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Abstract 
Mounting evidence demonstrated that neuronal activity derived from functional magnetic resonance imaging (fMRI) relates to the 

underlying anatomical circuitry measured by diffusion tensor/spectrum imaging (DTI/DSI). However, exploring the relationship 

between functional connectivity (FC) and structural connectivity (SC) remains challengeable and thus has motivated a number of 

computational models to investigate the extent to which the dynamics depend on the topology. Nevertheless, most of the models 

are complex and difficult to treat analytically. In this paper, for simplicity, we utilize four network communication measures 

extracted from SC as well as polynomial curves fitting method to predict FC. Our results indicate that all of these measures 

predict FC via the nonlinear fitting method. Besides, compared with the linear method, the fitting value between predicted FC and 

empirical FC attains higher after applying nonlinear process on communication measures which may help to shed light on the 

function-structure relationship.  
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1. INTRODUCTION 

In order to fully characterize the human connectome and 

functionally connected networks, there emerges advances in 

DSI/DTI, fMRI, and related technologies. Usually, there are 

two kinds of connectivity related to human brain. The 

structural connectivity (SC) is derived from DTI/DSI and 

the functional connectivity (FC) is obtained by measuring 

the correlation of spontaneous Blood Oxygenation Level-

Dependent (BOLD) fluctuations [1-6]. It has been 

demonstrated that human brain dynamics relates to the 

underlying topology. To this end, a growing number of 

studies have focused on exploring the relationship between 

FC and SC by network modeling or neural mass modeling 

[7-12]. However, how FC relates to SC still remains an open 

question. There exists a problem that most of the 

computational models are too complex and difficult to treat 

analytically. 

 In our present study, for simplicity, we make use of four 

communication measures extracted from SC —  search 

information, path transitivity, shortest path length, and the 

number of shortest path steps — as well as polynomial 

curves fitting method to predict FC. Notably, it has been 

demonstrated that all of these four communication measures 

can predict the strength of functional connectivity among 

both connected and unconnected node pairs by linear 

regression [13]. On the basis of this, we carry out an 

extensive comparison of linear regression method and the 

nonlinear polynomial fitting method while predicting FC 

from SC. We conclude that the nonlinear curves fitting 

method performs better when the order of polynomial is 

appropriate. 

2. MATERIALS AND METHODS 

2.1 Database 

Two databases, one low-resolution including 66 regions of 

interest (ROIs), the other one includes 90 ROIs. 

The SC matrix of the 66-ROI dataset is based upon the work 

of [3]. Each element in the SC matrix represents the density 

with which two different brain regions are connected. The 

FC matrix was examined by measuring the corresponding 

fMRI BOLD signals obtained for each brain area during 

20min. Each value in the FC matrix denotes the functional 

connection between two node pairs [10]. 

The 90-ROI dataset is a dataset as described in [14]. The 

structural and diffusion MR volumes were parcellated into 

90 cerebral cortical areas after diffusion tractography 

processing [15]. Resting-state fMRI (rs-fMRI) was acquired 

with 180 samples. 10 samples at the beginning were 

discarded. Before rs-fMRI, the subjects were instructed to 

think of nothing in particular. Finally, the fiber strengths 

produced by the streamline tractography algorithm were 

resampled into a Gaussian distribution. Both FC and SC are 

averaged across the 8 individual participants.  

Note that all self-connections (diagonal elements in the FC 

matrix) are excluded. The resulting SC matrices and FC 

matrices in the above two databases are shown in Figure.1. 

Figure.1A shows SC matrix (left panel) and FC matrix (right 

panel) from 66-ROI database. Figure.1B shows SC matrix 

(left panel) and FC matrix (right panel) from 90-ROI 

database. 
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Figure.1. Two database.  

 

2.2 Communication Measures 

In this paper, we focus on four communication measures: 

shortest path length, the number of shortest path steps, 

search information and path transitivity [13]. 

The SC of a parcellation of the human cortex into N regions 

can be expressed as undirected weighted 

graph
 ,G V W

formed by a set of 

nodes
 1 2, , , nV v v v 

and a matrix of fiber density 

values
ijW w    with values in the range of [0,1],and 

with
0ijw 

for regions 
,i j

 that are not directly connected. 

Converting W into a matrix of edge lengths or 

distances
ijL l     (here calculated using the matrix 

transforms 1/L W ) allows identification of shortest paths, 

comprising lists of unique weighted edges, that span the 

minimum distance between each node pair. A shortest path 

length ( SPL ) can be described 

by
 , , ,s t si ij ktw w w   

from a source node s  to a target 

node t  and the corresponding nodes can be expressed 

by
 , , , , ,s t s i j k t  

. K  denotes the number of 

shortest path steps with s t K  
, and thus 

1s t K  
.  

Search information ( S ) quantifies the accessibility or 

―hiddenness‖ of a path linking a source node s  to a target 

node t  within the network by measuring the amount of 

knowledge or information to access the path. Assuming 

search information travels along the shortest path and given 

the lack of directionality in the SC matrix, the search 

information of bidirectional shortest–path s t   is defined 

as follows [13]: 
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Where 
(1)
i t   is the first element (weighted edge) of the path 

s t   and 
*
s t

 represents the sequence of nodes 

excluding the target, i.e., 
 * , , , ,s t s i j k  

. 
( )s tP    is 

the probability of taking the shortest path from s  to t . 

Path transitivity ( PT ) describes the density of local detours 

that are available along the shortest path, i.e., 
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Where 
( ) 1ikw 

 if 
0ikw 

 and 0 otherwise. The measure 

is independent of the directionality of the path and hence 

ensures
( ) ( )s t t sM M  

. 

 

3. RESULTS 

3.1 Prediction of FC Based on Four Single-

predictor Models 

In agreement with the previous study [13], all of these four 

communication measures predict FC. The capacity of every 

single-predictor was robust based on the shortest paths 

computed from SC after applying an inverse transform to 

convert weight to distance (see Table 1 and Table 2). 

Figure.2A and Figure.3A show the scatter plot of empirical 

FC versus the path transitivity and empirical FC versus the 

search information based on 66-ROI database and 90-ROI 

database, respectively, with red dots representing 

structurally connected pairs, and black dots representing 

structurally unconnected pairs. The result implies that FC 

among node pairs including structurally connected pairs and 

unconnected pairs are higher if the path transitivity is 

stronger or the search information is weaker.  

Ranking the capacity of these four single-predictor models 

with linear regression method, comprising the shortest path 

length (SPL), the number of shortest path steps (K), the 

search information (S) and the path transitivity (PT), the 

correlation between predicted FC and empirical FC is 

significant across two databases (see Table 1 and Table 2). 

The nonlinear polynomial fitting predictions with the path 

transitivity and the search information are shown in 
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Figure.2B and Figure.3B. The fitting between FC and 

empirical FC rises rapidly and then retains stable after a 

critical point across a range of polynomial orders. The 

curves shown on these scatter diagrams of Figure.2A and 

Figure.3A indicate the nonlinear fit (blue) at an appropriate 

polynomial order and linear fit (yellow). More details are 

shown in Figure.2 and Figure.3. 

 

 
Figure.2. Prediction of FC with path transitivity and search 

information on 66-ROI database. (A) The scatter plot of 

empirical FC versus the path transitivity and empirical FC 

versus the search information with red dots representing 

structurally connected pairs, and black dots representing 

structurally unconnected pairs. The yellow line indicates the 

linear fit, and the blue curve indicates the nonlinear fit at the 

third polynomial order. (B) The correlation between the 

empirical FC and predicted FC by the path transitivity and 

the search information varying with polynomial order.  

 

 
Figure.3. Prediction of FC with the path transitivity and the 

search information on 90-ROI database. (A) The scatter plot 

of empirical FC versus the path transitivity and empirical FC 

versus the search information with red dots representing 

structurally connected pairs, and black dots representing 

structurally unconnected pairs. The yellow line indicates the 

linear fit, and the blue curve indicates the nonlinear fit at the 

fourth polynomial order. (B) The correlation between the 

empirical FC and predicted FC by the path transitivity and 

the search information varying with polynomial order.  

 

Table 1 and Table 2 shows the correlation values between 

the empirical FC and predicted FC using four single-

predictor models with linear method and nonlinear method 

at an appropriate polynomial order computed for all pairs 

(Rall), only structurally connected pairs (Rcon), and only 

structurally unconnected pairs (Runcon). Assume both search 

information and path transitivity travel along the shortest 

path. All correlation values computed for all pairs (Rall), 

only structurally connected pairs (Rcon), and only structurally 

unconnected pairs (Runcon), were significant ( 0.001P  ). SPL 

denotes shortest path length; K represents the number of 

shortest path steps; S is search information; PT is path 

transitivity. 

Comparing the effectiveness of prediction with two 

methods, we can find that every single-predictor model with 

nonlinear polynomial fitting method shows better 

performance than with linear regression method among 

both-hemisphere (BH) prediction, right-hemisphere (RH) 

prediction and inter-hemisphere (IH) prediction. 

 

3.2 Prediction of FC Based on Multi-predictor 

Models 

A joint linear multi-predictor model comprising all four 

communication measures above presents higher capacity of 

predicting FC than each linear single-predictor model in line 

with the previous research [13] across two databases (Table 

1 and Table 2). Similarly, our results indicate that the joint 

nonlinear multi-predictor model shows better prediction 

than each nonlinear single-predictor model and even better 

performance than the joint linear multi-predictor model. 

Figrue.4 shows the patterns of predicted FC simulated by 

linear multi-predictor model and nonlinear multi-predictor 

model at a proper polynomial order. Figure.4A demonstrates 

empirical FC from 66-ROI database (left), the predicted FC 

simulated by linear multi-predictor model (middle) and the 

predicted FC simulated by nonlinear multi-predictor model 

at the seventh polynomial order (right). Figure.4B illustrates 

empirical FC from 90-ROI database (left), the predicted FC 

simulated by linear multi-predictor model (middle) and the 

predicted FC simulated by nonlinear multi-predictor model 

at the fourth polynomial order (right). 

The corresponding correlations between simulated FC and 

empirical FC of two databases are Rall = 0.4511 (linear 

regression model, 66-ROI database), Rall = 0.5283 

(nonlinear regression model, 66-ROI database), Rall = 

0.4296 (linear regression model, 90-ROI database) and Rall = 

0.4674 (nonlinear regression model, 90-ROI database). 
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Figure.4. Empirical FC and predicted FC derived from linear and nonlinear regression model across two databases. 

 

Table 1. The prediction of FC based on 66-ROI database using linear single-predictor and multi-predictor models as well as 

nonlinear single-predictor and multi-predictor models. 

  Linear Nonlinear 

 FC predictors BH RH IH BH RH IH 

SPL Log(SPL) 

Rall 0.1476 0.3163 0.1043 0.4285 0.5048 0.4255 

Rcon 0.5011 0.5081 0.5018 0.5545 0.6279 0.5160 

Runcon 0.0193 -0.0056 0.0066 0.1139 0.1203 0.2057 

K Log(K) 

Rall 0.3094 0.3908 0.2266 0.4276 0.5408 0.3544 

Rcon 0.4922 0.5008 0.5295 0.5261 0.5618 0.5303 

Runcon 0.0073 -0.0454 -0.0005 0.2172 0.2679 0.2380 

S Log(S) 

Rall 0.2854 0.3944 0.2034 0.4669 0.5292 0.4341 

Rcon 0.5357 0.5914 0.6146 0.4873 0.4952 0.6217 

Runcon 0.0347 0.0324 0.0140 0.2572 0.3220 0.2640 

PT PT 

Rall 0.2504 0.2873 0.1917 0.4506 0.4455 0.4865 

Rcon 0.3996 0.3051 0.5138 0.5151 0.4546 0.6201 

Runcon -0.1498 -0.1572 -0.1687 0.1683 0.0884 0.2322 

All measure 

predictors 
 

Rall 0.4511 0.5502 0.3951 0.5283 0.5890 0.5067 

Rcon 0.5442 0.5930 0.6401 0.6076 0.6320 0.6285 

Runcon 0.1143 0.1989 0.0911 0.2758 0.2795 0.3147 

 

Table 2. The prediction of FC based on 90-ROI database using linear single-predictor and multi-predictor models as well as 

nonlinear single-predictor and multi-predictor models. 

  
Linear Nonlinear 

 FC predictors BH RH IH BH RH IH 

SPL Log(SPL) 

Rall 0.3941 0.4693 0.3557 0.4511 0.5183 0.4144 

Rcon 0.5872 0.5904 0.5580 0.5990 0.6013 0.5679 

Runcon 0.0930 -0.0640 0.1265 0.0924 -0.0694 0.1737 

K Log(K) 

Rall 0.3094 0.3908 0.2266 0.4003 0.5576 0.2915 

Rcon 0.4922 0.5008 0.5295 0.5329 0.5886 0.5658 

Runcon 0.0073 -0.0454 -0.0005 0.1419 0.2536 0.1497 

S Log(S) 

Rall 0.2908 0.2920 0.2955 0.4396 0.5416 0.3668 

Rcon 0.5390 0.5705 0.4767 0.5708 0.6018 0.5000 

Runcon -0.0002 -0.1264 0.0734 0.1026 0.0986 0.1266 

PT PT 

Rall 0.1686 0.2514 0.1051 0.2151 0.3593 0.0782 

Rcon 0.0545 0.2805 -0.1090 0.1692 0.3498 -0.0179 

Runcon 0.0008 0.0543 0.0639 0.0253 0.1121 0.0255 

All measure 

predictors 
 

Rall 0.4296 0.4814 0.3953 0.4674 0.5439 0.4277 

Rcon 0.5701 0.5603 0.5533 0.6121 0.6116 0.5880 

Runcon 0.1599 0.0196 0.1608 0.1168 -0.0204 0.1572 
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4. DISCUSSION 

Since the mid 1990s, the dynamics of resting-state brain 

triggered much interest in the study of neuroscience. Several 

large-scale computational models were proposed to explore 

the relationship between the anatomical structure and the 

functional dynamics. Despite the difference between 

models, the model parameters were adjusted when the 

system operates at the critical point (i.e. the fitting between 

the empirical FC and simulated FC is optimal when the 

system operates at the edge of an instability) [16]. For 

simplicity, here four communication measures are extracted 

from SC in order to predict FC without looking for the 

instable point.  

We have demonstrated that each communication measure 

shows better capacity of predicting FC by means of 

nonlinear polynomial fitting model than linear regression 

model. A joint nonlinear multi-predictor model presents 

stronger prediction across two databases among structurally 

connected pairs, structurally unconnected pairs and all node 

pairs. Nevertheless, the capacity of predicting inter-

hemispheric links is weak relatively which may restrict the 

simulation of all node pairs accordingly. Making a thorough 

research on inter-hemispheric connections seems to be vital. 

Besides, we find there exists few structurally isolated 

vertices while show functional correlations with other 

vertices. The inaccuracy of DTI/DSI might lead to the 

existence of these points. Evidence has documented that 

there is an inherent limitation in determining long-range 

anatomical projections by diffusion MRI tractography [17].  

One of the great significances of the research on the 

structure-function relation is offering help for health and 

disease. Resting-state alterations have been found in 

Alzheimer’s disease (AD), schizophrenia, dementia and 

many other mental diseases which attract a mounting 

number of studies in functional and anatomical brain 

networks [18-20]. Our research probably help understand 

these challenges and questions in human disease. 
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