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Abstract 
In this paper, we report the design and implementation of a low-noise, tunable, active microwave band pass filter (BPF) which 

incorporates an injection-locked Gunn oscillator. The BPF has a centre frequency of 10.30 GHz and a 3-dB bandwidth of 52 

MHz. Calculation shows that this active BPF can reduce the input signal AM noise by at least 38 dB. This BPF possesses signal 

amplification as well as signal tracking property. 
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1. INTRODUCTION 

Microwaves span over the frequency range of 3 GHz-30 

GHz of the electromagnetic spectrum. Sometimes it is said 

to cover a wider range of 0.3 GHz-30 GHz. The frequency 

band of interest in our design is the X-band which covers the 

frequency range of 8 GHz-12.4 GHz. Microwave bandpass 

filters (BPFs) are essential components of a microwave 

receiving system. Microwave narrowband bandpass filters 

(NB-BPFs) are useful in wireless communication systems – 

be it personal wireless communication system, satellite 

communication using microwaves or global system mobile 

(GSM) communication. NB-BPFs are also used in wireless 

Local Area Network (LAN) making the transfer of data such 

as Wi-Fi, Bluetooth, 3G and 4G cellular systems and lastly 

in microwave radar communication. 

 

Some of these communication systems require ultra narrow 

bandwidth less than 0.5%. Two key parameters in 

narrowband (NB) BPF design are insertion loss and narrow 

bandwidth. There exists a trade-off between these two 

features. In order to achieve very narrow bandwidth, one has 

to accept higher insertion loss. 

 

Various kinds of narrow band BPFs [1-8] have been 

reported to be designed. A narrowband microstrip BPF has 

been designed [5] with ground holes at L-band. Narrowband 

BPFs have been reported to be implemented on a coplanar 

waveguide (CPW) [3] configuration at S-band. Narrowband 

BPFs using microstrip open-loop ring resonator has been 

proposed and analyzed. 

 

Microwave BPFs [1-24] can be divided into two categories, 

viz., passive BPF [9-13] and active BPF [14-24]. Passive 

BPFs are constructed using passive microwave components. 

A waveguide filter [1] is an example of this category. 

Frequency tuning of passive microwave filters can be 

achieved by varying the dimensions of resonator. The tuning 

time is, however, large. This is a point of inconvenience. To 

overcome this defect, varactor tuning of the BPFs were 

introduced. Later on, BPFs were constructed using MEMS 

technology. There is another drawback of passive 

microwave filter. It is its high insertion loss which originates 

from the low Q-value of the varactor diode. 

 

Since the passive microwave bandpass filters (PMBPFs) 

suffer from the above defects, engineers designed varactor 

tuned active BPFs which incorporate a microwave active 

device. This active device is basically a differential negative 

resistance (DNR) device. This results in low insertion loss. 

The active device of the microwave active bandpass filter  

(MABPF) also suffers from some problems such as its 

stability, noise figure and intermodulation distortion. The 

DNR device used in the design of active BPF can be a 

bipolar junction transistor   ( BJT), GaAs field effect 

transistor (FET) or high electron mobility transistor 

(HEMT). If the negative resistance is high then gain 

compensation is necessary to ensure stability of the 

MABPF. The noise figure of MABPF is higher than that of 

a PMBPF by several dB, although GaAs FETs or HEMTs 

can be used to have improved noise performance. 

 

MABPFs have been designed [14-21] using microstrip 

coupled lines. Active BPFs in the microwave band have also 

been designed using MMIC technology which employ 

active resonator where loss is minimized by the negative 

resistance. 

 

The problem of stability and noise of the MABPF has 

motivated the authors to design a novel MABPF which 

employ an X-band (8-12.4 GHz) injection-locked Gunn 

oscillator (ILGO) as the active device. The Gunn oscillator 

is a low noise device on one hand while the use of injection 

locking strongly reduces amplitude noise of the input signal. 

The overall effect is that the noise figure of our MABPF is 

much lower than the normal active BPFs. Secondly, the 

Gunn oscillator operating in the injection locked mode, is 

fairly stable as has been seen in our experiment. The ILGO 

tracks the input signal. So, our BPF is a tracking filter. 
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The centre frequency of the MABPF can be tuned by 

varying the free-running frequency of the Gunn oscillator 

(GO) using a micrometer arrangement. The ILGO also acts 

as a power amplifier for the input signal. Thus, our design 

has so many advantages over the normal designs available in 

literature.    

 

2. CIRCUIT DESCRIPTION 

The experimental circuit diagram is shown in Fig. 1. A 

properly calibrated tunable Gunn oscillator #1 acts as the 

signal source. The input CW microwave signal enters the 

magic tee and splits into two equal components through half 

power division at the hybrid junction which propagate down 

the collinear arms 2 and 3 of the magic tee. A microwave 

Gunn oscillator #2 oscillates at 10.31 GHz frequency and 

connected with port-2 of the magic tee is injection locked to 

the input signal. The output of the locked oscillator 

undergoes half power division at the magic tee junction and 

produces a pair of identical waves which travel down the H-

arm (port-1) and E-arm (port-4) of the magic tee. The other 

wave travelling down arm-3 of the magic tee is reflected 

from the metallic termination at the end of this port and 

splits into two equi-amplitude component waves differing in 

phase by   radian. One of these waves propagate down the 

H-arm while the other wave travels up the E-arm of the 

magic tee. Thus, a pair of waves appears at the input of the 

Schottky diode detector connected with the E-arm of the 

magic tee. The composite signal is detected by the detector 

and the detected voltage is measured in 20 MHz 

oscilloscope. The detector is not a part of the proposed BPF. 

It is used only to measure microwave output power by 

converting the input power to equivalent voltage. Some 

work on BPF [22, 23] and band reject filter (BRF) [24] have 

been done whose circuit has some similarity with the present 

one. 

 

 
Fig. 1. Schematic circuit diagram of the experimental set up. Attn.: Variable attenuator. 

 

3. ANALYSIS 

We consider the input microwave signal to be frequency (or 

phase) modulated with a carrier frequency coinciding with 

the free-running frequency of the Gunn oscillator #2 which 

tracks the input signal. In this case, the dc phase offset of the 

ILGO output relative to the input carrier will be zero. Since 

AM limiting takes place in the ILGO, we cannot use 

microwave AM signal at the input of the BPF.  

 

In this section, we make a static analysis of the proposed 

low-noise active BPF. The input port of the MABPF is the 

port-1 of the magic tee while port-4 of the magic tee is the 

output port of the MABPF through which the output signal 

emerges. 

 

Let tVtV inin sin)( 0  be the input CW microwave signal. 

This signal undergoes half power division at the hybrid 

junction of the magic tee. The Gunn oscillator oscillates at 

its free running frequency 0  which is connected with the 

collinear arm-2 of the magic tee. The port-3 of the magic tee 

is terminated by a metallic short. 

 

The microwave signal injected into the Gunn oscillator #2 

has a voltage 2)(tVin . The microwave injection signal 

power is 2ininj PP   where inP  is the input power entering 

the H-arm of magic tee. From the theory of injection locking 

[9], the phase equation of the injected Gunn oscillator #2, 

neglecting any asymmetry in the lock band, is given by 
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where )(t  is the input-output phase error, LQ  is the 

loaded quality factor and 0P  is the output power of the 
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where injPPG 0  is the locking amplitude gain. Also, 
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Since the microwave injection power, injP  is comparable 

with the free running output power )( fP  of the tracking GO 

#2 in the present experiment, the power variation of the 

locked Gunn oscillator over the lockband must be taken into 

account. The amplitude governing equation [25] of the 

injected Gunn oscillator is given by 




cos
22
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dt

da inj

LL

     (4) 

where  0AAa  , LLd RRRRR )(1  . Here, A  is the 

amplitude of the locked oscillator and 0A  is the amplitude 

of the free running oscillator,   dR  is the negative 

resistance of the diode, LR  is the load resistance and R  is 

the cavity resistance. In steady state of locking, 

  0dtda . In writing equation (1), the cavity resonance 

frequency has been assumed to be equal to the free-running 

frequency of the Gunn oscillator. Eliminating   from (2) 

and (4) with   0dtda , we get the equation for amplitude 

variation of the locked Gunn oscillator #2 with the detuning 

of the input signal frequency from the free-running Gunn 

oscillator frequency. This equation is expressed as  
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The input microwave voltage of the diode detector 

connected with port-4 (i.e., the E-arm) of the magic tee is 

given by 
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where A  is the voltage amplitude of the locked Gunn 

oscillator #2 output. 

 

The input signal power response of the Schottky diode 

detector is shown in Fig. 2.  

 

 
Fig. 2. Signal power response of the Schottkey diode 

detector. Normalizing factor for detected output voltage is 

335 mV. 

The output voltage of the detector is seen to follow a square 

root dependence with the input microwave power. Thus, 

inoutD Pv 2  

 
2

tv inD                    (7) 

where   is the responsivity of the diode detector and inP  is 

the input microwave power to the detector. outDv  is 

maximum for 0 . 

 

The normalized output power of the BPF is calculated as 
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The output power variation of the active BPF as a function 

of input signal frequency is described analytically by 

equation (8). The normalized experimental data show a 

close fit with the theoretical plot. The normalized factor for 

the experimental data is 460 mV. The 3-dB bandwidth of the 

active BPF is calculated from (9) to be 50 MHz. The 

experimental 3-dB bandwidth is 52 MHz. The Q-value of 

the locked oscillator calculated from the measured lockband 

comes out to be 165. Fig. 3 shows the variation of 

normalized output of the detector with the frequency 

detuning  0ffin  . 

 

 
Fig. 3. Variation of normalized output of the detector with 

the frequency detuning  0ffin   in GHz. Normalizing factor 

for the detector output is 460 mV. 

 

The lockband (LB) of the Gunn oscillator #2 is given by 
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The upper and lower lockband extremities are given by the 

expressions 
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In a second experiment, we have kept the input locking 

signal frequency fixed at 10.34 GHz with a power of 8.7 

mW and varied the GO #2 frequency over the lockband and 

beyond. The corresponding frequency response curve of the 

BPF is shown in Fig. 4. There is a transmission minimum 

between two passbands which is 8 dB down from the peak 

of the broader response. Parameter values used in numerical 

calculation are listed in Table-I. 

 

 
Fig. 4. Variation of detector output (in dB) as a function of 

injected Gunn Oscillator frequency with the input locking 

signal frequency fixed at 10.34 GHz. Input signal power = 

8.7 mW. Normalizing factor = 3.6 V. 

 

Table I. Parameter values used in calculation 

Serial No. Parameters Value 

 

1. 

 

Centre frequency of the BPF 

 

10.30 GHz 

 

2. 

 

Microwave injection power into slave 

oscillator 

 

2.4 mW 

 

3. 

 

Free-running output power of slave 

oscillator 

 

3.4 mW 

 

4. 

 

Q-value (Experiment) 

 

165 

 

5. 

 

3-dB bandwidth of the BPF 

 

52  MHz 

 

6. 

 

Normalized resistance of Gunn 

oscillator (R1) 

 

 

0.5 

 

4. REDUCTION OF AMPLITUDE NOISE BY 

ACTIVE BANDPASS FILTER 

In this section, we will derive a relation between the output 

and input power spectral densities of amplitude noise. 

Let the normalized output amplitude of the injection-locked 

Gunn oscillator (ILGO) in presence of input amplitude noise 

be written as 

   taata n 0                (12) 

where  tan  is the noise term. We assume noise to be small 

so that   0atan  . Under low level injection, the output 

power  0P  of the ILGO is assumed to be nearly equal to 

the free-running output power  fP  of the Gunn Oscillator 

(GO).  

 

The normalized free-running GO amplitude in presence of 

small noise can be expressed as 

   1f nfa t a t                      (13)  

where  nfa t  is the free-running GO noise term normalized 

by the free-running voltage amplitude in absence of noise. 

Here, 1nfa  . 

Substituting (12) and (13) in (4), we can get under low-level 

injection the following noise equation: 
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where  tvni   represents input signal noise voltage 

normalized with respect to free-running output voltage of 

the locked Gunn Oscillator. Taking the Fourier transform of 

(14), we get a relation between the spectral density functions 

 0F ,  inF  for the output and input noise functions. 

Taking complex conjugate of the resulting equation and 

multiplying the two equations, we get a relation as 
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where     2

0  FSno  ,     2
 inni FS   and 

   
2

nf nfS F   are power spectral densities of the 

output and input noise, and free-running GO noise 

respectively. Since 1LQ ,   1231 1
2
0  LQRa  and 

10 a . Under this condition, (15) can be simplified as 
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Eqn. (16) is solved numerically and plotted in Fig. 5 using 

nf niS S  as a parameter. The figure also implies that even in 

presence of GO intrinsic amplitude noise, there is a 

substantial reduction of amplitude noise produced by the 

ILGO. In numerical calculation, we have taken  nf niS S    

0, 1 and 10 considering different levels of oscillator own 

noise. 

 

 
Fig. 5. Variation of ratio of output and input noise power 

spectral density with normalized signal frequency (
0 ). 

 

5. CONCLUSION 

A low noise, active microwave bandpass filter has been 

designed and operated at X-band of microwave spectrum. 

The BPF is tunable since the oscillation frequency of the 

Gunn oscillator can be varied over a specific range by 

varying the micrometer arrangement. This active BPF can 

suppress input signal AM noise better than 38 dB typically 

as predicted by the numerical calculations. This AM noise 

reduction is a unique property of this active BPF. This BPF 

can track the input signal over the lock band of the injection-

locked Gunn oscillator. 
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