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Abstract 

A numerical algorithm is presented for studying laminar convection flow and heat transfer over an isothermal vertical horizontal 

plate embedded in a saturated porous medium. By means of similarity transformation, the original nonlinear partial differential 

equations of flow are transformed to a pair of nonlinear ordinary differential equations. Subsequently they are reduced to a first 

order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for 

this numerical analysis in Matlab environment. Velocity and temperature profiles are illustrated graphically. Heat transfer 

parameters are derived.  
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---------------------------------------------------------------***---------------------------------------------------------------

List of Symbolsa1, a2 initial values eq (21) 

f   function defined in eq (13) 

g  gravitational acceleration, 9.81 m/s
2
 

K permeability of the fluid, dimensionless 

Nux  Nusselt number at x, dimensionless 

qw heat flux of the plate, W/m
2
 

Ra Rayleigh number, dimensionless 

T   temperature, K 

Tw   surface temperature, K 

T∞   free streams temperature, K 

u velocity component in x, m/s  

v  velocity component in y, m/s 

x  coordinate from the leading edge, m 

y  coordinate normal to plate, m 

z1, z2, z3, z4 variables, eq (18) 

                                                                                                          

Greek Symbols 

θ  function defined in eq (12), dimensionless 

β  coefficient of thermal expansion, 1/K 

δ  boundary layer thickness, m 

αa apparent thermal diffusivity, m
2
/s 

μf     dynamic viscosity, N.s/m
2
 

νf  kinematic viscosity, m
2
/s 

η   similarity variables, eq (14) 

ψ stream function, m
2
/s 

ρf  density, kg/m
3
 

 

1. INTRODUCTION 

There have been a number of studies on natural convection 

over an isothermal vertical plate in a porous medium due to 

its relevance to a variety of industrial applications and 

naturally occurring processes, such as heat insulation by 

fibrous materials, spreading  of  pollutants  and  convection  

in  the  earth’s  mantle,  storage of agricultural products such 

as fruits, vegetables and grains, ground  water  hydrology,  

disposal  of  wastes,  petroleum  reservoir engineering,  

mineral  extraction  and  oil  recovery  system,  recovery  of  

water  for  drinking and  irrigation,  salt  water  

encroachment  into  fresh  water  reservoirs,  in  biophysics-

life processes  such  as  flow  in  the  lungs  and  kidneys etc. 

 

The earliest analytical investigation in this regard was a 

similarity analysis of the boundary layer equations by P.  

Cheng and W. J.  Minkowycz, J.  [1]. The problem is also 

discussed by several authors [2-5]. The problem was 

discussed in several text books [6-10]. 

 

In the present numerical investigation, a simple accurate 

numerical simulation of laminar free-convection flow and 

heat transfer over an isothermal horizontal plate is 

developed. 

 

The paper is organized as follows: Mathematical model of 

the problem, its solution procedure, development of code in 

Matlab, interpretation of the results, comparison with  

Previous work. 

 

2. MATHEMATICAL MODEL 

We  consider  the  natural  convection  about  an isothermal 

vertical  impermeable  flat plate immersed in  a saturated  

porous  medium  with  constant  permeability  K. We 
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assume the natural convection flow to be steady, laminar, 

two-dimensional, having no dissipation, and the flow  

through  the  porous  medium  is governed  by  Darcy’s  law, 

with constant properties, including density, with one 

exception: the density difference 
    is to be 

considered since it is this density difference between the 

inside and the outside of the boundary layer that gives rise to 

buoyancy force and sustains flow, known in the literature as 

Boussinesq approximation. We take the direction along the 

plate to be x, and the direction normal to surface to be y, as 

shown in Fig 1. 

 

 
Fig. 1 Physical Model and its coordinate system 

 

The equations governing the flow are  
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The boundary conditions on the solution are: 

 

At y=0: v=0,   T=Tw                       

For large y: u→0, T→T∞                                                        4 

 

The continuity equation (1) is automatically satisfied 

through introduction of the stream function:  
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Eqs (2) and (3) can be written in terms of stream function:  
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From (6), we can write 
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From scale analysis, it can be shown that  
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And 
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                                        10 
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is Darcy-modified Rayleigh number. 

 

We expect that in the boundary layer, the stream function 

and temperature profiles are similar: 
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where η is the similarity solution given by   

 

 
y

x
Ra0 5.

                                                   14 

With the help of eqs (12) and (13), eqs (8) and (7) can be 

written as (with a prime denoting differentiation with 

respect to η)  

 

  f 
                                                       15 

and 

  



f

2                                                   16 

Hence the velocity boundary layer problem is reduced to an 

ordinary differential equation (15) and energy eq (3) is also 

reduced to an ordinary differential equation (16). This 

confirms the assumption that velocity and temperature 

profiles are similar. The appropriate boundary conditions (4) 

are now:   

 

y = 0: v = 0, T=Tw  i.e., at η = 0:  f = 0, θ = 1 

 

large y: u→0, T→T∞ i.e., η large:  f 0 ,  0  

                                                                           17 
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3. SOLUTION PROCEDURE 

Eqs (15) and (16) are simultaneous nonlinear ordinary 

differential equations for the velocity and temperature 

functions, f and θ. No analytical solution is known, so 

numerical integration is necessary. Values of f and θ at the 

surface of the plate (y = 0), and that of f and  far away 

from the surface (y → ∞) are known.  

 

 3.1 Reduction of Equations to First-order System 

This is done easily by defining new variables: 

z f1   

z z f2 1   
 

z3   

z z4 3   
                                                18 

Therefore from eqs (15) and (16), we get the following set 

of differential equations 
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      z z f z2 1 4
 

 z z3 4  
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
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with the following boundary conditions: 

 

z f1 0 0 0( ) ( ) 
 

z z f2 1 0( ) ( ) ( )       
 

z3 0 0 1( ) ( ) 
 

z3 0( ) ( )                                     20     
Eqs (15) and (16) are second-order each and are replaced by 

two first-order equations (21). 

 

3.2 Solution to Initial Value Problems 

To solve eqs (21), we denote the two unknown initial values 

by a1 and a2, the set of initial conditions is then: 

z f1 0 0 0( ) ( ) 
 

z z f a2 1 10 0 0( ) ( ) ( )    
 

z3 0 0 1( ) ( ) 
 

z z a4 3 20 0 0( ) ( ) ( )    
                21        

If eqs (19) are solved with adaptive Runge-Kutta method 

using the initial conditions in eq (21), the computed 

boundary values at 
  

 depend on the choice of a1 and 

a2 respectively. We express this dependence as  

 

z z f f a2 1 1 1( ) ( ) ( ) ( )       
 

z f a3 2 2( ) ( ) ( )   
                         22 

The correct choice of a1 and a2 yields the given boundary 

conditions at 
  

; that is, it satisfies the equations 

f a1 1 0( ) 
 

f a2 2 0( ) 
                                                     23 

These nonlinear equations can be solved by the Newton-

Raphson method. A value of 10 is fine for infinity, even if 

we integrate further nothing will change.  

 

3.3 Program Details 

This section describes a set of Matlab routines for the 

solution of eqs (19) along with the initial conditions (21). 

They are listed in Table 1. 

     

Table 1. A set of  Matlab routines used sequentially to solve 

Equations (24). 

 

Matlab 

code 

 

Brief Description 

 

 

deqs.m 

 

Defines the differential 

equations (19). 

 

incond.m 

 

Describes initial values for 

integration, a1 and a2 are guessed 

values, eq (21) 

 

runKut5.m 

 

Integrates as initial value 

problem using adaptive Runge-

Kutta method.  

 

residual.m 

 

Provides boundary residuals and 

approximate solutions. 

 

newtonraph

son.m 

 

Provides correct values a1 and a2 

using approximate solutions 

from  residual.m  

 

runKut5.m 

 

Again integrates eqs (19) using 

correct values of a1 and a2.  

 

The final output of the code runKut5.m gives the tabulated 

values of f , f for velocity profile, and  and   for 

temperature profiles as function of  η.  

 

4. INTERPRETATION OF THE RESULTS 

Physical quantities are related to the dimensionless functions 

f and  through eqs (12), (13) and (14). f and  are now 

known. 

 

4.1 Computed Values of the Parameters 

Some accurate initial values from this computation are listed 

in Table 2.  These theoretical computations are in good 

agreement with results published in literatures [10]. 
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Table 2. Computed values from eqs (15) & (1) 

η f  f      

0.00000 0.00000 1.00000 1.00000 -0.44390 

0.10000 0.09778 0.95565 0.95565 -0.44281 

0.56453 0.49467 0.75551 0.75551 -0.41263 

1.06139 0.82149 0.56527 0.56527 -0.34971 

1.58921 1.07474 0.40121 0.40121 -0.27178 

2.17789 1.26863 0.26537 0.26537 -0.19212 

2.81160 1.40304 0.16583 0.16583 -0.12561 

3.44239 1.48601 0.10208 0.10208 -0.07956 

4.03844 1.53462 0.06386 0.06386 -0.05070 

4.65045 1.56554 0.03914 0.03914 -0.03154 

5.29663 1.58523 0.02316 0.02316 -0.01895 

5.99060 1.59747 0.01305 0.01305 -0.01091 

6.74612 1.60476 0.00687 0.00687 -0.00596 

7.57896 1.60881 0.00325 0.00325 -0.00305 

8.50860 1.61079 0.00125 0.00125 -0.00144 

9.56051 1.61149 0.00023 0.00023 -0.00062 

10.00000 1.61154 0.00000 0.00000 -0.00043 

 

4.2 Dimensionless Stream Function and 

Temperature Profiles 

Variations of f and  obtained from the present computation 

are shown in Fig 2.  
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Fig. 2 Solutions of f and   

 

4.3 Comparison With Experiments 

Fig 3 compares the dimensionless  temperature profile θ, 

with the experiments of Evans and Plumb [11]. The 

agreement is excellent. 

  

 
Fig 3. Comparison of the computed dimensionless 

temperature profile with experimental data. 

4.4 Heat Transfer Parameters 

Besides the velocity and temperature distributions, it is often 

desirable to compute other physically important quantities 

associated with the convection flow.  

 

The heat transfer rate at the wall is given by 
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Hence, using eq (12) 
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From Table 2, we see that  

 

  
0

0 4439.
 

Hence,   

                               

Nu Rax  0 444
0 5. .

                                           26 

where, Nux is the local Nusselt number based on x. Fig 4 

illustrates the comparison of the correlation (26) with the 

experimental data of Evans and Plumb [11].  

 

The mean heat transfer rate is then given by using  

 

                                              27 

 

 
Fig 4. Comparison of the computed correlation with 

experimental data. 

 

Eqs (26) and (27) gives 

  

Nu RaL L 0888
0 5

.
.

                                      28 

where NuL is the mean Nusselt number based on the length 

of the plate, L and RaL is Darcy-modified Rayleigh number 

based on L. These empirical correlations are found in the 

text books [6-10].   

 

5. CONCLUSION 

In the present numerical simulation, laminar convection 

flow and heat transfer over an isothermal vertical horizontal 

plate embedded in a saturated porous medium is presented.  
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Details of the solution procedure of the nonlinear partial 

differential equations of flow are discussed. The computer 

codes are developed for this numerical analysis in Matlab 

environment. Velocity profile and  temperature profiles are 

computed using these codes. The computed and 

experimental velocity and temperature distributions are in 

very good agreement with results published in literatures. 

Heat transfer parameters are derived. A good agreement 

between the present results and the past indicates that the 

developed numerical simulation as an efficient and stable 

numerical scheme in natural convection. 
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