriction

strategy developed with the help of header house

investigation to confine deficiencies. Customary model of

ATPG framework serves to hide most extreme connections

or standards in a very system with least variety of take a

look at bundles.

REFERENCES

[1]. A Survey on Automatic Test Packet Generation in

Network.Ms.Survase Dipty1,Ms.Pranali Vichare2,

Prof.M.V.Pawar3[2015].

[2]. “Automatic Test Packet Generation”,Hongyi Zeng,

Member, IEEE, Peyman Kazemian, Member, IEEE,

George Varghese, Member, IEEE, Fellow, ACM, and

Nick McKeown, Fellow, IEEE, ACM,2014.

IJRET: International Journal Of Research In Engineering And Technology Eissn: 2319-1163 | Pissn: 2321-7308

Volume: 05 Issue: 04 | Apr-2016, Available @ http://www.ijret.org 31

[3]. “Automatic Test Pattern Generation,” 2013 [Online].

Available,http://en.wikipedia.org/wiki/Automatic_test_

pattern_generation.

[4]. “Beacon,” [Online]. Available:

http://www.beaconcontroller.net/

[5]. Y. Bejerano and R. Rastogi, “Robust monitoring of link

delays and faults in IP networks,” IEEE/ACM Trans.

Netw., vol. 14, no. 5, pp.1092–1103, Oct. 2006.

[6]. C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted

and Automatic generation of high-coverage tests for

complex systems Programs,” in Proc. OSDI, Berkeley,

CA, USA, 2008, pp. 209–224.

[7]. M. Canini, D.Venzano, P. Peresini, D.Kostic, and J.

Rexford, “A NICE Way to test OpenFlow

applications,” in Proc. NSDI, 2012, pp. 10–10.

[8]. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,

“Netdiagnoser: Troubleshooting network

unreachabilities using end-to-end probes and routing

data,” in Proc. ACM CoNEXT, 2007, pp. 18:1 18:12.

[9]. P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and

S.-J. Lee, “S3: A scalable sensing service for

monitoring large networked systems,” in Proc. INM,

2006, pp. 71–76.

[10]. N. Duffield, F. L. Presti, V. Paxson, and D. Towsley,

“Inferring link loss using striped unicast probes,” in

Proc. IEEE INFOCOM, 2001,vol. 2, pp. 915–923.

[11]. N. G. Duffield and M. Grossglauser, “Trajectory

sampling for direct traffic observation,” IEEE/ACM

Trans. Netw., vol. 9, no. 3, pp. 280–292, Jun. 2001.

[12]. P. Gill, N. Jain, and N. Nagappan, “Understanding

network failures in data centers: Measurement,

analysis, and implications,” in Proc. ACM SIGCOMM,

2011, pp. 350–361.

[13]. “Hassel, the Header Space Library,” [Online].

Available: https://bitbucket. Org/peymank/hassel-

public.

[14]. Internet2, Ann Arbor, MI, USA, “The Internet2

observatory data collections,” [Online]. Available:

http://www.internet2.edu/observatory/Archive/data-

collections.html.

[15]. M. Jain and C. Dovrolis, “End-to-end available

bandwidth: Measurement methodology, dynamics, and

relation with TCP throughput,” IEEE/ACM Trans.

Netw., vol. 11, no. 4, pp. 537–549, Aug. 2003.

[16]. [16] P. Kazemian, G. Varghese, and N. McKeown,

“Header space analysis: Static checking for networks,”

in Proc. NSDI, 2012, pp. 9–9.

[17]. [17] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren, “IP fault localization via risk modeling,” in

Proc. NSDI, Berkeley, CA, USA,2005, vol. 2, pp. 57–

70.

[18]. M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and

D. Kostic, “A SOFT way for OpenFlow switch

interoperability testing,” in Proc.ACM CoNEXT, 2012,

pp. 265–276.

[19]. K. Lai and M. Baker, “Nettimer: A tool for measuring

bottleneck link, bandwidth,” in Proc. USITS, Berkeley,

CA, USA, 2001, vol. 3, pp.11–11.

[20]. B. Lantz, B. Heller, and N. McKeown, “A network in a

laptop: Rapid prototyping for software-defined

networks,” in Proc. Hotnets, 2010, pp. 19:1–19:6.

[21]. F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb,

“Detecting network-wide and router-specific

misconfigurations through data mining,” IEEE/ACM

Trans. Netw., vol. 17, no. 1, pp. 66–79, Feb.2009.

[22]. H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T.

Anderson, A. Krishnamurthy, and A. Venkataramani,

“iplane: An information plane for distributed services,”

in Proc. OSDI, Berkeley, CA, USA, 2006, pp. 367–

380.

[23]. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J.

Emmons, B. Huntley, and M. Stockert, “Rapid

detection of maintenance induced Changes in service

performance,” in Proc. ACM CoNEXT, 2011,

pp.13:1–13:12.

[24]. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J.Wang, Z.

Ge, and C. T. Ee, “Troubleshooting chronic conditions

in large IP networks,” in Proc. ACM CoNEXT, 2008,

pp. 2:1–2:12.

[25]. H.Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T. King, “Debugging the data plane

with Anteater,” Comput.Commun. Rev., vol. 41, no. 4,

pp. 290–301, Aug. 2011.

[26]. A.Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-

N. Chuah, Y. Ganjali, and C. Diot, “Characterization of

failures in an operational ip backbone network,”

IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–762,

Aug. 2008.

[27]. N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, “Openflow: Enabling innovation in campus

networks,” Comput.Commun. Rev., vol. 38, pp. 69–74,

Mar. 2008.

[28]. “OnTimeMeasure,” [Online]. Available:

http://ontime.oar.net.

[29]. “Open vSwitch,” [Online]. Available:

http://openvswitch.org/.

[30]. H. Weatherspoon, “All-pairs ping service for PlanetLab

ceased,” 2005 [Online]. Available: http://lists.planet

lab.org/pipermail/users/2005 July/001518.html

[31]. M.Reitblatt, N.Foster, J. Rexford, C. Schlesinger, and

D.Walker, “Abstractions for network update,” in Proc.

ACM SIGCOMM, 2012, pp. 323–334.

[32]. S.Shenker, “The future of networking, and the past of

protocols,” 2011 [Online].Available:

http://opennetsummit.org/archives/oct11/shenkertue.

[33]. “Troubleshooting the network survey,” 2012 [Online].

Available:

http://eastzone.github.com/atpg/docs/NetDebugSurvey.

pdf

[34]. D. Turner, K. Levchenko, A. C. Snoeren, and S.

Savage, “California fault lines: Understanding the

causes and impact of network failures,”

Comput.Commun. Rev., vol. 41, no. 4, pp. 315–326,

Aug. 2010.

http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://www.beaconcontroller.net/

