
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 9

BIG DATA ANALYTICS MADE EASY WITH RHADOOP

Adarsh V. Rotte
1
, Gururaj Patwari

2
, Suvarnalata Hiremath

3

1
Student, Department of CSE, BKEC, Karnataka, India

2
Asst. Prof., Department of CSE, BKEC, Karnataka, India

3
Assoc. Prof., Department of CSE, BKEC, Karnataka, India

Abstract
Day by day the volume of the data over network or of any organization is booming, so as the difficulty to process and analyze

such a large quantity data. This large quantity of data is generally termed as Big Data. Analyzing the data is necessary for
obtaining insights and gaining better application guidance. R is an efficient tool for analytics. R is an open source programming

language and a software suite developed by Ross Ihaka and Robert Gentlemen used by data scientist statisticians, for data

analysis, statistical computing and data visualization. Apache Hadoop is an open source java framework for processing and

querying Big Data on large clusters of commodity hardware. It has two main features i.e. HDFS (Hadoop Distributed File

System) for storage of Big Data and MapReduce for Processing Big data. The strengths of R lie in its ability to analyze data using

a rich library of packages but fails when it comes to working on Big Data. On the other hand the strength of Hadoop is to store

and process Big Data. Processing Big Data in memory is difficult as the RAM cannot hold such a large amount of data. The

options would be to run analysis on limited chunks also known as sampling or to correspond the analytical power of R with the

storage and processing power of Hadoop and we arrive at an ideal solution- RHadoop.

Keywords: Big Data, R, MapReduce, HDFS, rhbase, rmr, ravro, plyrmr, rhdfs, Thrift Server.

--***--

1. INTRODUCTION

Let’s have a look on few terminologies which are

considered in Big Data Analytics:

1.1 Big Data

There is no proper definition for Big Data. It varies as the

scenario changes. One company’s Big Data is another’s

small, i.e. for an organization 10PB of data may be

considered as Big Data at the same time for another

organization 100PB of data is considered as Big Data.
Generally Big Data is defined as data sets of increasing

Volume, Variety and Velocity (3V’s). Although there exist

different definitions for Big Data, in this paper we used the

term Big Data to mean the amount of data that cannot be

easily handled using traditional tools like relational

databases without spending a lot of money for specialized

hardware.

1.2 R

R is the world’s most widely used programming language for

statistical computing and predictive analytics. R is an open

source software package to perform statistical analysis on

data and is registered under GNU General Public License
(GPL). It means that anyone can install R for free of cost on

most of the desktops and server machines. R is a

programming language containing 5000+ implemented

algorithms, and the number is increasing day by day.[1] It

was developed by Ross Ihaka and Robert Gentlemen at the

University of Auckland, New Zealand. R is used by data

analysis scientists and others those who wants to obtain key

insights from data using various Data Mining techniques,

such as regression, clustering, classification etc. R is an

expert tool for plotting graphics, analyzing data and fitting

statistical models using data that fits in the computer’s

memory.[2]

R is a strong competitor with various commercial analysis

packages in providing features and performance. R provides

huge number of packages i.e. packages for displaying
graphics, packages for performing statistical tests and

packages for training the latest machine learning techniques.

R packages are collection of R functionalities that can be

invoked as functions. A good example of this would be a

.jar file in java.[3] Packages in R are like libraries in

C/C++, modules in Perl and classes in java. If R user wants

to use the functionality, what he is supposed to do is just

install the package that contains the required function and

start calling the function as per the need. R allows users to

perform various data operations. Statistical operations like

mean, min, max, probability, distribution etc. Machine
learning operations like regression, classification and

clustering. Most of the organizations use R’s data modeling

techniques to understand the behavior of their customers

based on the data collected from past transactions. This

helps the organizations to improve their performance and

QoS by identifying what exactly the customers are looking

for.

1.3 Hadoop

Apache Hadoop is an open source software framework

developed in java for processing and querying the huge

amount of data on large clusters of commodity hardware.

Hadoop chops the massive data into smaller chunks and
spread it out over many machines so that each machine can

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 10

process those smaller pieces of data in parallel and hence

results can be obtained extremely fast.

Apache Hadoop has two main components: HDFS and

MapReduce.[4]

1.3.1 Hadoop Distributed File System (HDFS)

HDFS is Hadoop’s rack-aware file system which was

inspired and derived from the concept of Google File

System (GFS). It is a data storage layer based on the UNIX.

HDFS mainly deals with the storage of Big Data across

many hosts. HDFS creates multiple replicas of each data

block and distributes them on computers throughout a

cluster to enable reliable and rapid access.

1.3.2 MapReduce

It is the core component of the Hadoop. It is a programming

model for processing Big Data distributed over thousands of

nodes (i.e. large clusters which works on the concept of

Divide and Conquer i.e. it divides the large datasets into
smaller chunks and then processes them in parallel. Later

individual results are combined together to get the result.

This whole processing is done in two phases: Map and

Reduce. The below fig.1 shows the execution sequence of

MapReduce.

Fig.1 MapReduce

1.4 Hadoop Architecture

The architecture of Hadoop is as shown in below fig.2. This

architecture is Master-Slave architecture as it consists of both

master and slave components. NameNode and DataNode of

HDFS layer and JobTracker and TaskTracker of MapReduce

layer are master and slave respectively.

 MasterNode: MasterNode oversee the two key

functional pieces that make up Hadoop i.e. storing

huge data (HDFS) and running parallel computations

on all that data (MapReduce). More than one
MasterNodes are present to avoid single point of

failure.

 Slave/Worker Node: Slave Nodes Makes up the vast

majority of machines and do all the works assigned

to them by MasterNodes like storing the data and

running the computations.

 NameNode: NameNode oversees and co-ordinates

the data storage function i.e. it is the master of the

HDFS system. It maintains all the directories, files

and manages the blocks that are present on

DataNodes.

 DataNode: DataNodes provide actual storage to each

machine. They are like slaves of HDFS. They are

responsible for serving read-and-write requests for

the clients.

 JobTracker: JobTracker oversees and co-ordinates

the parallel processing of data using MapReduce.

This process is assigned to interact with clients

applications.

 TaskTracker: This is a process that executes the

tasks assigned to it from JobTracker like Map,

Reduce and Shuffle.

Hadoop offers the concept of “Rack Awareness” to

emphasize the protection of data from losing either from

switch failure or power failure. According to this concept

for every block of data, three copies are maintained: one on

the same node, one on the same rack but on different node

and one on the other rack on different node. Information

about all these copies is maintained on the NameNode.[5]

Fig. 2 Architecture of Hadoop

1.5 HBase

HBase is a distributed and column oriented database for

storing Big Data. It uses HDFS for underlying storage and

provides random, real-time read/write access to stored Big

Data.

Main Components of HBase are:

 HBase Master: It is responsible for negotiating load

balancing across all region servers and maintains the

state of the cluster.

 RegionServer: deployed on each machine and hosts

data and processes I/O requests.

2. NEED OF INTEGRATING R AND HADOOP

R is a widely used tool by statisticians & data analysts

across the globe for data analytics. It is an expert tool for

data analysis comprising of a huge library of packages

which helps in this regard. R can comfortably process a
relatively small amount of data but it faces difficulties when

comes to working over Big Data. The main reason is that the

machine on which R exists is not capable of processing a

large data as its RAM storage is very less.

Hadoop is a software framework which can easily process

large size data with the aid of large clusters of commodity

hardware.

In current scenario most of the enterprises are collecting the

data at the most detailed level possible, thereby creating data

repositories ranging from terabytes to petabytes. The

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 11

information buried under these massive datasets is

invaluable and cannot be understood unless some statistical

analysis algorithms are applied over it to obtain useful data

from it. R and Hadoop are best tools for Data Analytics and

for handling large-size data respectively. Working

individually on these tools will not lead us to the solution for
above stated issue, but together they can complement each

other very well in this regard. They are a natural match in

big data analytics and visualization. One of the most well-

known R packages to support Hadoop functionalities is

RHadoop that was developed by Revolution Analytics.

Hadoop integration with R is a big boon for processing

large-size data. The logical analytical operations of Hadoop

to get informative insights are brought into action by

integrating with R tools. R and Hadoop both are data-driven

tools. The integration of such data-driven tools and
technologies can build a powerful scalable system that has

features of both of them as visualized in below figure 3.

Fig.3 Integration of R and Hadoop

3. INTRODUCING RHADOOP

The integration of R and Hadoop seems a natural one. Both

are open-source and both are data-driven.

RHadoop is an open-source collection of R packages

developed by Revolution Analytics that allow users to

manage and analyze data with Hadoop from R environment,

including creation of MapReduce jobs. Revolution Analytics

(formerly REvolution Computing) is a statistical software

company focused on developing open-source versions of the

free and open-source software R for enterprise, academic
and analytics customers. Recently, [6] Microsoft announced

on January 23, 2015 that they had reached an agreement to

purchase Revolution Analytics for an as yet undisclosed

amount. It is now successfully merged into Microsoft.

RHadoop is a bridge between R, a language and

environment to statistically explore data sets, and Hadoop, a

framework that allows for the distributed processing of large

data sets. It allows data scientists familiar with R to quickly

utilize the enterprise-grade capabilities of the MapReduce

Hadoop distribution directly with the analytic capabilities of

R.

3.1 RHadoop Packages

RHadoop is a collection of R packages that allow users to

manage and analyze data with Hadoop.

 ravro

 plyrmr

 rmr

 rhdfs

 rhbase

Among the above listed R packages, ravro and plyrmr are

the recent releases. The other three viz. rmr, rhdfs and

rhbase allow the users to make use of Hadoop’s

MapReduce, HDFS and HBase respectively in R

environment.

RHadoop has dependencies on other R packages. Working

with RHadoop implies to install R and RHadoop packages

with dependencies on each DataNode of the Hadoop cluster.
Few of the dependencies are listed below:

 rJava

 RJSONIO

 digest

 Rcpp

 httr

 functional

 devtools

 plyr

 reshape2

3.2 Architecture of RHadoop

The figure below (fig. 4) shows the architecture of

RHadoop. It comprises of five R Packages, listed in

previous section.

Fig. 4 Architecture of RHadoop

The ravro package allows users to read and write files in

avro format. The plyrmr package enables the R users to
perform common data manipulation operations. The rmr

package offers the users to use Hadoop MapReduce

functionality in R. The rhdfs package lets the users to use

file management of the HDFS in R. The rhbase provides

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 12

Hadoop’s HBase database management functionality in R

via a Thrift Server. In simple words rhdfs and rhbase serves

as interface between HDFS and HBase respectively.

By observing the figure below (fig. 5) we can obtain a clear

insight about architecture of RHadoop and how various
components are connected with each other.

Fig. 5 RHadoop connectivity

4. WORKING WITH RHADOOP PACKAGES

4.1 ravro

The ravro package provides the ability to read and write

avro files into R in the avro serialization format from local

and HDFS file system and adds an avro input format for

rmr. Ravro allows R to exchange data with HDFS.

Avro is a data serialization system. Avro provides:

 Rich data structures.

 A compact, fast, binary data format.

 A container file, to store persistent data.

 Remote Procedure Call (RPC)

Avro relies on schemas. Avro schemas describe the format

of the message and are defined using JavaScript Object

Notation (JSON). Avro data is always serialized with its

schema. Both the avro data and its schema are stored in the

same file. In addition to various Primitive types (null,

boolean, int, long, float, double etc.) avro provides six kinds
of complex types: records, enums, arrays, maps, unions and

fixed.[7]

The ravro package should be installed only on the node that

will run the R client. Prior to installing the ravro, few other

dependencies must be installed such as Rcpp, rjson, bit64

and bit. These packages can be installed in R with the help

of following command:

install.packages(c(“Rcpp”,”rjson”,”bit64”))

In addition, java must be installed on the system and be

available through the PATH environmental variable. Run

the following command in R console:

system(“java –version”)

The java version must be at least 1.6.

4.2 plyrmr

The plyrmr package is the higher-level abstraction of

MapReduce. It allows users to perform common data

manipulation operations on very large data sets stored on

Hadoop cluster in plyr-like syntax.[8] The plyrmr package

should be installed on every node of Hadoop cluster along

with its dependencies like devtools and plyr.

The plyrmr is focused on the structured data, specifically

data organized in columns,like a data.frame.

The plyrmr package provides several functions for
performing data manipulation operations. Such as:

 Data manipulation:

 bind.cols : Add new columns

 select : Select columns

 where : Select rows

 transmute : All of the above plus summaries

 From reshape2:

 melt and decast : Convert between long and

wide data frames.

 Summary:

 count
 quantile

 sample

 Extract:

 top.k : Select top and bottom rows according to

order specified by the arguments.

 bottom.k

The plyrmr reduces the cost of abstraction eliminating

redundant I/O when possible by using a technique known as

Delayed Evaluation. It replaces the potentially unfamiliar

concept of a key with an SQL-like function group and
related. It provides simple but effective ways to group data

by using functions group, group.f, gather and ungroup.

Let’s consider an example for better understanding of

plyrmr functions: The data set marks contains the details of

marks obtained in two subjects by two students as shown in

below fig.6. (Just for understanding purpose we have used

only two columns, but plyrmr is used to deal with massive

data sets which contain hundreds or even thousands of

columns.)

Fig.6 Data set marks

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 13

If one wishes to obtain the sum of marks, it can be done

simply by calling bind.cols as given below and we will get

output as shown in below fig.7.

bind.cols(marks, total = sub1+sub2)

Fig.7 bind.cols adds the column total

If we have a large data set with the same structure but

instead of being stored in memory, it is stored in a HDFS

file named "/tmp/marks". It's way too big to be loaded with

read.table or equivalent. With plyrmr we just need to enter

the following code and we will get the same result as shown

in fig. 7.

bind.cols (input ("/tmp/marks"), total = sub1+sub2)

The results of a computation can be written out to a specific

path with the help of output as shown below:

output (bind.cols(input("/tmp/marks"),
total = sub1+sub2),

"/tmp/marks.out")

If none of the basic operations is sufficient to perform a

needed data processing step then we can combine different

operations as given below:

where (bind.cols(marks, total=sub1+sub2),total >= 150)

We can do the same on a Hadoop data set also as given

below:

where(bind.cols(input(“tmp/marks”), total=sub1+sub2),

total >= 150)

The output for the above mentioned two codes will be as

shown in below fig.8:

Fig.8 O/P of combined operations

4.3 rmr

The rmr package allows data analysts to access and process

the huge data stored over Hadoop cluster in a fault tolerant

manner without needing to be an expert in distributed

programming. This package provides an abstraction layer
over the Hadoop implementation. It allows the R

programmers to focus on the data analysis of large data sets

without getting much involved in the heavy task of writing

long MapReduce jobs. It allows the data analysts working in

R to access the MapReduce programming paradigm in a

natural way. To perform MapReduce on a Hadoop cluster,

we have to install R and rmr on the server that is accessing

the cluster, the client as well as every task node.[9] Below

fig.9 shows the overview of rmr.

Fig.9 rmr

The dependencies required for rmr package are Rcpp,

RJSONIO, itertools, digest, functional, stringr. The

following command will make the rmr package ready to use:

library(“rmr”)

The rmr package provides the following functions:

 For storing and retrieving data

 to.dfs: This is used to write R objects from or to the
file system.

e.g. small.ints = to.dfs(1:10)

 from.dfs: This is used to read the R objects from the

HDFS file system which are in the binary

encrypted format.

e.g. from.dfs('/tmp/marks')

 For MapReduce

 mapreduce: This is used for defining and executing

the MapReduce job.

e.g. mapreduce(input,output,map,reduce,combine,

input.fromat,output.format,verbose)
 keyval: This is used to create and extract key-value

pairs.

e.g. keyval(key, val)

For the better understanding of MapReduce functions let’s

consider a most commonly referred example i.e. word count

program. This program is so widely used that it has become

a sort of “hello world” program of the MapReduce world.

The word count program is used to count the total number of

occurrences of a particular word in a massive text file.

The function wordcount is declared as below:

wordcount = function(

input,

output = NULL,

pattern = " "){

There is an input and optional output and a pattern that

defines what a word is.

In the Map phase, the map function will read the text file

line by line and split them by spaces. This map phase will

assign 1 as a value to all the words that are caught by the
mapper. The corresponding code is given below:

wc.map =

 function(., lines) {

 keyval(

 unlist(

 strsplit(

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 14

 x = lines,

 split = pattern)),

 1)}

In the Reduce phase, it will calculate the total frequency (i.e.

the total number of occurrences) of all the words by
performing sum operations over words with the same keys.

The corresponding code is given below:

wc.reduce =

 function(word, counts) {

 keyval(word, sum(counts))}

After defining the word count mapper and reducer, we need

to create a method that starts the execution of MapReduce.

mapreduce(

 input = input ,

 output = output,
 input.format = "text",

 map = wc.map,

 reduce = wc.reduce,

 combine = T)}

Here, combine=T specifies that the reduce function can be

used as the combiner. The input and output in the above

code can be HDFS path. For input it can be the return value

of to.dfs, for example the code small.ints = to.dfs(1:10) will

put the data into HDFS and later it can be used as input as

input=small.ints . For output if the path is NULL then some

temporary file will be generated and wrapped in a big data
object, like the ones generated by to.dfs. The input.format

allows us to specify the format of the input and in this case it

is text format.

4.4 rhdfs

The rhdfs package is the interface between R & HDFS,

which allows users to browse, read, write and modify files

stored in HDFS from the R console. To use rhdfs, R and the

rhdfs package only need to be installed on the client system

that is accessing the cluster. This can be a node in the cluster

or it can be any client system that can access the cluster with

the Hadoop command.

The dependency for rhdfs is rJava package. The following

command will make the rhdfs package ready to use:

library(“rhdfs”)

If we want to run HDFS file system commands from R, we

first need to initialize rhdfs by calling the hdfs.init function

using the following command:

hdfs.init()

After initializing rhdfs, we will be able to call the following

functions:

 hdfs.defaults(): used to retrieve and set the rhdfs

defaults.

 hdfs.put(): used to copy files from local file system to

HDFS file system.

hdfs.put('/usr/local/hadoop/FILENAME.txt',

'/RHadoop/1/')

 hdfs.move(): used to move a file from one HDFS

directory to other HDFS directory.

hdfs.move('/RHadoop/1/FILENAME.txt','/RHadoop/2/')

 hdfs.rename(): used to rename file stored at HDFS from

R.

hdfs.rename('/RHadoop/FILENAME.txt',
'/RHadoop/FILEABC.txt')

 hdfs.delete(): used to delete the HDFS file or directory

from R.

hdfs.delete("/RHadoop")

 hdfs.chmod(): used to change permissions of some files.

hdfs.chmod('/RHadoop', permissions= '777')

 hdfs.file(): used to initialize a file to be used for

read/write operation.

ref= hdfs.file("/RHadoop/2/FILENAME.txt",

"r",buffersize=104857600)

 hdfs.write(): used to write into the file stored at HDFS.
It uses the stream for serialization of data.

model = lm(...)

modelfilename = "my_smart_unique_name"

modelfile = hdfs.file(modelfilename, "w")

hdfs.write(model, modelfile)

hdfs.close(modelfile)

 hdfs.read(): used to read from binary files on the HDFS

directory. This will use the stream for the

deserialization of the data.

modelfile = hdfs.file(modelfilename, "r")

m = hdfs.read(modelfile)
model = unserialize(m)

hdfs.close(modelfile)

 hdfs.close(): used to close the stream when a file

operation is complete and will not allow any further file

operations.

hdfs.close(ref)

 hdfs.mkdir(): used to create a directory over the HDFS.

hdfs.mkdir("/RHadoop/2/")

 hdfs.ls(): used to list the directories from HDFS.

hdfs.ls('/') #lists all directories.

4.5 rhbase

The rhbase package provides the basic connectivity between
R and HBase, using the thrift server. R programmers can

browse, read, write and modify tables stored in HBase.

HBase is a distributed big data store for Hadoop which is

designed as a column-oriented data storage model.

The rhbase package accesses HBase via the HBase thrift

server which is included in the MapR HBase distribution.

Thrift must be installed before using the rhbase. Pre-

requisites for rhbase are Hadoop, HBase and thrift.

The rhbase package is a thrift client that sends requests &
receives responses from the thrift server. The thrift server

listens for thrift requests and in turns uses the HBase HTable

java class to access HBase. The rhbase needs to be installed

only on the client system that will access the MapR HBase

cluster, as it is a client-side technology.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Special Issue: 05 | NCATECS-2015 | May-2015, Available @ http://www.ijret.org 15

The following code will make the rhbase package ready to

use:

library(“rhbase”)

We can start the thrift server by using the following code:

$HBASE_HOME/bin/hbase-daemon.sh start thrift

Similarly, to stop the thrift simply pass stop thrift to the

hbase-daemon.sh script.

The thrift server by default starts on port 9090.

To initialize the rhbase package in order to use its functions

we use the following code:

hb.init()

If we are running rhbase on a different hostname:port, then
we have to change how the package is initialized using the

code below:

 hb.init(host=127.0.0.1, port=9090)

By default the rhbase uses “native” R serialization to read

and write data from/to HBase. We can change this to “raw”

serialization (i.e. everything is treated as string) with the

help of code given below, calling at the time of initialization

of package,

 hb.init(serialize=”raw”)

The rhbase provides various functions which allows one to
create or delete tables and insert, delete, and scan records in

HBase tables.

 hb.defaults(): used to view and change the default

values.

 hb.list.tables(): used to list all the tables.

 hb.new.table(): used to create a new table.

hb.new.table ("employee", "info")

 hb.descibe.table(): used to describe the table structure.

hb.describe.table("employee")

 hb.get(): used to read the data from the table.

hb.get (employee', 'adarsh')

 hb.insert(): used to insert the data into the table.

hb.insert ("employee", list (list ("adarsh",

"info:salary","50000")))

 hb.delete.table(): used to delete a table.

hb.delete.table ('employee')

5. CONCLUSION

If someone needs to combine strong data analytics and

visualization features with the capabilities to handle big data

supported by Hadoop, it is certainly worth to have a closer

look at RHadoop features. It has packages to integrate R

with MapReduce, HDFS and HBase, which are the three key
components of the Hadoop ecosystem. Integration of R with

Hadoop offers Data scientists to utilize the full potential of

Hadoop from R environment. RHadoop have made the big

data analytics much easier than ever.

REFERENCES

[1] Using RHadoop to predict website visitors, Tutorials,

http://www.hortonwoks.com

[2] R in a nutshell, A desktop quick reference by Joseph

Adler, First Edition-2009.

[3] Big data analytics with R and Hadoop by Vignesh

Prajapati, First Edition-2013.
[4] Hadoop for Dummies, Special Edition by Robert D.

Schneider, ISBN: 978-1-118-25051-8.

[5] Understanding Hadoop clusters and the network,

Brad Hedlund, Blog Post- Retrieved September 10,

2011.

[6] “Microsoft to acquire Revolution Analytics to help

customers find big data value with advanced

statistical analysis”, Official Microsoft Blog Post.

Retrieved April 6, 2015.

[7] Apache AVRO# 1.7.6 Specifications,

http://www.apache.org

[8] RHadoop wiki -
https://github.com/RevolutionAnalytics/ RHadoop/

[9] RHadoop and MapR- Accessing Enterprise-Grade

Hadoop from R by Revolution Analytics,

http://www.revolutionanalytics.com

