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  Abstract 
On a local scale, climate change can potentially exacerbate the urban heat island (UHI) effect characterized by an abrupt thermal 

gradient between urbanized and nearby non-urbanized areas. While it is well-known that the presence of impervious surfaces and 

less vegetation influence urban microclimate, relatively little attention has been given to the spatial patterns of urban heat islands 

and how these patterns are affected by land use. In this study, we derive land surface temperature (LST) from Landsat 8 data over 

four time frames and analyze the relationship between urban thermal environments and urban land use. Landsat 8 Thermal 

Infrared Sensor (TIRS) and Operational Land Imager (OLI) band data are converted to top-of-atmosphere spectral radiance 

using radiance rescaling factors. At-satellite brightness temperature was retrieved and the land surface emissivity was calculated. 

In addition, Normalized Difference Vegetation Index and Normalized Difference Built-up Index were computed and their 

correlations with LST for each land use were examined. The results indicate that the highest maximum land surface temperature 

was observed in high density residential and commercial areas near city’s downtown. Coastal areas and areas near water bodies 

are found to have lower land surface temperatures. The results from this study can inform planning and zoning practices aimed at 

reducing the urban heat island effect and creating a cooler and more comfortable thermal environment for city residents. 

 

Keywords: Urban Heat Island, Land Surface Temperature, NDVI, NDBI, Land Use, Kruskal-Wallis Nonparametric 

Test. 

--------------------------------------------------------------------***----------------------------------------------------------------------

1. INTRODUCTION 

In its Fourth Assessment (AR4), the Intergovernmental 

Panel on Climate Change (IPCC) indicated that ―observed 

warming has been, and transient greenhouse-induced 

warming is expected to be, greater over land than over the 

oceans‖ [1, ch3s3-2-2-2]. Various land uses possess thermal 

properties that can considerably impact the generation of 

extreme land surface temperatures [2]. A study conducted 

by Hamdi [3] in Brussels, Belgium, found a linear rise in the 

lowest and highest daily temperatures throughout the 

summer over the past fifty years, although the latter changes 

were not statistically significant. Built up areas are grouped 

in different use categories depending on ownership, 

function, and activity [4]. Urban Heat Islands (UHIs) 

develop as heat is emitted from a range of built-up surfaces, 

when favorable meteorological conditions (i.e., direction 

and velocity of wind, low water vapor content) are present 

[5]. An urban heat island effect is defined as the abrupt rise 

of the isothermic curve at the boundary of a highly 

urbanized area which modifies its thermal characteristics 

compared to those of the adjacent rural areas [5]. The United 

States Environmental Protection Agency (US EPA) 

differentiates between atmospheric UHIs and surface UHIs 

[2]. The atmospheric UHI is characterized by highest 

intensity during summer nights when air is stagnant while 

the surface UHI reaches its maximum heat release in the 

afternoon as sunlight is absorbed, then released back into the 

environment, by physical land structures.  

 

Historically, the study of urban heat island formation has 

relied on time series data from air temperature 

measurements with high temporal resolution [6,7]. Recent 

studies have employed remote sensing data in various 

spatial resolutions to study land surface temperatures (LST) 

[8]. Starting in 2013, thermal data became available through 

bands 10 and 11 of the Landsat 8 Thermal Infrared Sensor 

(TIRS). Land surface temperature (LST) derived from the 

radiance emitted from a surface and quantified using the 

radiative transfer equation is known as radiometric 

temperature [9]. It is equivalent to thermodynamic 

temperature for isothermal surfaces [9]. 
 

Excessive temperatures can exert extreme heat stress on 

humans resulting in heat exhaustion, fainting, sunburn, heat 

rash, and even death [10-11]. In 1995, an unprecedented 

heat wave in Chicago resulted in over 500 deaths in five 

days [12,13]. The mega-heat wave of 2003 claimed nearly 

70,000 lives in sixteen countries throughout Europe [14]. 

People living in areas affected by heat waves increasingly 

resort to utilizing air conditioners when temperatures are at 

their most extreme. Higher energy consumption for 

operating cooling systems has economic as well as 

environmental impacts, the most notable of which are the 

increase in associated costs and greenhouse gas emissions 

[2,15]. Understanding of how patterns of land development 

and land use spatial distribution affect the formation of 

urban heat islands can inform urban design and planning 

practices and lead to successful mitigation of temperature 

extremes [16].  

 

Studies have shown that among the most important factors 

of anthropogenic heat are urban form, urban land use, and 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 05 Issue: 03 | Mar-2016, Available @ http://www.ijret.org                                                                               458 

the thermal properties of buildings which, individually or in 

combination, can affect urban heat island formation 

[2,16,17]. Several factors play a role in urban heat island 

formation. Impervious surfaces block the processes of 

evaporation and evapotranspiration. In the natural 

environment, heat is transported away from soil and 

vegetation surfaces at a rate that depends on humidity and 

wind speed across the surface [18,19,20]. Dark, 

impermeable surfaces such as asphalt and concrete trap heat 

and effectively remove moisture from the air reducing its 

cooling properties. Presence of vegetation and trees can 

result in increased moisture content and shade which would 

allow urban environments to maintain lower temperatures 

[2,19,20]. 

 

Existing patterns of urban development have produced a 

number of environmental impacts including loss of natural 

areas and vegetation [21,22,23]. While it is possible for a 

UHI to arise in smaller towns and cities, recent studies 

reveal correlation between the intensity of UHI and the 

extent of the developed area [2]. The urban heat island effect 

is often stronger in downtown areas [2,24]. Central business 

districts are dominated by high-rise buildings which can 

increase sunlight absorption and inhibit the outflow of heat 

[6,7,25]. Using mobile measurements in Debrecen, 

Hungary, Battyanet al. [26] established that an urban heat 

island exhibit a concentrically shaped pattern with a 

temperature gradient gradually increasing as one moves 

inwards. Higher temperatures of more than 2°C were 

registered at the center of the concentrically shaped area 

during the summer months. During colder months, the 

temperature difference reached more than 2.5°C. The study 

also found strong correlation between thermal spatial 

patterns and selected land use variables [26]. 

 

Various research projects have sought to investigate UHI 

spatial patterns [24,26,27]. A study of land surface 

temperature of various land uses conducted in the City of 

Ho Chi Minh in North Vietnam [26] showed extreme 

temperatures in excess of 45°C recorded on industrial land 

uses. Other land use types such as commercial and high 

density residential were also associated with high land 

surface temperatures in the range of 36°C to 40°C.A study 

conducted in Beijing, China, established a positive 

correlation between impermeable surfaces and land surface 

temperatures [27]. Stone and Norman [28] found that 

modifications in the sub-division design and zoning 

regulations in Atlanta, Georgia, can reduce UHI intensity by 

up to 40%. An analysis of the relationship between land use 

and UHI intensity in Singapore resulted in an ordered scale 

from low to high intensity by land use type [24]. Parks 

ranked lower on the scale while residential areas, airports, 

and commercial and industrial land uses exhibited 

progressively higher UHI intensity levels [24]. A study of 

land surface temperature in Nanjing, China, found that 

higher LST is negatively correlated with the Normalized 

Difference Vegetation Index (NDVI) (r = -0.59) [29]. The 

study results also revealed greater cooling effect of larger 

vegetated areas over smaller ones [29]. Vlassovaet al.[30] 

used Radiative Transfer to extract LST from Landsat-5 TM 

images, obtained from 2009 to 2011. The study found a 

seasonal bias in Landsat-MODIS LST variations due to 

large differences in surface emissivity and thermal 

differences between various components of the land cover. 

Kim et al.[31] suggested a method for quantifying and 

classifying deviations between ETM+ and TM. The 

correlations for change detection in urban land cover were 

analyzed for four time points of data over a period of 15 

years in Korea. The study found high correlations between 

the lowest vegetation index and the highest LST which was 

used as a proof of concept for land cover change monitoring 

and detection [31]. 

 

The main objective of this research is to examine the 

correlation between land surface temperatures (LST) and 

urban land uses during four time frames between March 23
rd

 

and November 2
nd

, 2014. Specific objectives include (1) 

convert Landsat 8 Thermal Infrared Sensor (TIRS) and 

Operational Land Imager (OLI) band data to top-of-

atmosphere spectral radiance using radiance rescaling 

factors; (2) retrieve at-satellite brightness temperature, 

calculate land surface emissivity, and derive land surface 

temperature; (3) derive Normalized Difference Vegetation 

Index and Normalized Difference Built-up Index; and (4) 

explore the correlation between land surface temperatures, 

NDVI, NDBI and land use. The rest of this paper is 

organized as follows. After a brief overview of studies that 

examine the characteristics of urban heat islands (covered in 

the introduction), we discuss data, data sources, and data 

processing. The findings from the analysis are presented 

next, followed by conclusions and recommendations for 

future research. 

 

2. STUDY REGION AND DATA PROCESSING 

2.1. Study Area 

The City of Fort Lauderdale, located in Broward County, on 

Florida’s southeast coast, was selected as the study area for 

this research (Figure 1). The city is located between the 

80°06'08.7"W to 80°12'02.5"W longitude and 26°12'43.0"N 

to 26°12'32.6"N latitudes. Fort Lauderdale has an area of 

99.9 km². In 2013, the city had a population of 172,389 and 

ranked eighth among Florida’s largest cities. The city has a 

subtropical climate, and temperatures between seasons do 

not vary significantly. The average temperatures range from 

22–24 °C (71–76 °F) to 30–32 °C (86–90 °F) [32].  

 

 
Fig -1: Map of Broward County (right) showing the location 

of Fort Lauderdale. 

 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 05 Issue: 03 | Mar-2016, Available @ http://www.ijret.org                                                                               459 

2.2. Data Source 

Four near cloud-free Landsat-8 (OLI and TIR) images 

(Row:015/Path:042) were collected from the U.S. 

Geological Survey's Earth Resources Observation and 

Science (EROS). The images were acquired on 23 March 

2014, 23 April 2014, 17 October 2014, and 02 November 

2014, as shown in Table 1. The data has already 

georeferenced to the UTM coordinate system (Zone 17N) 

using the WGS 1984 spheroid. Land-Use/Land Cover 

(LULC) data for this study was obtained from The South 

Florida Water Management District (SFWMD) (Figure 2). 

Since the data has several LULC levels, data reclassification 

has to be carried out to consolidate various land uses. The 

land use data is reclassified based on the Florida Land Use 

and Cover Classification System (FLUCCS).  

 

Table 1: Characteristics of the Landsat 8 images. 

Acquisition 

Date 
Acquisition Time 

Scene Center 

(Lat/Lon) 

Cloud Cover 

(%) 

Sun Elevation 

(Degree) 
Sun Azimuth (Degree) 

23 March 2014 15:50:23 
25° 59' 15.3492'' N/ 

80° 25' 13.8432'' W 
1.52 55.88 132.43 

24 April 2014 15:49:53 
25° 59' 15.3960'' N/ 

80° 25' 24.6432'' W 
5.34 65.26 117.06 

17 October 2014 15:50:16 
25° 59' 20.0724'' N/ 

80° 24' 36.0504'' W 
0.37 50.14 149.62 

02 November 2014 15:50:13 
25° 59' 19.9392'' N/ 

80° 24' 3.6864'' W 
2.57 45.40 153.75 

 

In examining the relationship between land surface 

temperature and land use, previous studies have worked 

with a relatively small number of land use categories, most 

commonly five [33]. We consolidated over fifty different 

types of land categories into ten urban land use classes 

which include: three residential use categories based on 

urban density, upland hardwood forests, transportation and 

utilities, services and commercial areas, industrial areas, 

parks and cemeteries, water bodies, and coastal vegetation 

(Table 2). 

Table 2: Classification system of urban land uses 

Land use Categories 

Level IV Level III 

Low  

Density  

Residential 

Fixed single family units <less than 

two dwelling units per acre> 

Fixed single family units <two-five 

dwelling units per acre> 

Multiple dwelling units, low rise 

<two stories or less> 

Medium  

Density  

Residential 

Fixed single family units <six or 

more dwelling units per acre> 

Mobile home units <six or more 

dwelling units per acre> 

Residential, medium density under 

construction <two-five dwelling units 

per acre> 

High  

Density  

Residential 

Multiple dwelling units, high rise 

<three stories or more> 

Residential, high density under 

construction <six or more dwelling 

units per acre> 

Commercial  

and  

Services 

Commercial and services 

Commercial and services under 

construction 

Retail sales and services 

Stadiums <those facilities not 

associated with high schools, 

colleges or universities> 

Wholesale sales and services 

<excluding warehouses associated 

with industrial use> 

Industrial 

Electric power facilities 

Oil and gas storage 

Other light industrial 

Port facilities 

Sewage treatment 

Water supply plants 

Parks  

and  

Cemeteries 

Cemeteries 

Parks and zoos 

Swimming beach 

Lakes  

and  

Rivers 

Channelized river, stream, waterway 

Reservoirs 

Lakes 

Coastal  

Wetland  

Vegetation 

Emergent aquatic vegetation 

Freshwater marshes 

Mangrove swamps 

Mixed wetland hardwoods 

Upland  

Hardwood  

Forests 

Australian pines 

Brazilian pepper 

Sand pine 

Upland hardwood forests 

Transportation  

and  

Utilities 

Airports 

Communications 

Educational facilities 

Golf courses 

Institutional 

Marinas and fish camps 

Open land 

Railroads 

Recreational 

Roads and highways 

Transportation 
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Fig -2:Land-Use/Land Cover (LULC) data. 

 

3. RETRIEVING LAND SURFACE 

TEMPERATURE (LST) 

LST is a key component of Soil-Vegetation-Atmosphere 

transfer modeling in terrestrial ecosystems [30]. Percent 

surface imperviousness (SI) and LST have been used to 

describe the characteristics of the urban heat island effect 

[30,31,34]. Kumar et al. [34] argued that an in-depth 

understanding of LST distributions and spatial variations 

can assist in developing models of LST dynamics and 

finding environmentally sustainable solutions.  

 

A flowchart of the research process is described in Figure 3. 

The analysis steps include LST estimation using thermal 

infrared sensor band 10 and operational land imager band 2-

6 coefficients are obtained from the metadata file. 

Imageprocessing algorithms and data analysis were 

performedusing Esri® ArcMap™ v. 10.3 geoprocessing 

packages and IBM SPSS® software.  

 

3.1 Retrieving Top-Of-Atmosphere (TOA) 

Radiance and Reflectance 

The United States Geological Survey (USGS) released the 

Landsat 8 data with a description of a step-by-step process 

of deriving LST [35]. The Landsat 8 TIRS and OLI band 

data  

 

 
Fig -3: Data processing flow chart. 

 

are converted to TOA spectral radiance using the radiance 

rescaling factors specific to each band provided in the 

metadata file: 

 

𝑳𝝀 = 𝑴𝐋𝑸𝒄𝒂𝒍 + 𝑨𝐋                                                                      (1) 

where𝐿𝜆  is the TOA spectral radiance 

(Watts/(m² ∙sr∙μm),𝑄𝑐𝑎𝑙  is the pixel value (DN), and  𝑀Land 

𝐴L  are rescaling coefficients [35]. Similar procedure is 

followed for the computation of TOA planetary reflectance 

using the Operational Land Imager (OLI) band 2-6 data 

which also contains a correction for the sun angle [35]. 

 

3.2 Land Surface Emissivity Calculation 

Temperature data presented above refer to a black body, 

hence, it is essential to correct for spectral emissivity (ε) to 

account for changes in land cover. As a function of 

wavelength [36], spectral emissivity can be influenced by 

various properties of a surface: composition; chemical and 

physical properties; and surface roughness [37]. Emissivity 

of vegetated surfaces is affected by plant species, density, 

and plant growth [37]. The emissivity of the bare soil and 

the total vegetation-covered area take empirical values of 

0.973 and 0.986, respectively [39]. The vegetation mixed 

coverage area and bare soil areas is calculated by Equation 

(2) [40]. 

 

𝛆 = 𝜺𝝂 𝑷𝝂𝑹𝝂 + 𝜺𝒔 𝟏 − 𝑷𝝂 𝑹𝒔 + 𝒅𝜺                                   (2) 
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𝑹𝝂 =  𝟎. 𝟗𝟐𝟕𝟔𝟐 + 𝟎. 𝟎𝟕𝟎𝟑𝟑𝑷𝝂                                                 (3) 

𝑹𝒔 =  𝟎. 𝟗𝟗𝟕𝟖𝟐 + 𝟎. 𝟎𝟓𝟑𝟔𝟐𝑷𝝂                                                  (4) 

where, 𝜺𝝂  is the vegetation emissivity (0.986), 𝜺𝒔 is the bare 

soil emissivity (0.973), 𝑷𝝂 is the vegetation proportion in a 

pixel, and 𝒅𝜺 is the topography factor. Due to its flatness, 

the terrain effect of the study area was considered 

negligible. 

 

3.3 NDVI and NDBI Calculation 

The Normalized Difference Vegetation Index (NDVI) is the 

most commonly used satellite-based measure of 

vegetatedregions[41]. The NDVI is calculated using 

Equation (5) [40]. Land surface emissivity was calculated 

using the NDVI threshold method [38] suggested byBeck et 

al. [42]. The assumption is that bare has a NDVI < 0.2 [42]. 

The land surface is considered to be completely covered by 

vegetation if NDVI > 0.5 [42]. When the NDVI values are 

between 0.1 and 0.5 (0.1 ≤ NDVI ≤ 0.5), the land surface is 

considered to be covered by vegetation and bare soil mixing.  

 

𝑵𝑫𝑽𝑰 =  
𝑹𝑵𝑰𝑹− 𝑹𝑹𝑬𝑫

𝑹𝑵𝑰𝑹+ 𝑹𝑹𝑬𝑫
                                                           (5) 

 

where𝑅𝑁𝐼𝑅  and 𝑅𝑅𝐸𝐷are reflectances in the near-infrared 

band (0.85- 0.88μ𝑚) and the red band (0.64 - 0.67μ𝑚), 

respectively. 

 

The Normalized Difference Built-up Index (NDBI) is a 

useful measure of the intensity of imperviousness using 

satellite data [43]. This index was originally developed for 

use with bands 4-5 from TM imagery. Nonetheless, the 

NDBI can work with Landsat-8 data or any multispectral 

sensor [44]. It highlights the urban areas distribution where 

there is typically a higher reflectance in the short-wave 

infrared band compared to the near-infrared band. The 

accuracy of extracting built-up areas by usingthis index was 

nearly 93% [45,46]. The NDBI is calculated using the 

following Equation (6) [45]: 

 

𝑵𝑫𝑩𝑰 =  
𝑺𝑾𝑰𝑹− 𝑵𝑰𝑹

𝑺𝑾𝑰𝑹+ 𝑵𝑰𝑹
                                                            (6) 

 

where𝑆𝑊𝐼𝑅 is the short-wave infrared band in the range of 

1.57 - 1.65μ𝑚, and 𝑁𝐼𝑅 is the near-infrared band in the 

range of 0.85- 0.88μ𝑚, respectively. Figures 4 and 5 display 

the results of the NDVI and NDBI calculation.  

 

 

 

 

 

 

 

 
Fig -4: NDVI map of the study region. 

 

3.4 Retrieving LST 

Following [35], the LST is calculated using Equation (7). 

 

𝑻𝑺 =
𝑻𝒓𝒂𝒅

𝟏+(𝝀 ∙ 𝑻𝒓𝒂𝒅 / 𝝆)𝑰𝒏𝜺
– 273.15                                                          (7) 

where 𝑇𝑆  is the LST and its unit is Degrees Celsius (°C); 

𝑇rad  is the brightness temperature (BT) in Kelvin (K); 𝜆is 

the center wavelength for band 10 (10.9 μm); 𝜌 = ℎ ∙ 𝑐 𝜎 , 

where ℎ is the Planck constant (6.626 x 10−34 𝐽 ∙ 𝑠), 𝑐 is the 

velocity of light (2.998 x 108 𝑚/𝑠), 𝜎 is the Boltzmann 

constant (1.38 x 10−23 𝐽/𝐾); ε is the surface emissivity [35]. 

 

4. RESULTS 

We derived land surface temperature (LST), NDVI and 

NDBI for the city of Fort Lauderdale, Florida, using Landsat 

8 data captured on March 23
rd

, April 24
th

, October 17
th

, and 

November 2
nd

, 2014. Figure 6 displays the spatial patterns of 

land surface temperature across the city on these four days. 

The map shows that the surface temperature on March 23rd, 

2014 ranges from 20.90°C to 34.59°C. The highest 

maximum land surface temperature was observed in high 

density residential and commercial areas near the city’s 

downtown. In contrast, vegetated areas and areas near water 

bodies exhibit lower radiometric temperatures. Water bodies 

are associated with the lowest radiometric temperatures, 

with average values of 16.26°C. These areas are shown in 

dark blue on the maps. The data has a pixel size of 30m by 

30m. 
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Fig -5: NDBI map of the study region. 

 

 
Fig- 6: LST distributions maps of the study area. 

 

Table 3: Results of minimum, maximum, and standard deviation values for each land use types. 
 Land Surface Temperature in Degrees Celsius 

23 March 2014 24 April 2014 17 October 2014 02 November 2014 

MIN MAX MEAN STD MIN MAX MEAN STD MIN MAX MEAN STD MIN MAX MEAN STD 

Low Density Residential 24.0 31.8 29.1 1.61 17.9 35.5 31.7 2.55 27.6 35.0 31.6 1.47 20.3 26.9 23.9 1.20 

Medium Density Residential 26.0 30.5 28.4 1.93 29.3 34.1 31.8 2.08 29.2 33.6 31.2 1.62 21.5 26.0 23.6 1.63 

High Density Residential 26.4 28.7 27.5 0.93 29.5 31.7 30.7 0.81 29.5 31.5 30.4 0.64 22.0 24.4 23.0 0.89 

Commercial & Services 25.7 33.2 30.1 1.51 16.8 38.0 33.3 2.82 28.2 37.0 33.1 1.61 20.7 28.8 25.1 1.43 

Industrial 25.8 31.2 29.8 1.60 16.8 35.0 29.9 6.88 27.2 35.2 32.5 2.19 19.2 26.1 24.2 1.99 

Parks & Cemeteries 25.1 31.4 27.7 2.32 27.8 34.4 30.5 2.35 28.0 33.8 30.3 2.03 21.2 26.4 23.2 1.81 

Lakes & Rivers 22.3 29.0 25.7 1.93 25.0 32.2 28.2 2.03 26.7 32.0 29.0 1.36 21.3 24.2 22.9 0.64 

Coastal Wetland Vegetation 22.0 26.3 26.1 0.24 27.6 29.5 28.6 1.37 26.8 29.0 27.9 1.56 19.5 21.6 20.6 1.45 

Upland Hardwood Forests 25.3 27.3 26.3 0.82 28.1 31.4 29.5 1.28 28.0 29.1 28.5 0.40 21.4 22.8 22.1 0.49 

Transportation & Utilities 26.8 31.9 29.7 1.25 21.7 37.2 32.5 2.77 27.8 35.0 32.2 1.58 22.2 27.2 24.5 1.16 

 

Table 3 presents minimum, maximum, and mean land 

surface temperature values in degrees Celsius (°C) for the 

ten land use categories over four time frames. The results 

indicate that the ―commercial and services‖ land use 

category is associated with the highest minimum, maximum 

and mean LST during all four periods. The highest observed 

value corresponds is 38.05°C recorded on April 24
th

. Land 

areas associated with transportation and utilities follow 

closely the trend exhibited by commercial land use. The 

maximum radiometric temperature for this land use category 

was 37.2°C measured on April 24. Industrial land use is 

associated with the third highest LST among the ten land 

use classes. LSTs associated with industrial land use also 

exhibit the highest standard deviation of 6.33. The lowest 

LST is associated with coastal wetland vegetation, followed 

by upland hardwood forests, and rivers and lakes. This result 

indicates that although industrial land use is associated with 

some of the highest LST measurements, overall effect on the 

urban heat island formation would be relatively low because 

the percent area associated with this category is low(Figure 

7). 

 

The highest percentage of land in the temperature range 

between 23.64°C and 24.90°C is again low density 

residential, which accounts for 54.4%, followed by 

transportation and utilities which accounts for 21.9%. In the 

―hottest‖ category (with temperatures of more than 

24.90°C)commercial and services land use category 

accounts for 39.5% of the land in this category. Another 

land use category strongly linked to higher LST values is 
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again low density residential which also account for 39.5%. 

Next in this category is transportation and utilities, which 

accounts for 14.9%. Analysis of higher temperature ranges 

confirms these results. Overall, in the temperature range 

between 30.42 and 32.80°C, the highest land use is again 

low density residential, which accounts for 64.9%, followed 

by transportation and utilities which account for 12.3%. 

Finally, in the range of LST greater than 32.80 °C, the 

highest percentage area is associated with high density 

residential which accounts for 44.1%, followed by 

commercial land use which accounts for 31.6%. An 

important observation here is that low density residential 

areas are associated with various microclimate regimes. 

These results suggest that factors, other than land use, such 

as vegetative cover may also play a role in the urban heat 

island formation. 

 

 
Fig -7: Tree-based model that classifies land use classes into three groups based on LST on April 24, 2014. 

 

4.1 Correlation Analysis 

The results from the previous section suggest a difference 

between the heat-trapping efficiency of various land uses. 

We used the Kruskal-Wallis non-parametric H test to 

determine if those differences are statistically significant. 

The test was corrected for tied ranks. Table 4 summarizes 

the results of the statistical analysis. The Kruskal Wallis H 

test was conducted for LST, NDVI, NDBI and all land use 

categories. The results indicate that there is a statistically 

significant difference between the thermal profile of various 

land use categorieswith regard toLST, vegetation coverage 

with regard to NDVI, and built-up profile with regard to 

NDBI. For example, the value of the test using the March 

23rd data was 𝜒2(9) = 122.298, p-value = 0.000.  For April 

24th and October 17
th

 the value of the test was 𝜒2 (9) = 

111.626, p-value = 0.000, and  𝜒2 (9) = 134.152, p-value = 

0.000, respectively. Lastly, the November 2nd data resulted 

in a test score of 𝜒2 (9) = 103.734, p-value = 0.000.All tests 

are statistically significant. The results also indicate a 

positive correlation between LST and NDBI. The 

correlation analysis also reveals a fairly strong negative 

relationship between NDBI and NDVI and LST and NDVI 

(Figure 8). 
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Table 4:Results of correlation coefficientsbetween LST, 

NDVI and NDBI 
 Chi-Square df Asymp. Sig. 

LST 

23 March 2014 122.298 9 4.520E-22 

24 April 2014 111.626 9 6.858E-20 

17 October 2014 134.152 9 1.658E-24 

02 November 2014 103.734 9 2.759E-18 

NDVI 

23 March 2014 123.275 9 2.850E-22 

24 April 2014 120.573 9 1.020E-21 

17 October 2014 119.875 9 1.418E-21 

02 November 2014 122.976 9 3.283E-22 

NDBI 

23 March 2014 105.560 9 1.175E-18 

24 April 2014 107.207 9 5.441E-19 

17 October 2014 105.441 9 1.242E-18 

02 November 2014 104.662 9 1.788E-18 

 

Table 5:Results of maximum, minimum, median, and 

standard deviation for the study area from the three different 

map types on four different dates. 

 Median STD Min. Max. 

LST 

23 March 2014 29.22 2.04 22.37 33.21 

24 April 2014 32.23 3.04 16.82 38.04 

17 October 2014 31.72 1.91 26.73 37.03 

02 November 2014 23.98 1.42 19.27 28.79 

NDVI 

23 March 2014 0.20 0.10 -0.07 0.48 

24 April 2014 0.21 0.10 -0.11 0.50 

17 October 2014 0.22 0.10 -0.08 0.53 

02 November 2014 0.20 0.10 -0.13 0.47 

NDBI 

23 March 2014 -0.20 0.09 -0.52 0.12 

24 April 2014 -0.20 0.09 -0.55 0.00 

17 October 2014 -0.21 0.09 -0.52 0.10 

02 November 2014 -0.19 0.08 -0.49 0.11 

 

 
Fig -8: The statistical correlations for 24April 2014. The 

black solid line refers to the linear fitting curve. 

 

5. CONCLUSION 

In this study, we examined the potential of remotely sensed 

data to explore the relationship between land use/land cover 

and urban heat islands. More specifically, we focused on the 

spatial distribution of LST, NDBI, and NDVI. Land surface 

temperature using OLI and TIRS data with land surface 

emissivity derived via NDVI thresholds method was applied 

to four cases, namely, daytime in winter ―dry season‖ 

(March 23
rd

, April 24
th

, November 2
nd

) and daytime in 

summer "wet season" (October 17
th

) in 2014. Surface 

temperature from TIRS band 10 data was retrieved using the 

procedure described by USGS [35].The surface temperature 

distribution in the city of Fort Lauderdale indicates that the 

highest surface temperature during study period ranges from 

33˚C - 39˚C. The study also found that despite the observed 

wide ranges of LST in each land use category, the 

differences between these categories in terms of LST, 

NDVI, and NDBI are statistically significant. The most 

variation was observed in low density residential land use 

which is consistent with various extents and maturity of the 

vegetated land cover.Given that the most devastating effects 

of heat waves are associated with populations with a lower 

socio-economic status, an important future line of research 

would be to examine the relationship between LST, NDVI 

and NDBI and morbidity and mortality associated with heat 

waves. Another potentially fertileground for future 

investigations will be focused on plant communities that 

have the strongest impact in mitigating the urban heat island 

phenomenon. 
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