
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 295

A LOW-COST, REAL-TIME ALGORITHM FOR EMBEDDED DEVICES

BASED ON FREERTOS KERNEL

Van-Khanh Nguyen
1

1
Automation Department, College of Engineering Technology, Cantho University, Vietnam

vankhanh@ctu.edu.vn

Abstract
A low-cost, real-time methodology for embedded devices based on well-known open source kernel - freeRTOS is presented in this

study. The real-time algorithm designed consists of three main steps. Firstly, the algorithm is designed and evaluated by utilizing

Matlab/Simulink toolboxes. Secondly, the generic embedded C code is generated by Matlab program. Finally, freeRTOS Tasks

code is utilized based on C code generated to build and run on embedded targets. This real-time algorithm is demonstrated on a

two-wheeled self-balancing robot which is employed a fuzzy PID self-tuning controller. The designed controller is executed on a

famous ARM Cortex M4 core microcontroller STM32F407VTG. The experimental results show that algorithm designed operated

well on embedded systems. The tracking position and rotation angle response are so good with low steady error (i.e. 0.01 [m] and

less than 1.15 degrees, respectively) while stabilizing the two-wheeled at the upright. The real-time system designed is a low cost

methodology and suitable for embedded system designers.

Key Words: Open source, RTOS, embedded system, ARM Cortex and fuzzy PID controller.

--***--

1. INTRODUCTION

Real-time embedded systems are widely used for various

purposes such as aerospace, industrial and many other

fields. Real-time character is required to meet certain

deadlines at the right time. To achieve this purpose, real-

time operating system (RTOS) is utilized in embedded

system. There are a lot of available RTOSes such as

freeRTOS, uCOS, CMSIS-RTOS, Salvo RTOS,

ChibiOS/RT. Most of them are open source and admitted

by many famous semiconductor companies like TI, ST,

Atmel, etc. A lot of performance comparision among

RTOSes have published. Hrushit Shah and et al published

their studies about the comparison of three famous open

source RTOSes like RT-Linux, freeRTOS and eCOS based

on processors and requirements [1]. This research gives a

useful technical document which figures out some important

parameters used to choose a suitable RTOS for a specific

application. In addition, Douglas P. B. Renaux compared the

performance among RTOSes which were suited with

CMSIS-RTOS standard on two classes of RTOS:

commercial FOSS-Free and Open Source Software-RTOS

[2]. These results show that FOSS RTOS has a reasonable

time parameters although it is free of charge.

RTOS has also deployed in many applications on different

studies. A research published by Douglass in ultilzing the

CMSIS standard into the Internet of Things (IoTs) that

appealed many researchers [3]. This study shown that

CMSIS-RTOS is supported by many HAL drivers,

middlewares for utilizing into IoTs technologies. This can

reduce design time and bring product to market with

effective cost. Another research by Jorge Cabrera-Gasmez

[4] was utilized a real-time sailboat controller operated

based on ARM, SAM3X8E microcontroller.

On the other hand, many applications have been tending to

embedded hardware application in information technology

field. In fact, a lot of courses about embedded system

programming for beginners are taught in many universities

using MSP430 LaunchPad Value Line Development Kit

designed by Texas Instrument Corporations. It is an easy-to-

use microcontroller development board based on low-power

and low-cost MSP430G2x microcontroller [5]. In addition,

Thanh M.T and et al developed a tracking Pioneer P3-DX

robot used image processing algorithms combining with

ARCOS, an embedded operating system, run on Pioneer P3-

DX [6]. In this system, the camera integrated on the robot,

captured images and then sent to PC to identify objects and

sent command back to the robot for tracking objects. The

results shown that the robot can track objects well.

However, these real-time studies need a hardware platform

which is often expensive to develop applications.

Consequently, this study presents a new method which

employs an algorithm designed by Matlab embedded into a

real-time system hardware with low power, low cost and

easy to use. The hardware platform is designed based on 32-

bit ARM architecture employed an open source real-time

operating system, FreeRTOS, a reliable and stable operating

system for research and industry.

2. ALGORITHM

A fuzzy PID self-tunning controlled a two-wheeled self-

balancing robot is nominated for implementing the proposed

methodology. The body structure of robot is designed and

shown in Fig. 1. For controlling robot, an control algorithm

is developed as shown in Fig. 2. There are three major

control loops. The first loop Fuzzy PD1 is to use a fuzzy PD

controller to compute the tilt angle reference rɵ for Fuzzy

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 296

PD2 based on distance error. The second loop Fuzzy PD2 is

also to use a fuzzy PD controller to calculate apart of output

signal uy based on rɵ. The third loop is to use a self-tuning

PID controller to control rotation angle of robot by

calculating ux signal. The output uR and uL are figured out by

equations (1) and (2), respectively as below [8].

 uR=uy + ux (1)

 uL=uy - ux (2)

where uR, uL are output signals controlled right and left

motors of the robot.

 a) b)

Fig -1: Backside and (b) behind of two-wheeled self-

balancing robot, respectively.

3. IMPLEMENTATION

FreeRTOS is a powerful real-time operating system and

supports a lot of architectures consisting of Intel, ARM,

Atmel, PIC, etc. The objective of this work is to implement

the real-time algorithm to control two-wheeled that can

perform in real-time domain. Introduction about RTOS,

hardware platform overview, how to implement this OS to a

real-time hardware are described in the following.

3.1 Introduction real-time operating system

RTOS - Realtime Operating System is an operating system

designed for developing real-time embedded applications,

which process tasks as they come in with a small amount of

delay time. This delay time is called deadline time. In real-

time system, deadline time is an important parameter, so it

must be considered when designing a system [7]. Recently,

there are over 30 RTOSes which support a lot of

microcontroller families involving very small memory

footprint families.

There are two main advantages when designs an application

with RTOS. First, designers do not spend too much time to

study how interface with microcontroller peripheral

resources because they are integrated by developers. In fact,

developers always integrated almost supported

microcontroller family and peripheral drivers as much as

possible. Second, applications will be developed by task

based. This designed method is very effective with

complicated system and group working projects.

FreeRTOS is an RTOS designed by Real Time Engineer

Ltd. Its real-time kernel is a small and simple C-language.

Recently, freeRTOS has been distributing by GPL with

optional exception, and it has been ported to 35

microcontroller families [6]. The scheduler of freeRTOS can

be chosen between pre-emption or cooperation, which can

be configured by using freertosconfig.h file in programming.

When the scheduler is started, the task with the highest

priority will be executed first. If there are more than one

priority tasks, the scheduler will use round-robin algorithm

to schedule the running of these tasks which are same

priority.

PID self-tuning Controller

Fuzzy PD Controller

+

-

refx

+
-r

xu
+

-

ref
e

PID Controller
1k

2k

+
+

+
-

Ru

Lu

yu

Fuzzy PD Controller

Fuzzy PD Controller

Fuzzy PD1 Fuzzy PD2 Two-

wheeled self-

balancing

Robot

x


ML

MR

Fig -2: Control algorithm.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 297

3.1 Hardware platform

The microcontroller designed in this study has used the

famous STM32 family of 32-bit microcontroller based on

the ARM Cortex M4 microprocessor of STMicroelectronics.

The STM32F407VG is integrated floating point unit (FPU)

with pulse frequency up to 168 MHz and equipped with

real-time emulating and tracking. Additionally, it is also

built in 12-bit analog-to-digital converter (ADC) with high

speed, 7.2 MSPS in interleaved mode, 1 MB high speed

flash memory, six-encoder which are suitable for controlling

two-wheeled in real-time of low cost and low power

consumption. The systematic hardware diagram is shown in

Fig. 3.

The tilt angle of the robot is measured by MPU6050 module

which is a six axes gyro and accelerometer MEMs sensor.

Rotation angle and displacement are calculated based on the

moving distance of left and right wheels which a rotatory

encoder attached directly to the wheels. The speed of two

motors is controlled by Pulse Width Modulation (PWM)

technique, an effective method for controlling motor by

changing the width of the pulse, via motor driver circuits.

Tilt Angle Sensor

IMU-6050

GPIO I2C

RS232

PWM1 QEI1 PWM2QEI2

STM32F407VG

DC Motor Driver

(LMD18200)

DC Motor Driver

(LMD18200)

Left DC Motor
Quadrature

Encoder

Quadrature

Encoder
Right DC Motor

USB-RS232

Personal Computer

Fig -3: Systematic hardware diagram.

3.1 Two-wheeled Control Implementation

The control algorithm is designed by Matlab/Simulink

adhered to three following steps:

 Step one: designs algorithm using Matlab/Simulink.

Fig. 4 shows the structure of the Matlab/Simulink

program to implement algorithm proposed in this study.

It is seen from Fig. 4 that the algorithm designed

consists of two kind of blocks. The first block is Input

Block which receives data from inputs or others blocks

to calculate the output of the block. The second block is

Output Block which receives data from the output of

Input Blocks to compute the output of the algorithm. If

some blocks run independently with sample time, it will

be designed in one block. One RTOS task is designed

to run this kind of block when sample-time-dependent

tasks were finished to reduce the execution time of the

system. Some kind of this task can be involed updating

task, data communication task.

 Step two: Defines input/output signals for simulink

blocks which is generated into embedded C code. Fig.

5a is an example of defined input/output signals of the

Fuzzy PD1 block. This block has three inputs and two

outputs, so three input signals (TiltAngle,

POSFeedback and POSReference) and two output

signals (EnableSignal_B1 and TiltAngleError_B1) will

be defined. The Storage class property of signals must

be selected ExportedGlobal to generate signals to

global C variable as represented in Fig. 5b. This will

make easily in access signals in C code.

 Step three: Configures parameters of Matlab/Simulinks

to build an algorithm to embedded C language code. In

this step, three parameters must be configured. First,

there are some choices in Solver options like: Type,

Solver and Fixed-step size. It is noted that fixed-step

size should be chosen 0.01 for this study; however, this

value also depends on the specific application. Second,

system target file, ert.tlc, defines the rules to generate

embedded C code. Last but not least, the Generate code

only option must be checked to tell the generator only

generates C code.

Based on these steps, embedded C code is ready to

generate for employing to RTOS. In this example, the

generated embedded C code of input and output blocks

are contained in three folders as shown in Fig. 6.

As mentioned in the previous section, an

algorithm is designed into several blocks which are also

generated into C code separately. To run these codes on

embedded system, a freeRTOS program is utilized to

combine these codes to execute algorithm on embedded

system exactly. The C code of block is called by one

freeRTOS task which communicates with others by the

message. Based on Matlab/Simulink program designed,

there are three kind of tasks. First, tasks run the code of

input blocks which read all inputs, run the code and

send results for waiting tasks. The template of this task

is shown in Listing 1 below.

Listing 1.

static void BlockName(void *pvParameters){

 BlockName_initialize();

 for(; ;){

 //waiting for sampletime

vTaskSuspend(NULL);

//read all input

…

//run generated code

BlockName_step();

//send results to other task

 xQueueSendToBack(xQueue1,&r1,0);

 xQueueSendToBack(xQueue1,&r2,0);

 }

}

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 298

Second, tasks execute the code blocks which stand between

input and output blocks. This kind of task waits data from

other tasks before running their code and sending results to

waiting tasks. The template of this task is shown in Listing

2.

Listing 2.

static void BlockName(void *pvParameters){

 BlockName_initialize();

 for(; ;){

 //waiting for sampling time

vTaskSuspend(NULL);

//waiting for message

if(xQueueReceive(xQueue1,&m1,500))

 okf1=1;

 if(xQueueReceive(xQueue1,&m2,500)){

 okf2=1;

 }

//run generated code

if(okf1 && okf2){

 BlockName_step();

 //send messages to other tasks

 xQueueSendToBack(xQueue2,&r1,0);

 xQueueSendToBack(xQueue2,&r2,0);

}

 }

}

Third, the task calls the code of the output task which waited

data from other tasks to run their code and update control

signal to plant. There is only one output block, so freeRTOS

program also has only one this kind of task. The template of

this task is shown in Listing 3.

Listing 3.

static void BlockName(void *pvParameters){

 portTickType xLastWakeTime;

 xLastWakeTime = xTaskGetTickCount();

 BlockName_initialize();

 for(; ;){//sample time passed

 //resume all inputs tasks

vTaskResume(hTask1);

vTaskResume(hTask2);

vTaskResume(hTask3);

//waiting for messages

if(xQueueReceive(xQueue1,&m1,500)){

 okf1=1;

 }

 if(xQueueReceive(xQueue1,&m2,500)){

 okf2=1;

 }

 if(xQueueReceive(xQueue1,&m3,500)){

 okf3=1;

 }

//run generated code

if(okf1 && okf2 && okf3){

 BlockName_step();

 //send control signal to plant

}

TaskDelayUntil(10);

 }

}

Fig -4: Complete Matlab/Simulink algorithm.

 a) b)

Fig -5: (a) Defination of input/output signals; (b) Properties of signal. Fig -5: (a) Defination of input/output signals; (b) Properties of signal.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 299

Output task is also a periodic task which is executed

regularly each sampling time. This time is created by call

TaskDelayUntil() API function which can trigger task

execution starts on precise time. Noted that values pass into

this function must be equal with fixed-step value. In this

case, the sample time of the system, 0.01, is ten mili-

seconds or ten ticks of freeRTOS, so 10 is passed to

TaskDelayUntil() function.

The code designed are integrated to a RealView KeilC for

ARM project to build and run on an ARM Cotext M4

platform. The completed project is shown in Fig. 7.

Fig -6: Output folder of embedded C code.

Fig -7: The final realView KeilC project.

4. EXPERIMENT RESULTS

4.1 Sampling and execution time of algorithm

The sampling time is measured to validate that it is

generated exactly on the embedded systems. A 32-bit timer

of ARM Cortex is used to measure this time. The timer is

restarted when the code begins running with a counter value

cleared to zero. The counter value is read at the next

execution of the code. This value is transformed into time in

millisecond unit as illustrated in Fig. 8. It can be seen that

the sampling time is generated exactly with error is as small

as 0.001ms.

Not only sampling time is measured, the execution time of

the algorithm is also calculated to show how the power of

this microcontroller. Using the same measurement strategy,

the execution time of algorithm as shown in Fig. 9. From the

Fig -8: Sampling time of embedded system.

Fig -9: Execution time of algorithm.

figure can be seen that the whole time to execute algorithm

is less than one millisecond.

4.2 Responding of robot

This section validated that the algorithm designed is

successfully implemented in embedded systems. In this

demonstration, the robot is controlled to move to specific

position includes 0.0, 0.4, 0.1, -0.2 and 0.2 [m] sequentially

while try keeping rotation angle at 0 [rad] and balancing

robot at the up-right equilibrium. Fig. 10 shows that the

fuzzy PID self-tuning algorithm operated well on an

embedded system with the proposed method. The robot can

track to input reference signals. In detail, Fig. 10.b shows

that the robot can continuously follow the position reference

signal with 0.01[m], 1.5 [s], 0.015 [m] maximum steady

error, rising time and overshot, respectively. The tilt angle

steady error when the robot is stable at position set-point is

not exceeded 1 degree, and rotation angle of robot changed

continuously but limit in 1.15 degrees. Fig. 10d and Fig. 10e

show the reaction of uR and uL when the robot is tracking

reference signals.

5. CONCLUSIONS

A new method to implement real-time algorithm using a

well-known open sources freeRTOS in embedded system is

proposed in this study. This method facilitates researchers to

employ algorithms designed in Matlab, a powerful designed

tools, to embedded system by using FreeRTOS. The

experimental results show that the proposed method which

is implemented on two-wheeled robot archives fast response

with maxima delay time 1.5 seconds. The tilt angle steady

state error is less than 1 degree. The sampling time error is

as small as 0.001ms. These achievements are as good as

other works which used real-time hardware. This proposed

method is a low cost solution for embedded system and

suitable for fresh embedded designers.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 11 | Nov-2015, Available @ http://www.ijret.org 300

0 5 10 15 20 25 30 35 40

-0.1

-0.05

0

0.05

Time [second]

T
ilt

 a
n
g
le

 [
ra

d
ia

n
]

a)

0 5 10 15 20 25 30 35 40

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time [second]

P
o
s
it
io

n
 [

m
e
te

r]

position

refference

b)

0 5 10 15 20 25 30 35 40

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time [second]

R
o
ta

ti
o
n
 a

n
g
le

 [
ra

d
ia

n
]

c)

0 5 10 15 20 25 30 35 40

-20

-15

-10

-5

0

5

10

15

20

Time [second]

U
R

 [
v
o
lt
a
g
e
]

d)

0 5 10 15 20 25 30 35 40

-20

-15

-10

-5

0

5

10

15

20

Time [second]

U
L
 [

v
o
lt
a
g
e
)]

e)

ACKNOWLEDGEMENT

The author would like to express sincere thanks to Cantho

University for funding during research and also thanks for

Trong-Hieu Tran contributed in revising paper.

REFERENCES

[1]. Hrushit Shah, Rahil Shah, Udit Shah and Sanjay

Deshmukh, 2013. Performance Parameters of RTOSs;

Comparison of Open Source RTOSs and Benchmarking

Techniques. International Conference on Advances in

Technology and Engineering 101:1-6.

[2]. Renaux, D.P.B., 2014. Comparative Performance

Evaluation of CMSIS-RTOS. Brazilian Symposium on

Computing Systems Engineering: 126-131.

[3]. Renaux, D.P.B., Pottker, F., 2014. Applicability of the

CMSIS-RTOS Standard to the Internet of Things.

International Symposium on Object/Component-Oriented

Real-Time Distributed Computing: 284-291.

[4]. 4. Jorge C.G., Angel R.M., 2014. A Real-Time

Sailboat Controller Base don ChibiOS. Proceeding of the

7th International Robotic Sailing Conference: 77-84.

[5] TI Corporation, 2015. MSP430 LaunchPad Value Line

Development kit. Available: http://www.ti.com/tool/msp-

exp430g2. Accessed 8 September 2015.

[6] Wikipedia, 2015. FreeRTOS. Available:

https://en.wikipedia.org/wiki/FreeRTOS. Accessed 8

September 2015.

[7] FreeRTOS Real Time Engineers ltd., 2015. Available:

http://www.freertos.org/RTOS.html. Accessed 8 September

2015.

 [8] Thao Ng.G.M, Nghia D.H, Phuc Ng.H, 2010. A PID

backstepping controller for two-wheeled self-balancing

robot. Proceeding of International Forum on Stategic

Technology: 95-100.

BIOGRAPHIES

Van-Khanh Nguyen received a BE degree

from Can Tho University, Vietnam, a MSc

degree from Ho Chi Minh City University of

Technology, Vietnam, both in Electronic

Engineering in 2005, 2014, respectively. He

is currently is a lecturer of the College of

Engineering, Can Tho University, Vietnam

