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  Abstract 
State of charge (SOC) is an important battery parameter which provides a good indication of the useful capacity that can be 

derived out of a battery system at any given point of time. Li-ion has become state of the art technology for commercial and 

aerospace applications due to the various advantages that they offer. For spacecrafts requiring long lifetime, SOC estimation is 

crucial for on-orbit as well as offline data analysis. On-orbit estimation of SOC should be carefully addressed, as this provides 

information on survivability of battery and also serves as input to Battery Management System (BMS). In addition, detailed offline 

data analysis of battery electrical characteristics, which indicate the SOC-Voltage relationship is important to assess the 

performance of the battery under various mission scenarios at both Beginning of life (BOL) and End of Life (EOL) of a spacecraft 

system. In this work, a hybrid SOC estimation method, incorporating coulomb counting and Unscented Kalman Filter (UKF) is 

used, to predict the BOL discharge behaviour of an 18650 commercial Li-ion cell at different temperatures and discharge rates. 

The experimental results are encouraging and the approach gives a prediction error of less than 10%. The study will serve as 

basis for life assessment of Li-ion cells and batteries used for GEO and LEO missions.  

 

Key Words: Li-ion, State of Charge, Unscented Kalman Filter etc… 

--------------------------------------------------------------------***----------------------------------------------------------------------

Nomenclature 

C t             Current Capacity at time„t‟ 

Cnom           Nominal Capacity 

CT                 Capacity at temperature „T‟at constant discharge current of C/10 A 

CId                Capacity at discharge current Id at constant temperature of 20°C 

z t             State of Charge (SOC) at time‟t‟ 

𝐳𝐤              Discrete state vector at time instant „k‟ 

𝐲𝐤               Discrete observation vector at time instant „k‟ 

R                Battery internal resistance  

𝑄𝑘        Process Noise 

𝑅𝑘       Measurement noise/Observation noise 

𝑥𝑘−1      Initial State  

𝑃𝑘−1
𝑥        Initial Covariance 

N       Number of Sigma points 

 𝑤0
 𝑚 

       Weight for mean for first sigma point 

 𝑤𝑖
 𝑚 

         Weight for mean for i = 1, 2,..., 2 N sigma points 

𝑤𝑖
 𝑐 

  Weight for co-variance for i = 1, 2,..., 2 N sigma points 

𝑥𝑘
−  Estimated State 

𝑃𝑘
𝑥−  Estimated Co-variance 

𝑦𝑘
−  Measurement Estimate 
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α, β, λ  Unscented Kalman Filter parameters 

K  Kalman Gain 

Ahout  Discharge Capacity 

--------------------------------------------------------------------***----------------------------------------------------------------------

1. INTRODUCTION    

Several kinds of batteries are currently being used in 

industry namely Silver-Zinc, lead-acid, Ni-MH, Ni-Cd and 

Li-ion. Li-ion technologies have replaced many of the 

earlier battery systems due to its higher working voltage, 

higher energy density, compactness, and lesser self-

discharge rates. They have been widely used in many fields 

like aviation, mobile communications, in laptops and of late 

have been the work-horse for spacecraft and launch vehicle 

technologies. Li-ion batteries can effectively reduce system 

mass in spacecrafts and can improve the payload capability 

of satellites.  

 

State of charge estimations have gained much importance 

for batteries and have become a fundamental challenge for 

battery use. It helps to assess how much capacity can still be 

derived out of a battery, under specified operational 

conditions. SOC estimation can be used to characterize a 

cell during development stage and also to assess battery life 

in various applications like automobile, electric vehicles and 

aerospace. An extension of this which leads to life 

prediction of battery or a cell is indeed a necessity for 

spacecraft system which needs to cater for 12 - 15 years. 

This has to be analyzed at design stage itself to decide upon 

a particular battery system for a mission. A well defined 

battery model forms the basis of SOC estimation. Once a 

battery model has been formulated, there are various 

approaches adopted in literature for SOC estimation. 

Accurate estimation of the SOC remains very complex 

because of parametric uncertainties and limitations in 

battery models [1]. 

 

Tremendous research has been carried out in this area and 

different approaches and models have been developed for 

SOC estimation. A few of them have been extended for life 

prediction. It is left to the user community to study the 

advantages and disadvantages of each of these approaches 

and make use of them based on the application for which 

they are put to use. In the beginning, electrochemical and 

electric circuit based models combined with voltage or 

resistance measurements (EIS based) were used for studies. 

Later, adaptive approaches like Kalman filter (KF), 

Artificial Neural networks (ANN) etc gained momentum 

due to better accuracy and simpler modeling compared to 

electro-chemical systems. Hybrid models like Coulomb 

Counting and Kalman filter, allow a globally optimal 

estimation performance, by combining any of the above 

approaches. They try to make the best use of the advantages 

of multiple estimating methods thus improving the 

prediction or estimation accuracy. Many adaptive and hybrid 

approaches can be applied even without complete 

knowledge of electrochemical reactions and hence have 

attracted many researchers in this field.  

 

In [2], an electrochemistry-based model of lithium-ion 

batteries is developed for reliable End of Discharge (EOD) 

voltage prediction. Modeling based on designed experiments 

which provide insights about the impact of discharge rates 

and battery types as well as their interactions on battery 

performance metrics is described in [3].  An artificial neural 

network based battery model along with UKF is used in [4] 

to estimate the SOC, based on the measured current and 

voltage. [5] proposes a particle filtering approach for the 

estimation of the battery state-of-charge. A generic data-

driven, model-free approach that integrates an artificial 

neural network with a dual extended Kalman filter (DEKF) 

algorithm for lithium-ion battery health management has 

been dealt in [6]. In [7], Datong Liu et al. proposed a 

complex Relevance Vector Machine (RVM) – Particle Filter 

(PF) approach in which Time interval between equal 

discharge voltage differences (TIEDVD) is used as health 

indicator. Since accuracy of prediction is important for 

satellite applications we planned to use a hybrid approach 

with UKF which is well known for non-linear system 

estimations and predictions.  

 

In this paper, a study of various approaches for estimation of 

SOC of batteries have been made and a preliminary work for 

prediction of the discharge characteristics of 18650 Li-ion 

commercial cells at various discharge rates and temperatures 

has been carried out. The method uses Unscented Kalman 

Filter (UKF) based on a simple battery model proposed in 

[8]. The approach is generic in nature and can be used for 

different Li-ion chemistries by changing the parametric 

constants of state and observation equations in UKF. The 

basic Coulomb Counting method is used as process model 

for SOC computation in UKF. Hence, the adaptive method 

used in this paper can be considered hybrid in nature. The 

predicted data has been compared with real time test data.  

 

2. THE COULOMB COUNTING- UKF 

FRAMEWORK  

2.1 Li-ion model 

The behavior of a cell or battery can be treated as a 

nonlinear system which changes continuously. Hence its 

characteristics can be modeled by state equations. A battery 

model based on discharge current rates and temperature is 

proposed in [8], eq (2) and (3) as these are the two major 

parameters which affect the battery capacity performance 

and in turn the SOC at a particular time instant.  

 

SOC is one of the most important parameters for cells and 

batteries. In general, the SOC, z (t) of a battery during 

discharge is defined as in eq (1).  C (t) is the current capacity 

and Cnom, nominal capacity, is the capacity specified by the 

manufacturer under standard conditions of test.  
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                        𝑧 𝑡 = 1 −  
𝐶 𝑡 

𝐶𝑛𝑜𝑚
                               (1)  

In this work, the most important parameters which affect the 

discharge capacity is taken into account namely temperature 

and discharge current or discharge rate. More capacity can 

be drawn from the cell as temperature increases and as the 

discharge rate increases, only lesser amount of the total 

capacity can be drawn from the cell/battery. The two effects 

are modeled by CT  and  CId. CT denotes the total amount of 

capacity that can be drawn from the cell or battery, when it 

is discharged at a constant discharge rate of C/10 at an 

arbitrary temperature „T’. CId is the total capacity that can be 

drawn from the battery when it is discharged at a room 

temperature of 20°C at Id discharge rate (current). Usually a 

second-order polynomial is used to describe or model the 

temperature variations and a polynomial of order four is 

used for discharge rate variations [7]. i.e.: where P = [p2, p1, 

p0] and Q = [q4, q3, q2, q1, q0] are coefficients of the two 

polynomials.  

 

    𝐶𝑇 = 𝑝2 𝑇
2 + 𝑝1 𝑇 + 𝑝0                                            (2)  

𝐶𝐼𝑑 = 𝑞4 (
𝐼𝑑

𝐶𝑛𝑜𝑚
 )4 + 𝑞3 (

𝐼𝑑
𝐶𝑛𝑜𝑚
 )3 +         𝑞2 (

𝐼𝑑
𝐶𝑛𝑜𝑚
 )2 +

        𝑞1(
𝐼𝑑

𝐶𝑛𝑜𝑚
 ) + 𝑞0                                                    (3) 

 

2.2 Methodology 

The following sub-sections detail the basic equations and 

algorithmic steps that have been adopted in this hybrid 

method and how UKF has been applied to predict voltage 

characteristics of the Li-ion cell. The charge characteristics 

have not been dealt with in this paper and shall be presented 

later. 

 

2.2.1 Coulomb Counting  

The Coulomb counting method is a simple method which 

uses integration of discharging current over time to estimate 

SOC, z (t). z (𝑡) at a particular instant is calculated from the 

discharging current, 𝐼 (𝑡), and the previous SOC value, z (𝑡 − 

1).  

                  𝑧  𝑡 =  𝑧  𝑡 −  1 +  
𝐼  𝑡 

𝐶𝑛𝑜𝑚  
.𝛥𝑡           (4) 

This method has limitations while used as a stand-alone 

method for SOC estimation. Several external factors like 

temperature and discharge current affect the accuracy of this 

method. Hence, we have combined coulomb counting 

method with UKF, by using it as process model in UKF, to 

predict the discharge characteristics of the Li-ion cell.  

 

2.2.2 Unscented Kalman Filter 

UKF is generally used for non-linear systems as accuracy of 

KF for state prediction of a system when it has a non-linear 

behavior is fairly poor. The Extended Kalman Filter (EKF) 

which is an extension of Kalman filter is a bit complex as it 

requires Jacobian matrices to be computed and is generally 

not preferred for highly non-linear systems. UKF is another 

extension of the KF which is known to outperform the KF 

and EKF [9] in terms of accuracy and robustness for 

nonlinear estimation. It provides faster convergence. The 

UKF is based on a more deterministic sampling technique 

called Unscented Transformation (UT) [9] and is more 

suitable for SOC estimation as battery systems have a highly 

nonlinear behaviour. UKF eliminates linearization and 

approximates the probability distribution instead of function. 

Fig 1 provides the UKF steps with associated equations. 
 
Process model: The process and observation models form 

the foundation of UKF. They  describe SOC, z (t) in terms 

of measured or observed  battery quantities like current; i (t), 

voltage; y (t), and temperature; T. SOC z (t) at time t is 

described in eq (5), where z(0) is the initial SOC, id (t) is the 

discharging current at time instant 𝑡, „ε‟ is a coefficient of 

proportion, which is a function of temperature T and current 

i. Eq (5) can be discretized into eq (7) when the discrete KF 

is used. ′Δt′ denotes the sampling interval at which the 

system is discretized. Equation (7) depicts the cell or battery 

process model. 

 𝑧 𝑡 =  𝑧 0 −    𝜀 𝑖,𝑇 𝑖𝑑(𝑡)/𝐶𝑛𝑜𝑚  𝑑𝑡         (5)
𝑡

0

 

                 𝜀  𝑖,𝑇 =
𝐶𝑛𝑜𝑚

𝐶𝐼𝑑
.
𝐶𝑛𝑜𝑚

𝐶𝑇
                             (6) 

 

 

Discretizing, 

𝑧𝑘+1 = 𝑔 𝑧𝑘 , 𝑖𝑘  
          =  𝑧𝑘 −  𝜀 𝑖𝑘 ,𝑇𝑘 Δ𝑡/𝐶𝑛𝑜𝑚   𝑖𝑘                     (7)   

 
Observation Model 
The observation model defines the cell or battery voltage in 

terms of discharge current, temperature, and SOC. Several 

models exist in literature describing the behaviour of SOC 

vs. Voltage. The measurement model used here which has 

been described in [10], combines several mathematical 

models like Sheperd model, Unnewehr universal model and 

Nernst model. The combined model containing the non-

linear parts is given in eq (8) 

 𝑦𝑘 = ℎ 𝑨, 𝑖𝑘 , 𝑧𝑘 =  𝐴0 −  𝑅𝑖𝑘 −
𝐴1

𝑧𝑘
− 𝐴2𝑧𝑘 +

                                      𝐴3 ln 𝑧𝑘 + 𝐴4  ln(1 − 𝑧𝑘)  (8) 

In eq (8), 𝑦𝑘  is the battery or cell voltage; 𝑖𝑘  is the discharge 

current, 𝑧𝑘  is the SOC of the battery with 𝑧𝑘  = 100% 

representing fully charged battery and 𝑧𝑘= 0% representing 

a fully discharged battery, R denotes the internal ohmic 

resistance of the battery, and A1 and A2 relates to the 

polarization resistance. A0, A3 and A4 are empirical constants 

of the model. A = [A0 R A1 A2 A3 A4] 
T
 is the parameter 

vector.  

 

Any measurement has errors associated with it. The current 

or voltage errors are absorbed by including noise terms to 

the process and observation models. The models after 

incorporating process (𝑄𝑘) and measurement noises (𝑅𝑘) are 

as given below, eq (9) & (10). 

 

 𝑧𝑘+1  = 𝑔 𝑧𝑘 , 𝑖𝑘 + 𝑄𝑘  

            = 𝑧𝑘 −  𝜀 𝑖𝑘 ,𝑇𝑘 Δ𝑡/𝐶𝑛𝑜𝑚   𝑖𝑘 + 𝑄𝑘               (9) 

 

 𝑦𝑘     = ℎ 𝑨, 𝑖𝑘 , 𝑧𝑘 + 𝑅𝑘  
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           = 𝐴0 −  𝑅𝑖𝑘 −
𝐴1

𝑧𝑘
− 𝐴2𝑧𝑘 + 𝐴3 ln 𝑧𝑘  

+ 𝐴4  ln(1 − 𝑧𝑘) + 𝑅𝑘           (10) 
 

 

Fig – 1: Unscented Kalman Filter Steps with Equations 

Model Parameters Determination 

The polynomial coefficient vectors P and Q in the process 

model can be determined using the least-squares method by 

using the end-of-discharge capacity values (Ahout) at 

different temperatures and discharge rates obtained from 

offline tests. As seen earlier, P and Q are model parameters 

which capture variations in cell/battery characteristics with 

respect to temperature and discharging rates. The parameter 

vector A in the measurement model is obtained by least 

square fit of typical SOC - Voltage discharge characteristics. 

Typically, this is done once for particular cell chemistry and 

their values can be estimated offline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig - 2: Flowchart of the Proposed Approach 

 

2.3 Proposed Approach 

Initially, offline computation of the parameter vectors P, Q 

and A is performed as indicated in the previous section. The 

state vector „z’ and measurement vector „y’ are computed 

using eq (7) and (8) at 20°C with a discharge current of 

C/10.  The parameters like discharge rate, Id(pred) and 

temperature, T(pred) at which the discharge characteristics 

need to be predicted are provided as inputs to the UKF 

algorithm. The parameter „ε‟ is calculated accordingly. 

Using the z and y computed from the previous step, UKF 

predicts the discharge behaviour at each discretized time 

step for the specified temperature, T(pred)  and discharge 

𝑥𝑘−1 =   𝑧𝑘−1  0  0  𝑇 

𝑃𝑘−1
𝑥 =   

𝑃𝑘−1 0 0
0 𝑄𝑘 0
0 0 𝑅𝑘

  

   

Initialize state and covariance,  for k = 1, 2,…∞   

 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒔𝒊𝒈𝒎𝒂 𝒑𝒐𝒊𝒏𝒕𝒔: 𝑺 =  𝑤𝑖,𝑋𝑖,, 𝑖 = 0,1…2𝑁)  

𝑺𝒊𝒈𝒎𝒂 𝑷𝒐𝒊𝒏𝒕𝒔:  𝑋0 =  𝑥 𝑘−1 

𝑋𝑖=  𝑥 𝑘−1 +    𝑁 + 𝜆 𝑃𝑘−1 , 𝑖 = 1,2,… ,𝑁 

𝑋𝑖=  𝑥 𝑘−1 −     𝑁 + 𝜆 𝑃𝑘−1 , 𝑖 = 𝐿 + 1,… ,2𝑁 

𝑾𝒆𝒊𝒈𝒉𝒕𝒔:  𝑤0

 𝑚 
=  

𝜆

 𝑁 + 𝜆 
 

 𝑤0
 𝑐 =  

𝜆

 𝑁 + 𝜆 
+ (1 − 𝛼2 + 𝛽) 

  𝑤𝑖
 𝑚 

= 𝑤𝑖
 𝑐 =  

1

2 𝑁 + 𝜆 
, 𝑖 = 1,2… . ,2𝑁 

Calculate sigma points & weights for mean and 

covariance 

 

𝑋𝑘/(𝑘−1) = ℎ 𝑋𝐾−1 ,𝑢𝑘  

𝑥𝑘
− =  𝑤𝑖

(𝑚)
𝑋 𝑖 ,𝑘

(𝑘−1) 

2𝑁

𝑖=0

 

𝑃𝑘
𝑥− =   𝑤𝑖

(𝑐)
 𝑋𝑖 ,𝑘

(𝑘−1) 
− 𝑥𝑘

−   𝑋𝑖 ,𝑘
(𝑘−1) 

− 𝑥𝑘
− 

𝑇2𝑁

𝑖=0

 

Time Update 

 Propagate sigma points through state model 

 Estimate State 

 Estimate covariance of estimated state 

𝑌𝑘/(𝑘−1) = 𝑔 𝑋𝐾−1 ,𝑢𝑘  

𝑦𝑘
− =  𝑤𝑖

(𝑚)
𝑌 𝑖 ,𝑘

(𝑘−1) 

2𝑁

𝑖=0

 

𝑃𝑘
𝑦−

=   𝑤𝑖
(𝑐)

 𝑌𝑖 ,𝑘
(𝑘−1) 

− 𝑦𝑘
−   𝑌𝑖 ,𝑘

(𝑘−1) 
− 𝑦𝑘

− 

𝑇2𝑁

𝑖=0

 

𝑃𝑘
𝑥𝑦

=   wi
(c)

 Xi,k
(k−1) 

− xk
−   Yi,k

(k−1) 
− yk

− 

T2N

i=0

 

𝐾𝑘 = 𝑃𝑘
𝑥𝑦

  𝑃𝑘
𝑦−
 
−1

 

𝑥 𝑘 = 𝑥𝑘
− + 𝐾𝑘 𝑦𝑘 −  𝑦𝑘

−  

𝑃𝑘
𝑥 = 𝑃𝑘

𝑥− − 𝐾𝑘  𝑃𝑘
𝑦−
𝐾𝑘
𝑇 

Measurement Update 

 Measurement Update 

 Measurement estimate 

 Estimate covariance of estimated 

measurement 

 Compute cross covariance 

 Compute Kalman gain 

 Update  state and covariance of update state 

Compute Voltage, y = f (z, R): eq (8) 

Apply UKF to predict SOC at different 

temperatures and discharge rates 

Compute K coefficients of parameter vector 

A by curve fitting of discharge curve at 

T=20°C, Id= C/10 rate: eq (8) 

 

Compute SOC, z = f (ε, C nom, Id): eq (7) 

Output  

 
State of Charge (SOC), z 

Discharge Voltage (V), y 

Input parameters 
Discharge current rate, Id 

Temperature, T  

Nominal capacity, C nom 

Least square solution: End of discharge 

capacity (Ahout) data at different temperatures 
and discharge rates 

Compute coefficients of P and Q: eq 2- 3 

Compute CT , CId and ε using eq 2- 4 
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current, Id(pred). Flow chart indicating the steps followed for 

the approach is shown in Fig 2. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

18650 Li-ion commercial cells were used for all 

experimental studies. The algorithm was implemented using 

MATLAB R2013a. The nominal capacity of the cells 

chosen for the study was 2.6Ah. As shown in Fig 2, P and Q 

parameters of the Li-ion cell model were found from End of 

Discharge (final Ahout) values at 20°C, 30°C and 10°C 

obtained from typical test data of 18650 commercial cells, 

by solving the matrix equations through least squares 

method. The discharge characteristics of the cells from 4.2V 

(100% SOC) to 3V(< 10% SOC) for a C/10A discharge 

current at a temperature of 20°C was taken as the basis for 

determining the parameters, of the parameter vector A, eq 

(8).  They were determined by curve fitting of the SOC - 

Voltage discharge characteristics at 20°C, C/10 rate.  

 

The model was validated by computing the SOC values and 

cell voltages at discretized time intervals for 20°C, C/10 rate 

and by comparing with the real time test data available. The 

discharge characteristics at different discharge currents 

(namely C/2 and C rates) and temperatures (namely 30°C 

and 10°C) were predicted by applying the UKF equations, 

with the discharge rate, Id (pred)  and temperature, T(pred) 

as the only input parameters. It was observed that the UKF 

parameter α controls the stability and smoothness of the 

discharge curve and β controls the extent of fall. In general, 

0≤ α ≤ 1, β ≥ 0, λ = (α
2
-1) N. Appropriate tuning of the 

parameters should be done for practical systems as the 

characteristics of noise is often unknown.  

 

The ohmic resistance was taken as a sweep parameter for the 

study and the discharge behaviour at different resistance 

values were obtained. It was observed that the real time and 

predicted data matched at the resistance values which were 

very close to the measured ohmic resistance of the cells 

used. The typical experimental results are depicted in Figs. 

3-6. Fig 7 shows the Ahout or discharge capacity, C (t) at 

different temperatures. C (t) is related to the SOC, z(t) as 

indicated in eq (1). The Mean Squared Errors (MSE) for 

SOC estimation was found to be of the order 10
-3

 to 10
-4

 for 

all cases. The MSE and the error percentage computed at 

higher temperature are a bit more than in other cases. This is 

because of higher error between the end-of-discharge (EOD) 

values of predicted and real time data. The SOC prediction 

errors are all within 2% except at 30°C (higher 

temperatures) which is about 5-6%. However, the error is 

<10% which is fairly reasonable for life prediction. This can 

further be fine tuned by tuning the α, β parameters in the 

UKF algorithm. The algorithm has been extended to 

simulate discharge characteristics of spacecraft battery 

(series – parallel connected Li-ion cells).  

 

The discharge characteristics during mission simulation 

ground test at variable discharge rates for spacecraft battery 

and the predicted behaviour using proposed approach is 

provided in Fig 8. It is observed that the prediction fairly 

matches the mission simulation test data. Also faster 

response of the algorithm to track changes in discharge rates 

is evident from the results. The voltage behaviour at EOD 

slightly deviates from the test data in all cases. This can be 

improved by incorporating the internal resistance variations 

with SOC. Here, a constant ohmic resistance has been used 

for the    entire discharge duration. 

 
Fig - 3: Comparison of Test data and Predicted 20°C, 1C 

Cell discharge characteristics 

 

 
Fig - 4: Comparison of Test data and Predicted 

20°C, C/2 Cell Discharge characteristics 

 

 
Fig - 5: Comparison of Test data and Predicted 30°C, C/2 Cell 

Discharge characteristics 
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Test data - 20deg, 1C discharge upto 3V
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Fig - 6: Comparison of Test data and Predicted 

10°C, C/2 Cell Discharge Characteristics 

 

 
Fig - 7: Cell Discharge Capacity (Ah out) at 10°C, 

20°C and 30°C for C/2 Discharge Rate 

 

 
     Fig - 8: Comparison of Mission Simulation Test and 

Predicted discharge behaviour for variable discharge 

rates – Spacecraft Battery 

 

4. CONCLUSION 

The hybrid approach which has been adopted in this paper is 

a simple and fairly accurate method which can form the 

baseline for life prediction studies for Li-ion cells/ batteries. 

Though it has been applied on an 18650 commercial Li-ion 

cell, the method is generic and can be applied to any Li-ion 

cell chemistry by changing the model parameters. Also the 

error percentage is considerably less and the prediction error 

is found to be < 10%.  

 

Further studies by incorporating the resistance into the state 

vector to compensate for SOC and aging related changes in 

the characteristics of the cell is planned to be carried out. 

This will improve the errors at EOD. The experimental 

study can be extended for predicting the EOL (End-of-life) 

discharge characteristics of Li-ion cells and batteries which 

are used in 12-15 years satellite missions at various depth of 

discharge (DoDs) ratios. Incorporation of accurate noise 

estimations can improve the algorithmic performance 

further. 
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