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Abstract 
A numerical algorithm is presented for studying laminar convection flow and heat transfer over a non-isothermal horizontal plate. 

plate temperature Tw varies with x in the following prescribed manner: 

 

T T Cxw

n 1  
 

where C and n are constants. By means of similarity transformation, the original nonlinear partial differential equations of flow 

are transformed to a pair of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and 

integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical 

analysis in Matlab environment. Velocity, and temperature profiles for various Prandtl number and n are illustrated graphically. 

Flow and heat transfer parameters are derived. The results of the present simulation are then compared with experimental data in 

literature with good agreement. 
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List of Symbols 

a1, a2 initial values eq (26) 

Cf,x friction coefficient, dimensionless 

f   function defined in eq (6) 

k    thermal conductivity, W/m.K 

Nux  Nusselt number at x, dimensionless 

Pr  Prandtl number, dimensionless 

qw heat flux of the plate, W/m
2
 

Rex Reynolds number at x, dimensionless 

T   temperature, K 

Tw   surface temperature, K 

T1   free streams temperature, K 

u velocity component in x, m/s 

u1 free stream velocity in x, m/s 

v  velocity component in y, m/s 

x  coordinate from the leading edge, m 

y  coordinate normal to plate, m 

z1, z2, z3, z4, z5 variables, eq (23) 

 

Greek Symbols 

θ  function defined in eq (18), dimensionless 


  coefficient of thermal expansion, 1/K 

δ  boundary layer thickness, m 

α thermal diffusivity, m
2
/s 

μ     dynamic viscosity, N.s/m
2
 

   kinematic viscosity, m
2
/s 

η   similarity variables, eq (7) 

τ   shear stress, N/m
2
 

τs   wall shear stress, N/m
2
 

ψ stream function, m
2
/s 

ρ  density, kg/m
3
 

ρ∞  free stream density, kg/m
3
 

 

1. INTRODUCTION 

There have been a number of studies on natural convection 

over an isothermal horizontal plate due to its relevance to a 

variety of industrial applications and naturally occurring 

processes, such as solar collectors, pipes, ducts, electronic 

packages, airfoils, turbine blades etc. The earliest analytical 

investigation was a similarity analysis of the boundary layer 

equations by Blasius [1]. Many other methods of attack are 

chronicled in the text books by Meksyn [2] and Rosenhead [3]. 

The problem is also discussed in several text books [4-11]. 

 

In the present numerical investigation, a simple accurate 

numerical simulation of laminar free-convection flow and heat 

transfer over an isothermal horizontal plate is developed. 

 

The paper is organized as follows: Mathematical model of the 

problem, its solution procedure, development of code in 

Matlab, interpretation of the results, comparison with 

experimental data. 
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2. MATHEMATICAL MODEL 

We consider the flow of a fluid of velocity u1 over a non-

isothermal horizontal plate where plate temperature Tw varies 

with x in the following prescribed manner: 

 

T T Cxw

n 1  
 

where C and n are constants. We assume the natural 

convection flow to be steady, laminar, two-dimensional, 

having no dissipation, and the fluid to be Newtonian with 

constant properties, including density, with one exception: the 

density difference 
    is to be considered since it is this 

density difference between the inside and the outside of the 

boundary layer that gives rise to buoyancy force and sustains 

flow, known in the literature as Boussinesq approximation. 

We take the direction along the plate to be x, and the direction 

normal to surface to be y, as shown in Fig 1. 

 

 
Fig. 1 Physical Model and its coordinate system 

 

The equations governing the flow are 
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The boundary conditions on the solution are: 

 

            At y=0: u=v=0,   T=Tw +Cx
n 

 

For large y: u→u1, T→T1                                                   4 

 

The continuity equation (1) is automatically satisfied through 

introduction of the stream function: 
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A similarity solution is possible if 
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where, η is the similarity variable 
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The basic form of the velocity profiles at different values of x, 

as shown in Fig 2, are all the same. 

 

 
Fig. 2 Velocity profiles at various positions in the boundary 

layer over a flat plate 

 

The velocity profiles at all points in the boundary layer are 

assumed as follows: 

 

u

u
function

y

1

 ( )


                                 8 

 

The boundary layer assumptions indicate that: 
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Therefore, the similar velocity profile assumptions given in 

Eq(8) can be rewritten as 
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Hence, the velocity profile can be uniquely determined by the 

similarity variable η, which depends on both x and y. 

 

From equations (5) through (7), we get 
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And 
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By differentiating the velocity components, it may also be 

shown that 
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Substituting these expressions into eq (2), we then obtain (with 

a prime denoting differentiation with respect to η) 

 

2 0   f ff
                                       16 

 

Hence the velocity boundary layer problem is reduced to an 

ordinary differential equation (16). This confirms the 

assumptions that velocity profiles are similar. The appropriate 

boundary conditions are: 

 

at y = 0: u = 0 i.e., at η = 0:   f 0  

 

at y = 0: v = 0 i.e., at η = 0: f = 0 

 

for large y: u→ u1 i.e., for large η:  f 1                 17 

 

To solve eq (3), we nondimensionlize the temperature 

according to the following 
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The assumptions that the temperature profiles are similar is 

equivalent to assuming that θ depends only on the similarity 

variable, η, because the thermal boundary layer thickness is 

also of the order 

x

xRe . 

 

 

 

 

 

The energy eq (3) can be written in terms of θ as (T1 is 

constant) 
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The boundary conditions are then 

 

              y=0: θ=0 

y large: θ→1                                                20 

 

Using the relations for the velocity components previously 

derived, eq (19) gives 
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After rearrangement, it becomes 

 

        n f fPr ( )
Pr

1
2

0
                 21 

 

with the following boundary conditions 

 

             η=0: θ=0 

η large: θ→1                                                  22 

 

Thus the energy eq (3) has been reduced to an ordinary 

differential equation (21). This confirms the assumptions that 

temperature velocity profiles are similar. 

 

3. SOLUTION PROCEDURE 

Eqs (16) and (21) are nonlinear ordinary differential equations 

for the velocity and temperature functions, f and θ, and are 

independent of of each other. Eq (16) is solved first and then 

eq (21). No analytic solution is known, so numerical 

integration is necessary. There are two unknown initial values 

at the wall. One must find the proper values of f ( )0 and 

 ( )0  which cause the velocity and temperature to their 

respective free stream values for large η. The Prandtl number, 

Pr and the exponent, n are parameters in the second case. 

 

3.1 Reduction of Equations to First-Order System 

This is done easily by defining new variables: 

 

z f1   
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z z f2 1   
 

z z z f3 2 1    
 

 

          z z z f ff z z3 2 1 1 3

1

2

1

2  
 

z4   
 

z z5 4   
 

 

        z z n z z z z5 4 2 4 1 51
2

 Pr ( )
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       23 

 

Therefore from eqs (16) and (21), we get the following set of 

differential equations 
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with the following boundary conditions: 

 

z f1 0 0 0( ) ( ) 
 

 

z z f2 10 0 0 0( ) ( ) ( )    
 

 

z z f2 1 1( ) ( ) ( )       
 

 

z4 0 0 0( ) ( ) 
 

 

                       
z4 1( ) ( )   

                  25 

 

Eq (16) is third-order and is replaced by three first-order 

equations, whereas eq (21) is second-order and is replaced 

with two first-order equations. 

 

3.2 Solution to Initial Value Problems 

To solve eqs (24), we denote the two unknown initial values 

by a1 and a2, the set of initial conditions is then: 

 

z f1 0 0 0( ) ( ) 
 

 

z z f2 10 0 0 0( ) ( ) ( )    
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z4 0 0 0( ) ( ) 
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           26 

 

If eqs (24) are solved with adaptive Runge-Kutta method using 

the initial conditions in eq (26), the computed boundary values 

at 
  

 depend on the choice of a1 and a2 respectively. We 

express this dependence as 
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The correct choice of a1 and a2 yields the given boundary 

conditions at 
  

; that is, it satisfies the equations 

 

                      
f a1 1 1( ) 

 
 

               
f a2 2 1( ) 

                                               28 

 

These nonlinear equations can be solved by the Newton-

Raphson method. A value of 6 is fine for infinity, even if we 

integrate further nothing will change. 

 

3.3 Program Details 

This section describes a set of Matlab routines for the solution 

of eqs (24) along with the boundary conditions (26). They are 

listed in Table 1. 

 

Table 1 A set of  Matlab routines used sequentially to solve 

Equations (24). 

Matlab 

code 

Brief Description 

 

deqs.m Defines the differential equations (24). 

incond.m Describes initial values for integration, a1 

and a2 are guessed values, eq (26) 

runKut5.m Integrates as initial value problem using 

adaptive Runge-Kutta method. 

 

residual.m Provides boundary residuals and 

approximate solutions. 

newtonraph

son.m 

Provides correct values a1 and a2 using 

approximate solutions from  residual.m 

runKut5.m Again integrates eqs (24) using correct 

values of a1 and a2. 

 

The final output of the code runKut5.m gives the tabulated 

values of f , f , f as function of  η for velocity profile, and 

 and   as function of  η for various values of Prandtl 

number and n. 
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4. INTERPRETATION OF THE RESULTS 

4.1 Dimensionless Velocity and Temperature Profiles 

Physical quantities are related to the dimensionless functions 

f and  through eqs (7), (11), (12) and (18). f and  are now 

known. The complete numerical solution of eq (24) for 

velocity profile is given in Table 2. From this we can find all 

the flow parameters of interest to flat plate. 

 

Table 2 Computed values of   f f and f, ,  

η f  f  f  
0 0 0 0.3326 

0.1000 0.0017 0.0333 0.3326 

0.7064 0.0829 0.2344 0.3293 

1.3108 0.2839 0.4293 0.3125 

1.9050 0.5923 0.6049 0.2751 

2.4914 0.9913 0.7504 0.2185 

3.0892 1.4750 0.8611 0.1514 

3.5750 1.9091 0.9220 0.1004 

4.0103 2.3187 0.9573 0.0634 

4.4487 2.7436 0.9788 0.0364 

4.8572 3.1459 0.9900 0.0200 

5.2529 3.5390 0.9959 0.0103 

5.6481 3.9332 0.9988 0.0049 

6.0000 4.2849 1.0000 0.0024 

 

Fig 3 shows a plot of   f f and f, , and Fig 4 

compares of the profile f with the experiments of Liepmann 

[12]. The agreement is excellent. 
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Fig. 4 Comparison of f with experiments of Liepman 

 

Some computed values of 





 0are given in Table 3 and some 

typical variations of 





 0  with n for various values of Pr 

obtained from the code is shown in Fig 5. 

 

.Table 3 Computed values of 
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0.00 0.2927 0.7281 1.0517 

0.25 0.3569 0.8811 1.2720 

0.50 0.4059 0.9979 1.4402 

0.75 0.4460 1.0937 1.5783 

1.00 0.4803 1.1757 1.6965 

1.25 0.5150 1.2480 1.8006 

1.50 0.5376 1.3129 1.8941 
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Fig 5 Variation of 
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 0with η for various values of Pr. 
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Variations of θ with η for various values of Pr with exponent, 

n as parameter obtained from the code are shown in Fig 6a, 6b 

and 6c. 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





n=0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.75

Pr=0.70

 
Fig. 6a Solution of θ for Pr = 0.70 
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Fig. 6b Solution of θ for Pr = 10 
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Fig. 6c Solution of θ for Pr = 30 

 

4.2 Flow and Heat Transfer Parameters 

Besides the velocity and temperature distributions, it is often 

desirable to compute other physically important quantities (for 

example, shear stress, drag, heat-transfer-rate) associated with 

the convection flow. 

 

The boundary layer thickness,  δ,  is defined as the value of y 

at which u=0.99u1. Fig 5 shows that u=0.99u1, i.e., f =0.99 

when 
  5

. From (7) 
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From eq (14), wall shear stress may be expressed as 
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Hence from Table 1 
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The local friction coefficient is then 
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The heat transfer rate at the wall is given by 
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Hence, using eq (18) 
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i.e., 
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From (34), the heat flux qw can be written as 
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For given values of Pr and n, 





 0 is fixed. So, it is evident 

from eq (36) that the heat flux from the plate will be uniform 

when n=0.5. 

 

5. CONCLUSION 

In the present numerical simulation, laminar convection flow 

and heat transfer over a non isothermal horizontal plate is 

presented.  Details of the solution procedure of the nonlinear 

partial differential equations of flow are discussed. The 

computer codes are developed for this numerical analysis in 

Matlab environment. Velocity profile, and  temperature 

profiles for Prandtl numbers of 0.7, 10.0 and 30.0  with 

exponent n= 0, 0.025, 0.50, 0.75, 1.0, 1.25 and 1.50 are 

computed using these codes. The computed and experimental 

velocity and temperature distributions are in very good 

agreement with results published in literatures. Flow and heat 

transfer parameters (giving physically important quantities 

such as shear stress, drag, heat-transfer-rate) are derived. A 

good agreement between the present results and the past 

indicates that the developed numerical simulation as an 

efficient and stable numerical scheme in natural convection. 
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