
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org 105

A NEW STORAGE ARCHITECTURE FOR A FLASH-MEMORY

VIDEO SERVER

Sungchae Lim

Dept. of Computer Science, Dongduk Women’s University, Seoul, South Korea

sclim@dongduk.ac.kr

Abstract
During the past decade, there has been drastic growth in network traffics that are made from online views on video content in

Internet. Owing to current high popularities of video streaming services such as YouTube, Netflix and portals’ UCC, such a trend

is likely to be continuing in the next decade as well. For the successful proliferation of streaming services in the future, it is

important to develop high-performance video servers that can fulfil bandwidth requirements of concurrently served video streams

in a cost-effective way. To this end, we propose a video storage architecture using the SSD (solid state drive) as a cache layer.

Since the SSD storage provides fast and uniform speed of random reads, it can work well with the EDF algorithm. To employ the

EDF algorithm, the system time is divided into cycles and the bandwidth allocation is done by considering the scheduling periods

and the number of flash blocks retrieved for serviced video streams. Since the bandwidth allocations of serviced video streams are

managed within a full capacity of the scheduled SSD bandwidth, we can efficiently prevent undesirable hiccups of serviced video

streams.

KeyWords: Video streaming service, flash memory, real-time scheduling, data caching, admission control

--***--

1. INTRODUCTION

During the past decade, there has been drastic growth in

network traffics that are made from online views on video

content in Internet [1-5]. Owing to current high popularities

of video streaming services such as YouTube, Netflix and

portals’ UCC (user created content), such a trend is likely to

be continuing in the next decade as well [4]. For the

successful proliferation of streaming service in the future, it

is important to develop high-performance video servers that

can fulfil disk bandwidth requirements of concurrently

served video streams in a cost-effective way [10-20]. This

has been regarded as a major technical challenge to be

tacked, together with the other challenge of cheaply paving

digital superhighways with multiple gigabits bandwidth. In

the case of database communities, the former one seems to

be more important [11, 14, 16].

As earlier works on video servers, there were many studies

[14-18] concerning storage architectures that can effectively

meet soft deadlines of video segments being played back.

The earlier studies aim to pump up real-time data streams

from hard disk drives (HDDs), which is characteristic of its

relatively poor bandwidth, compared to data consuming

rates of video streams [14, 19]. To this end, they mainly

focused on how to reduce the seeking overheads of HDDs

via a grouped disk scheduling of video segments [19, 12,

14] and sophisticated data placement using RAID

technologies [15, 16, 18]. With those schemes, it is possible

to reduce lightly the investment cost paid for establishing

HDD-based storage systems.

Although such HDD-based algorithms contribute to slightly

diminishing cost for the video streaming services, they

cannot guarantee satisfactory performance improvements

because of the inherent drawback of the HDD, that is, its

slow random read speed. To overcome that problem, we

need to develop a new video storage systems that are

constructed based on the new storage media such as flash

memory. Since flash memory does not require any

mechanical part for data accesses, differently from the

HDD, it provides a very fast and uniform speed while

processing random reads. This hardware characteristic is

highly advantageous for the use of flash memory in the

enterprise-scale video servers. For this reason, many studies

have been done for the purpose of incorporating flash

memory into the video server [6-9, 12].

In this context, we propose a new flash-aware scheduling

algorithm tailored to video streaming servers equipped with

flash storage of the NAND-type SSD (solid state disk) [12].

The proposed algorithm is based on a well-known real-time

scheduling algorithm, that is, the EDF (earliest deadline

first) algorithm [19]. Since the EDF algorithm has features

such as the low computation cost and the high utilization of

scheduling time, it has been widely accepted as a cost-

effective scheduling algorithm. Despite such desirable

features, the EDF algorithm has some problems when it is

applied for scheduling the I/O requests of HDD storage. In

real-time scheduling from the EDF algorithm, the

processing orders of tasks are dynamically arranged in the

accordance with tasks’ deadlineurgencies. In other words,

the scheduling orders of tasks coincide with their deadline

urgency [12, 17].

When it comes to the disk scheduling, such a coincidence

between task’s urgency and scheduling orders easily

deteriorates the level of disk bandwidth utilization. That is

http://www.ijret.org/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org 106

because preemptive services of urgent data requests can

yield enlarged I/O overheads. Since an HDD has overheads

of the disk arm seeking and rotational delay while

processing data requests, the service order of data requests

in HDD needs to be adjusted depending on their cylinder

distances, if the reduction of I/O overheads is only one

performance factor being considered [19, 13]. For instance,

if any of two data requests with highest deadlines are

located at the leftmost and rightmost cylinders, respectively,

processing of those two distant requests leads to a

significant amount of I/O overhead.

Since data requests should be scheduled by considering the

worst-case I/O overhead in order to meet their deadlines, the

EDF algorithm cannot fully use the disk bandwidth while

meeting timing constraints of video streams. To compensate

for such a shortcoming of the EDF algorithm in the use of

disk scheduling, some hybrid-style EDF algorithms [12, 19,

20] have been proposed. In these schemes, the deadlines of

data requests are adjusted by considering the end time of

bulk-SCAN in progress. By serving a group of requests

through a bulk-SCAN, they can reduce the amount of I/O

overheads embedded usually in disk schedule of the EDF

algorithm.

In this paper, we propose an EDF style admission scheme

that can avoid the above problems of the EDF algorithm. To

this end, we employ the SSD storage in order to store the

video segments that are delivered to remote clients via the

HTTP protocol. Since the SSD storage does not have

mechanical parts in it, it is the case that the I/O times for

reading in-SSD video segments are independent of their

location in the storage. This is very different from the case

of HDD scheduling. Using the proposed scheme, we can

efficiently eliminate both of deadline misses of data requests

and an excessive waste of storage bandwidth in the

schedules made from the EDF algorithm.

The rest of this paper is organized as follows. In section 2,

we present the technical backgrounds including the concept

of video servers and the hardware features of flash memory

storage. In section 3, we address the proposed scheduling

algorithm and its mechanism for admission control. In

section 4, we conclude this paper.

2. BACKGROUNDS

2.1 Video Server

When it comes to alphanumerical data or image files, there

do not exist hard timing constraints for reading those data

[5]. I/O requests for such types of data have only to be

processed in a tolerable time, i.e., the response time. A best-

effort policy for processing data requests is enough in the

case of such types of traditional data processing. However,

if we are aimed at servicing video streams in online mode,

then we have different system requirements to be fulfilled in

the video servers [13, 15, 16]. Those requirements include

admission control of streams within given resource capacity.

Since the video stream needs almost constant size of data

with a fixed length of time periods, many studies were done

based on the algorithms being devised for scheduling

periodic tasks [10, 14-19].

Because the earlier scheduling scheme for servicing video

streams are designed based on HDD storage, they cannot

evade a significant amount of disk bandwidth wastes. This is

because they need to take into account the worst-case I/O

time from random data placements across disk cylinders. To

reduce the wasted I/O bandwidth, the grouped SCAN

algorithm was proposed to obtain both of timely service and

optimal seek-time overhead [12, 19]. Those style algorithms

select a maximum group of I/O requests that can be served

in a bulk SCAN, while meeting their deadlines. Since the

I/O time using the SCAN algorithm is an optimal time, they

can provide better disk bandwidth utilization, compared to

scheduling working only depending on requests’ deadlines.

The proposed algorithm was reported to provide better

performance, while video streams are being serviced with

the similar playback rates.

As the cost per bit of DRAM is going down continuously,

the video server begins to build a large size of a memory

buffer used for caching hot segments of videos being played

back [13, 5, 3]. The view pattern of video content is reported

to be highly skewed toward a popular collection of videos

[10]. Views of the popular video collections make up for

most of workload of the video server. Therefore, by caching

hot video content on a memory buffer, we can remarkably

reduce the number of disk I/Os.

This caching scheme works more efficiently when the data

size of cached video content is not big. In the case of video

data with high resolutions and long playback times, the

memory caching may not be effective. This is because the

size of cached video collections is too small to reduce disk

I/Os [14]. By contrast, the use of buffer memory may

adversely affect the performance of video servers because of

frequent switching of cached videos for reclaiming buffer

space. Instead, other technique caching concurrently shared

playback intervals of hot streams is accepted in recent time

[10, 21].

2.2 Flash Memory Storage

Over the last decade, flash memory has much attention from

the database community. This is mainly because its salient

performance features such as low power consumption, fast

speeds of random reads, and strong shock resistance.

Because of the low cost per gigabit, additionally, NAND-

type flash memory have been widely used as storage media.

The NAND-type flash storage usually partitions its memory

space into equal-size blocks and each block contains 64 or

128 pages of size 0.5KB within it. With multiple of NAND

flash, SSD storage is built together with an SDRAM module

and a small processing unit. The SSD is superseding the

hard disk drives (HDDs) of laptop computers due to its

performance advantages. Recently, there have been diverse

studies for utilizing the SSD as storage media of enterprise-

scale computing systems. In this light, there exist some

researches that capitalize on the SSD to reduce the

investment cost of video streaming services [2-5]

http://www.ijret.org/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org 107

In the case of flash SSD, the conventional in-place-update is

prohibited because of its H/W feature. Instead, FTL (Flash

Translation Layer) is responsible forperforming hidden

actions for out-of-place updates [7]. The use of out-of-place

updates requires the action of garbage collection. Since the

I/O costs for garbage collection are high, there is a need to

reduce the number of random writes in SSD storage [8].

This is because I/O overheads for garbage collection deeply

impact the performance of flash-based storages. For this

reason, many studies proposed the FTL algorithms that can

reduce the garbage collection costs. Additionally, some

researches presented how to reduce the number of random

writes in flash [8, 9].

3. PROPOSED METHOD

3.1Architecture of Video Storage

In Internet, a large number of video streaming services have

employed the adaptive HTTP streaming (AHS) for flexible

data delivery. Dynamic Adaptive Streaming over HTTP

(DASH) is an international standard for delivering MPEG-

coded video segments [1]. This DASH-based streaming

system does not require any use of dedicated video servers

and its service is possible with usual off-the-shelf Web

servers, that is, Apache web server or IE web server. For the

system using the off-the-shelf web servers and DASH data

delivery, the networking technology of CDN (Content

Delivery Network) is usually deployed for dynamic

workload balancing [3]. In this network architecture, the

data of each video object are saved on the storage of

distributed web servers. Then, each copy of the duplicated

videos will be partitioned into a fixed size of segments for

delivery [2].

In this paper we mainly focus on the storage architecture

and scheduling algorithm for the web server that is pumping

video segments to client through the DASH protocol. To

capitalize on the fast random reads of flash storage, we

incorporate the SSD into the storage system for its use as a

cache pool. Fig. 1 depicts the architecture that is assumed in

our study.

We dedicate some part of main memory to the web server

that serves video streams to remote clients over Internet.The

dedicated memory space has two parts of a cache pool and a

temporary area. The former is used to cache video segments

that are retrieved from the disks; the latter is for reading in-

SSD video segments. We do not cache the data that are

reading from SSD. That is, from memory we delete the

video segments that are read from SSD, immediately after

sending them to Internet. The part of main memory

dedicated to the web server that serves video streams to

client.

The cache pool in Fig. 1 is for caching a portion of hot video

segment that are stored in HDDs. For efficient caching of

them, many algorithms including LRU (least recently used)

can be applied for the reduction of cache miss rate. Since

those algorithms are not our main interests, we do not

describe detail about them. SSD storage serves as a type of

cache area for hot video segments. To prevent performance

degradation caused by small sizes of random writes, the

minimum size of date writes to SSD storage from HDDs is

set to any value in the rage of 1 MB to 8MB. With an

enough large size of writes, we can avoid excessive

overhead from garbage collections [8, 9]. In contrary, the

size of reads is the same that of a video segment. Here, the

sizes of video segments have different values in accordance

with the different types of video. In this paper we propose

the scheduling algorithm for reading video segments in SSD

storage in real-time. The scheduling algorithm is presented

in the next section.

Fig. 1. The storage architecture of the proposed video server

storage using SSD storage as a cache pool.

3.2 Scheduling Algorithm

To adopt the EDF algorithm, we save video segments on

SSD storage in the unit of a flash block. That is, a single

video segment is cached across multiple flash blocks and a

single flash block can save data of the same video stream.

By reading such video blocks of a video stream sequentially,

we can fulfill the bandwidth requirement of that video’s

streaming service. While serving concurrent video streams,

we determine which flash block needs to be scheduled for

I/O in the next I/O time. For determining the retrieval orders

of flash blocks of video streams, we adopt the EDF

algorithm.

More particularly, we divide the system time into cycles,

which have a fixed size of length and are used as the

smallest unit of storage bandwidth allocation. To serve a

video stream requiring bandwidth x, we retrieve b number of

flash blocks with a period of p cycles. In other words, by

reading b blocks during every c cycles, we can provide the

disk bandwidth of (bSB)/(pCYCLE.) Here, SB is the size

of a flash block and CYCLE is the length of a cycle. In this

paper, we refer to the pair of (c, p) as the bandwidth

allocation token (BAT). By appropriately choosing a BAT

for a video stream to be admitted, we can provide a video

streaming service.

http://www.ijret.org/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org 108

Fig.2. The algorithm for determining a proper BAT with

respect to a video stream requesting its bandwidth

requirement of 𝒓𝒓𝒆𝒒𝒆𝒔𝒕𝒆𝒅

Fig. 2 shows the algorithm for the procedure GetBAT(),

which determines a BAT for a streaming request asking for

disk bandwidth of 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 . In Fig. 2, the value of𝐺𝐴𝑃𝑖 is

the difference between 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 and the bandwidth

guaranteed by a considered BAT. By choosing the smallest

𝐺𝐴𝑃𝑖 , we can reduce the amount of bandwidth

fragmentation, thereby increasing the utilization of SSD

bandwidth. The larger size of MaxCycle may diminish the

total amount of bandwidth fragmentations, while it increases

the memory requirements needed to temporarily cache the

data read from SSD storage. The value of MaxCycleis

chosen in the range of 6 to 10.

Suppose that a video stream s is admitted with BAT of (c,

p). After admission of streams s, we read the first c flash

blocks of s as soon as possible and begin its playback

immediately after the cycle wherein retrieval of c flash

blocks have been completed. From the playback starting

time, the data of admitted video streams are read in

accordance with the EDF priorities. For example, if a video

streams with (c, p) begins its playback from a 𝐶𝑦𝑐𝑙𝑒𝑖 , then

the next deadline of p flash blocks being read is the same as

the end of 𝐶𝑦𝑐𝑙𝑒𝑖+𝑝 . The proposed scheduling algorithm can

prevent undesirable hiccups of serviced video streams,

because the EDF algorithm can serve all the admitted tasks

until its utilization does not exceed 1. To admit a stream,

we use the algorithm of Fig. 3.

Figure.3. Algorithm for checking the possibility of the new

admission of a stream.

The procedure CheckAdmission() is used to check if a new

stream can be permitted for playback. In the produce, the

playback rate of the stream being admitted is presented by

𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 . In line 1, GetBAT() is called to get a BAT for

the stream. Then, its bandwidth utilization of the stream is

computed in line 2. With this bandwidth utilization, the

procedure computes total bandwidth utilization. If the total

utilization is not greater than 1, the stream is accepted for

playback as in lines 6-7. When computing the bandwidth

utilization in line 2, the value of n is the maximum number

of flash blocks that are read within the time interval of a

cycle. Since the data retrieval in SSD storage can be without

the support of mechanical components, we can obtain

constant number of blocks retrieved in a cycle.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a real-time scheduling method

used for the video streaming storage that is aimed at caching

hot-video segments in it. Since SSD storage has some

advantages of fast and uniform times of random reads, it is

easy to apply an EDF-style algorithm for delivering video

segments in accordance with real-time requirements. That is

different from the case where we perform real-time

scheduling the HDD storage. Because of the I/O overheads

of disk-arm seeking and rotational delay in HDDs, the EDF-

style algorithm is not feasible for scheduling I/O requests for

the disk-resident data.

To exploit the fast and uniform speed of random reads, our

proposed method divides time into a fixed size of cycles and

allocates disk bandwidth based on the size of a cycle. More

specifically, for a certain stream s we pick a scheduling

pattern that is made up of a scheduling period and the

number of flash blocks read in p cycles. By reading data

saved in SSD storage according to a given bandwidth

allocation tokenof (𝑏, 𝑝), we can support the data delivery

capacity of (𝑏 × 𝑏𝑙𝑜𝑐 𝑠𝑖𝑧𝑒)/(𝑝 × 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑧𝑒) . From the

bandwidth allocation tokenof (𝑏, 𝑝) , we compute its

bandwidth utilization value of u. Then, we add up the values

of bandwidth utilization with respect to all the already

serviced streams. By admitting a new stream s only while

the total bandwidth utilization is not greater than 1, the

proposed scheduling method easily prevents hiccups of

video streams. From this, we can grantee a quality video

streaming service.

Until now, we have not developed a well-designed

algorithm that can select hot video segments suitable for

being cached in SSD storage. In addition, we also need to

elaborate the proposed method so that it can efficiently work

with situations where not-periodic requests are frequently

issued. As future work, we need to solve those two

challenging things.

REFERENCES

[1] HTTP (DASH) - Part 1: Media presentation

description and segment formats.

[2] T. Stockhammer. “Dynamic Adaptive Streaming over

HTTP: Standards and Design Principles", In

http://www.ijret.org/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org 109

Proceedings of ACM Conf. on Multimedia Systems,

2011.

[3] Liao, X., Jin, H., Liu, Y., Ni, L. M., and Deng, D.

“Anysee: Scalable live streaming service based on

inter-overlay optimization”, In Proceedings of IEEE

INFOCOM, 2006.

[4] Liu, C., Bouazizi, I., and Gabbouj, M. “Rate adaptation

for adaptive http streaming", In Proceedings of the

ACM Conference on Multimedia Systems, 2011.

[5] Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., and

Zhang, X. “Inside the New Coolstreaming: Principles,

measurements and performance implications”, In

Proceedings of IEEE INFOCOM, 2008.

[6] D. Bae et al, “An Efficient Method for Record

Management in Flash Memory Environment,” Journal

of Systems Architecture, pp. 221-232, 2012.

[7] S. Lee and B. Moon, “Design of Flash-based DBMS:

An In-page Logging Approach“, In Proc. of ACM

SIGMOD, pp. 55-66, 2007.

[8] Jaeyoung Do, Donghui Zhang, Jignesh M. Patel, David

J. DeWitt, Jeffrey F. Naughton, and Alan Halverson,

“Turbo-charging DBMS Buffer Pool Using SSDs”, In

Proc. of ACM SIGMOD, 2011.

[9] Mustafa Ganim, George A. Mihaila,

BishwaranjanBhattacharjee, Kenneth A. Ross, and

Christian A. Lan, “SSD Bufferpool Extensions for

Database Systems”, In Proc. of VLDB, pp. 1435-1446,

2010.

[10] Acharya, S. and Smith, B. “Characterizing User

Access to Videos on the World Wide Web," In Proc. of

MMCN, 2000.

[11] E. Balafoutis, M. Paterkakis, and P. Triantallou,

“Clustered Scheduling Algorithms for Mixed-Media

Disk Workloads in a Multimedia Server". Cluster

Computing Journal, 6(1):75-86, 2003.

[12] AsyushGupta,Youngjae Kim, and BhuvanUrgaonkar,

“DFTL: A Flash Translation Layer Employing

Demand-based Selective Caching of Page-level

Address Mappings”, In Proceedings of ASPLOS,

2009.

[13] Edward Y. Chang and Hector Garcia-Molina.

“Effective Memory Use in a Media Server". In Proc. of

the Intl. Conference on Very Large Databases, 1997.

[14] Huang-Jen Chen and Thomas D.C. Little. “Storage

Allocation Policies for Time-dependent multimedia

data”, IEEE Trans. on Knowledge and Data

Engineering, 8(5):855-864, 1996.

[15] Ming-Syan Chen, Dilip D. Kandlur, and Philip S. Yu.

“Support for Fully Interactive Playout in a Disk-Array-

Based Video Server". In Proc. of the ACM

Multimedia, October 1994.

[16] Asit Dan and DinkarSitaram. “An Online Video

Placement Policy based on Bandwidth to Space Ratio

(BSR)". In Proc. of ACM SIGMOD, 1995.

[17] A. Ermedahl, H. Hansson, and M. Sjaodin. “Response-

Time Guarantees for ATM Networks". In Proc. of the

IEEE Real-Time Systems Symposium, 1997.

[18] O. Ertug, M. Kallahalla, and P. J. Varman. “Real-Time

Parallel Disk Scheduling for VBR Video Servers". In

Proc. of the Fifth Intl. Conference on Computer

Science and Informatics, February 2000.

[19] Sungchae Lim and Myoung Ho Kim. “Real-time Disk

Scanning for Timely Retrieval of Continuous Media

Objects". Information and Software Technology,

45(9):547-558, June 2003.

[20] R. Wijayaratne and N. Reddy. “Integrated QoS

Management for Disk I/O". In Proc. of the IEEE

Multimedia Systems, pages 487-492, June 1999.

BIOGRAPHIES

Sungchae Lim

He received the M.S. and Ph.D. degrees

in KAIST. He is currently an Assistant

Professor at Dongduk Women’s

University.

http://www.ijret.org/

