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Abstract 

In this paper, analytical formulations and solutions hitherto not reported in the literature are presented for the thermally loaded 

simply supported Functionally Graded Material (FGM) plates. Higher order refined computational model with twelve degrees-of-

freedom based on Taylor’s series of expansion of displacements, which includes the effect of transverse shear and transverse 

normal stress / strain is considered for the study. The equations of equilibrium are obtained using Principle of Minimum Potential 

Energy (PMPE) and closed form solutions using Navier’s Solution technique. The material properties are assumed to vary 

according to power law function. The temperature across the plate thickness is assumed to be nonlinear and is solved based on 

one dimensional steady state heat conduction equation. The accuracy of the presented two-dimensional model is first established 

by comparing the results with the exact 3-D elasticity solutions already reported in the literature. Upon establishing the accuracy, 

numerical results are obtained for the FGM plates subjected to thermal loads with varying material and plate parameters. Studies 

are performed by varying the length to breadth ratio, side-to-thickness ratio and power law parameter. Bench mark results using 

the present model are presented for the displacements, in-plane and transverse stresses. 

 

Keywords: Functionally graded plate, Thermal stress analysis, Shear deformation, Analytical solutions, Higher order 
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-----------------------------------------------------------------------***------------------------------------------------------------------- 

1.  INTRODUCTION 

Functionally Graded Materials (FGMs) are the innovative 

materials emerged from composites, in which two distinct 

materials preferably ceramic and metal are graded 

continuously from one to another. FGMs carry the 

advantages of both ceramic and metal, like high toughness, 

strength, durability, thermal and fracture resistance etc. 

Major applications are found in high temperature zones like 

nuclear components, satellite thermal shields, thermal 

barrier coatings, etc., thereby provoking the interest of 

researchers in thermal analysis of FGM plates. 

 

FGM was first introduced by National Aerospace 

Laboratory of Japan in 1984 to create thermal barrier for a 

space shuttle which could withstand high temperature 

gradient of 1000K across a 10mm thick section. Zhang et al. 

(1993) modeled an isotropic ceramic/metal laminated beam 

subjected to an abrupt heating condition and demonstrated 

the influence of thermomechanical coupling for thermal 

shock response. Reddy (2000) presented theoretical 

formulations and solutions for rectangular plates based on 

Navier‟s solution technique using steady state heat 

conduction equation for static, dynamic and transient 

responses including von-Karman type geometric 

nonlinearity. Also, he stated that the material gradation 

plays a crucial role in the analysis of FGM plates. Reddy 

and Cheng (2001) adopted asymptotic solution method to 

study the thermomechanical behaviour of simply supported 

FGM plates. Shen (2002) gave a nonlinear bending analysis 

of simply supported shear deformable FGM plates subjected 

to a transverse uniform or sinusoidal load in thermal 

environments based on Reddy‟s higher order shear 

deformation theory with temperature dependent material 

properties. Yang and Shen (2003) extended the work to 

study the large deflection of thin FGM plates. Tsukamoto 

(2003) investigated transient thermal-stress in a ceramic–

metal FGM plate combining Eshelby‟s equivalent (Eshelby, 

1957) and Mori-Tanaka method (Mori and Tanaka, 1973) 

based on Classical Plate Laminate theory. Brischetto et al. 

(2008) adopted Unified Formulation by Carrera (2000) to 

study the behavior of a simply supported rectangular plate 

subjected to thermo-mechanical loadings using Mori-Tanaka 

material variation through the thickness. Zenkour (2006) 

presented benchmark three dimensional elasticity solutions 

for an FGM plate subjected to normal pressure for 

exponentially graded plates. Matsunaga (2009) studied 

thermo-mechanical deformations of simply supported 

rectangular plates for uniform rise in temperature using 

power-law variation of material properties based on various 

2-D plate theories. Most of the theories used for the analysis 

of FGM plates are extensions of composite laminates. 

 

In the present paper a simply supported FGM plate 

subjected to thermal loads is studied based on higher order 

shear deformation theory with twelve degrees of freedom 

(HSDT-12). Material properties are assumed to vary 

according to Power-Law function, while temperature 

variation follows steady state heat conduction equation 

through the thickness. Extensive numerical results are 

presented for various parametric variations like length to 
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thickness ratio, length to breadth ratio, and power law 

coefficient to study the response of FGM plate. 

 

2.  THEORITICAL FORMULATIONS 

A simply supported functionally graded rectangular/square 

plate of length a, breadth b and uniform thickness h along x-

, y- and z- directions respectively subjected to a thermal load 

of intensity 0T  at bottom (metal) and 1T  at the top 

(ceramic) surface is as shown in figure.1. Through the 

thickness variation of material properties and temperature 

and their theoretical formulations and solutions are 

discussed in the next sections. 

 

2.1 Material properties  

FG plate is assumed to be transversely isotropic and hence 

the poison‟s ratio ν is kept constant. Material properties are 

assumed to be graded in the thickness direction and obey 

Power-Law function as in eqn. (1). 

  p

z m c m fE E E E V    

  p

z m c m fV      

  p

z m c m fk k k k V    

f

z 1
V

h 2

 
  
 

 (1) 

where, Ec, αc, kc and Em, αm, km are the Young‟s Modulus, 

thermal coefficient of expansion and thermal conductivity of 

ceramic and metal respectively, Vf is volume fraction and p 

is a power law parameter which defines the variation of 

material properties through the thickness coordinate z. If p 

=0 or ∞, then an FG plate will be reduced to a homogeneous 

plate of either ceramic or metal respectively. 

 

2.2  Displacement model 

In the present 2-D plate problem, the displacement 

components u(x,y,z), v(x,y,z) and w(x,y,z) obeys Taylor 

series expansion at any point in an FGM plate along the 

thickness direction „z‟. The displacement field which 

includes the effect of transverse normal and shear 

strain/stress is considered. Hence the higher order shear 

deformation theory with twelve degrees of freedom (HSDT-

12) given by Kant (1982) is expressed as,  

 

         2 * 3 *
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         2 * 3 *

0 y 0 yv x, y,z v x, y z x, y z v x, y z x, y       

         2 * 3 *

0 z 0 zw x, y,z w x, y z x, y z w x, y z x, y       (2) 

where, 0u , 0v  represents in-plane displacements and 0w  is the transverse displacement at any point (x,y) in the middle-plane of 

the plate. θx and θy are the rotations of the normal to the middle plane about y- and x-axes respectively. The terms 
*

0u , 
*

0v , 
*

0w ,

*

x ,
*

y ,
*

z and z  are the higher-order terms in Taylor‟s series expansion which represents transverse cross sectional 

deformation modes. The stress-strain relationship for an FGM plate which includes the effect of transverse shear deformation is 

given by eqn. (3). The stresses and strains with respect to plate axes are denoted by (σx, σy, σz, τxy, τxz, τyz) and (εx, εy, εz, τxy, τyz, 

τxz) respectively. The elements of stiffness matrix Q are given by eqn. (4). 
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2.3  Thermal analysis 

The variation of temperature across the plate thickness is assumed to be nonlinear and is solved based on one dimensional (1-D) 

steady state heat conduction equation with the relevant boundary conditions at top and bottom surface of the plate as given in eqn. 

(5). 

d dT h h
- k 0; T z T and T z - T

z 1 0dz dz 2 2

     
         

     
 (5) 

Hence, the Taylor series solution for the temperature distribution through the thickness is evaluated using eqn. (6). 
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2.4  Equations of equilibrium and boundary conditions 

Principle of Minimum Potential Energy (PMPE) is used to derive the equations of equilibrium for stress analysis of FGM plates 

and the associated equations for the present model are listed below:  
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And the stress resultants are defined as, 
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The closed form solutions are obtained using Navier‟s solution technique for a simply supported boundary condition. In plane 

stresses are computed by substituting the strains in the constitutive relations, while the transverse stresses are obtained by 

integrating the 3-D elasticity equations of equilibrium. 
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3.  RESULTS AND DISCUSSIONS 

In this section, the accuracy of the model is established by 

comparing the displacements and stresses with the 3-D 

elasticity solutions of Reddy and Cheng (2001) for an FGM 

plate subjected to mechanical loading. Later, parametric 

studies are carried out for an FGM plate subjected to steady 

state thermal loads. For all the problems, a rectangular FGM 

plate with simply supported edges, viz. SS-1 boundary 

conditions with in-plane sinusoidal variation of loads is 

considered for the analysis. Numerical results presented in 

the tables are obtained using Navier‟s solution technique for 

a Monel-Zirconia FGM plate with the following material 

properties. 

Metal (Monel):           Em=227.24Gpa,       αm=15*10
-6

 K
-1

,       

km=25WmK
-1

 

Ceramic (Zirconia):    Ec=125.83Gpa,        αc=10*10
-6

 K
-1

,        

km=2.09WmK
-1 

The results reported are non-dimensionalized using the 

following form 

(u, v, w)
(u, v, w)

Pa
                   

x y z xy xz yz

x y z xy xz yz *

( , , , , , )
( , , , , , , )

PE

     
      

 

Where, P can be evaluated either by 0

*

p
P

E
  for applied 

transverse mechanical load or 
*

1P T   for applied 

thermal load 1T  at the ceramic surface. The scale factors 

considered are E
*
=1GPa and α

*
=10

-6
 K

-1
. 

The displacements and stresses presented in the tables are at 

specified location (i.e. x-, y- and z- coordinates) as given 

below 

In-plane displacement (u)  : (0, b/2, h/2) 

Transverse displacement (w)  : (a/2, b/2, h/2) 

In-plane normal stress x( )  : (a/2, b/2, 0) 

Transverse normal stress z( )  : (a/2, b/2, 0) 

In-plane shear stress xy( )  : (0, 0, 0) 

Transverse shear stress xz( )  : (0, b/2, 0) 

 

Example 1:  

A simply supported square FGM plate subjected to a 

sinusoidally distributed transverse normal pressure of 

intensity 
0

p  is studied. The numerical results are compared 

with the 3-D exact solutions reported by Reddy and Cheng, 

(2001) to assess the accuracy of the present model. The non-

dimensionalized displacements and stresses for various side 

to thickness (a/b) ratio with power law parameter, p=2 and 

m=n=1, are given in Table-1. It is observed that the 

percentage error is less than 3% for all a/h ratios. The results 

predicted by HSDT-12 model are in good agreement with 

the 3-D elasticity solutions in case of FGM plates subjected 

to mechanical loading; henceforth the same model is 

extended to study the thermal stresses in FGM plates. 

 

Example 2: 

In this example, an FGM plate subjected to nonlinear 

thermal loads is studied. The non-dimensionalized 

displacements and stresses presented in Table 2 are obtained 

by considering nonlinear temperature profile across the 

thickness obtained by solving one dimensional steady -state 

heat conduction equation. Numerical results are presented 

for various power law parameters (p), length to thickness 

(a/h) ratio and length to breadth (a/b) ratio. From the results 

it is found that the in-plane normal stress  x increases 

with increase in parametric values, whereas the in-plane 

shear stress xy( ) , transverse shear stress xz( )  and 

transverse normal stresses z( )  decreases with increase in 

parametric values. 

 

4. CONCLUSIONS 

Analytical formulations and solutions hitherto not reported 

in the literature for thermal analysis of FGM plates are 

presented based on higher order shear deformation theory 

with twelve degrees of freedom which includes the effect of 

transverse shear and transverse normal stress/strain. 

Through the thickness variation of material properties obey 

power law function and thermal load according to one 

dimensional steady state heat conduction equation. 

Parametric studies are performed and numerical results are 

presented for in-plane and transverse stresses. Based on the 

investigation carried out it has been concluded that the  

higher order refined computational model with twelve 

degrees of freedom (HSDT12) could predict the complete 

behavior of FGM plates as accurately as the 3-D exact 

elasticity method for all the parametric variations 

considered. 
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Table 1: Displacements and stresses in an FGM plate subjected to sinusoidal transverse load. 

a/b=1, p=2, m=n=1 
a/h 

4 10 50 

u  
3D-Exact

$
 0.004021 0.02617 0.6603 

HSDT-12 0.00402 [-0.02]
 Ϯ
 0.026172 [0.01] 0.6603 [0.00] 

w  
3D-Exact

$
 -0.0135 -0.1689 -20.3200 

HSDT-12 -0.0135 [-0.01] -0.1689 [-0.01] -20.3145 [-0.03] 

x  
3D-Exact

$
 -0.2037 -0.8722 -19.5600 

HSDT-12 -0.1976 [-2.98] -0.8836 [1.31] -20.0571 [2.54] 

xz  
3D-Exact

$
 -0.9500 -2.3960 -12.0000 

HSDT-12 -0.9458 [-0.44] -2.3994 [0.14] -12.0290 [0.24] 

z  
3D-Exact

$
 -0.5130 -0.5142 -0.5141 

HSDT-12 -0.5136 [0.12] -0.5142 [0.00] -0.5140 [-0.02] 

Ϯ 
Numbers in parentheses are the percentage error with respect to 3-D elasticity values 

$ 
Reddy, J., and Cheng, Z. Q. (2001). 

 

Table 2: In-plane and transverse stresses in an FGM plate subjected to thermal loads. 

a/b 

 

 

xy  xz  z  

4 20 100 4 20 100 4 20 100 4 20 100 

1 

1 -258.85 -228.61 -227.37 -316.26 -333.43 -334.16 5.7194 1.2935 0.2599 5.4214 0.3351 0.0136 

2 -414.74 -378.75 -377.27 -396.99 -416.33 -417.16 6.1228 1.3740 0.2760 1.0715 0.1783 0.0074 

5 -680.23 -633.14 -631.19 -550.27 -573.74 -574.75 -4.0358 -0.6613 -0.1310 -8.0552 -0.1500 -0.0057 

10 -780.91 -724.81 -722.49 -649.17 -676.70 -677.88 -12.3244 -2.2947 -0.4575 -12.0847 -0.2772 -0.0107 

1.5 

1 -395.45 -357.48 -355.92 -282.62 -307.35 -308.44 5.2605 1.2894 0.2599 5.8853 0.5394 0.0221 

2 -585.38 -539.64 -537.75 -356.07 -383.81 -385.05 5.6624 1.3700 0.2760 -1.5849 0.2838 0.0120 

5 -915.70 -854.82 -852.29 -495.51 -529.00 -530.51 -4.4829 -0.6652 -0.1311 -17.2890 -0.2513 -0.0093 

10 -1059.11 -986.29 -983.27 -584.68 -623.94 -625.71 -12.8461 -2.2993 -0.4576 -24.6671 -0.4596 -0.0175 

2 

1 -478.93 -429.92 -427.92 -234.76 -265.84 -267.29 4.6482 1.2838 0.2599 3.1782 0.8186 0.0340 

2 -689.63 -630.09 -627.63 -297.37 -332.04 -333.68 5.0455 1.3644 0.2760 -9.0778 0.4238 0.0184 

p
a h x
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5 -1059.73 -979.47 -976.12 -416.19 -457.74 -459.75 -5.0791 -0.6707 -0.1311 -34.9255 -0.4030 -0.0143 

10 -1229.67 -1133.33 -1129.32 -491.22 -539.89 -542.25 -13.5409 -2.3057 -0.4576 -47.9243 -0.7267 -0.0269 

2.5 

1 -535.34 -472.01 -469.43 -192.68 -228.59 -230.40 3.9029 1.2765 0.2598 -5.2989 1.1663 0.0492 

2 -759.95 -682.65 -679.45 -245.82 -285.58 -287.63 4.2901 1.3571 0.2759 -24.2631 0.5907 0.0266 

5 -1156.92 -1051.92 -1047.52 -346.62 -393.80 -396.30 -5.8058 -0.6778 -0.1312 -64.4344 -0.6148 -0.0208 

10 -1345.19 -1218.81 -1213.53 -409.30 -464.48 -467.42 -14.3837 -2.3140 -0.4577 -86.0074 -1.0901 -0.0391 

                                          

Figure.1. FGM plate geometry with positive set of reference axes and displacement components 
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