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Abstract 
In the present paper numerical discusses a theoretical model for instability phenomenon in double phase flow through 

homogeneous porous medium. Relation between relative permeability and saturation has been considered based on earlier 

experiment. A governing nonlinear partial differential equation is solved by collocation method with cubic B-splines. To obtain 

the scheme of the equation the nonlinear term is approximated by Taylor series which leads to tridiagonal system and has been 

solved by well-known Thomas Algorithm. The Numerical solution is obtained by using MATLAB coding. 
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1. INTRODUCTION 

In oil recovery technology it is common practice to inject 

water into the oil field at certain spots in an attempt to drive 

oil to other spots for pumping [1]. When fluid is displaced 

by a lesser viscous fluid in porous media due to the 

injection, instead of regular displacement of whole front, 

protuberance takes place and shoot the medium at relatively 

high speed. This phenomenon is called fingering or 

instability. 

 

Many researchers discussed this phenomenon 

analytically/numerically with different point of view. Verma 

[2] examined fingering behavior by statistical viewpoints in 

immiscible displacement through heterogeneous porous 

media with assumption of constant mean pressure of 

injected fluid and native fluid. He obtained the analytical 

solution of the problem by analytical method. Scheidegger 

[3] neglected the size and shape of individual fingers and 

considered only the average cross sectional area of fingers 

occupied in porous media. Scheidegger and Johnson [4] 

analyzed the growth of instabilities in homogeneous porous 

media without capillary pressure. Some of the researchers 

analyzed the phenomenon with numerical method. Recently 

Pradhan et. all [5] discussed the numerical solution of the 

phenomenon by Finite Element Technique. Borana et. all [6] 

obtained the numerical solution of the instability 

phenomenon using Crank-Nicolson Finite Difference 

Method. They considered the linear relationship between 

relative permeability of the injecting fluid and saturation of 

injecting fluid. 

 

In the present paper problem of fingering in homogeneous 

porous medium with capillary pressure from the statistical 

view point has been discussed. Homogeneous porous matrix 

has been considered for analysis of the problem and 

assumed that the Darcy-like formulation is sufficient for the 

flow equations. Specific relation between relative 

permeability and phase saturation have been considered 

from the experiment based analysis. The mathematical 

formulation of the problem yields a non-linear second order 

time dependent partial differential equation which has been 

solved by applying B-spline finite element method with 

specific initial and boundary conditions. The graphical 

representation of the solution is given as graph of saturation 

of injected fluid verses time and saturation of injected fluid 

verses distance. 

 

2. STATEMENT OF THE PROBLEM 

Consider a uniform injection of less viscous fluid into a 

more viscous fluid in a saturated homogeneous porous 

medium with length L. Here injected fluid shoots the native 

fluid and protuberances takes place, this develops fingers at 

the initial boundary x = 0 (x is measured in the displacement 

direction).  Further, at the initial boundary, it is assumed that 

the complete saturation exist. The problem is to determine 

the equation of saturation describing the instability 

phenomenon which is shown in Fig.-1. 

 

 
Fig.-1: Instability Phenomenon 

 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

By Darcy’s law the velocity of injected fluid  iv and native 

fluid  nv  can be expressed as [7] 
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where k is the permeability of porous medium, 
ik and 

nk   

are relative permeabilities of injected fluid and native fluid 

ip and
np are pressures,

i and
n  are constant kinematic 

viscosities of native fluid and injected fluid respectively. 

 

Equations of conservation of mass for two immiscible fluids 

are given by 

 

0i iS v

t x

 

 
 

,               (3) 

 

0n nS v

t x

 

 
 

,           (4) 

 

where   is the porosity of the medium and 
iS , 

nS  are 

saturation of injected and native fluid respectively. 

 

By definition of phase saturation, the sum of saturations is 

equal to 1. i.e. 

 

1i nS S  .           (5) 

 

Consider the following experiment based relations [8] for 

relative permeability 

 
a

i ik S  ,         (6a) 

 

 1
bb

n n ik S S   ,        (6b) 

 

where 1 , 3a b  . 

 

Capillary pressure 
cp is defined as the difference between 

pressures 
np and 

ip of two immiscible fluids, i.e. 

 

c n ip p p  .           (7) 

 

Hence, capillary pressure gradient relates the pressure 

gradient of 
np and

ip . 

 

c n ip p p

x x x

  
 

  
.           (8) 

 

Substituting the value of ip

x




from equation (8) into the 

equation (1), we get 

 

i n c

i
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Mehta [9] suggested the following linear relationship 

between capillary pressure and displacing fluid. 

 

c ip S                       (10a) 

 

where   is proportionality constant. 

 

If the flow takes place in x direction only, capillary pressure 

gradient may be written as 

 

c ip S

x x


 
 

 
                    (10b) 

 

Using equation (9) and (2) in equations (3) and (4) 

respectively, we obtain 
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Combining equation (11) and (12) and using equation (5), 

we have 

 

0i n n i c

i n i
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      (13) 

 

Integrating equation (13) with respect to x gives 
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where K
is a constant of integration. 

 

i.e. 
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         (15) 

 

Hence equation (11) takes the form 
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We can write the pressure of native fluid 
np  as 

 

2 2

i n i n

n

p p p p
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Thus using mean pressure 
2

i np p
P


 and equation (7) in 

equation (17), pressure of native fluid can be expressed as 

 

2

c

n

p
p P           (18) 

 

Here we note that the mean pressure is constant [2] and so 

hence 

 

1

2

n cp p

x x

 


 
         (19) 

 

Substituting the value of  np

x




 from the equation (19) into 

the equation (14) gives value of integration constant K
as 

 

1

2
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Substituting the value of K
 from the equation (20) into the 

equation (16) gives 

 

1
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2
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Using the linear relation between capillary pressure and 

saturation of injected fluid, equation (21) may be written as 

 

1
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2
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From equation (6a) and (10b), equation (22) takes the form 

 

2
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Suitable boundary and initial conditions are taken as 

 

  00, 0 0i iS t S at x and t            (24a) 

 

 , 0i

iL

S
L t S at x L and t

x


  


    (24b) 

 

  0,0 0 0iS x S at t and x          (25) 

 

Equation (23) the governing equation describing instability 

phenomenon in double phase flow through porous media 

together with boundary and initial condition in equation 

(24a), (24b) and (25) respectively. 

 

 

 

Introduce the following dimensionless variables 

 

2
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where 0 1X  . 

 

Then the dimensionless form of the equation (23) is given 

by 
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The boundary and initial conditions in the form of 

dimensionless variables are as under: 

 

   00, 0i iS T S T        (28a) 
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S
T S T

X


 
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      (28b) 

 

  0,0 0 1iS X S X           (29) 

 

The condition (28a) and (28b) represents saturation of 

injected fluid at 0X  and at x L , condition (29) 

represents initial saturation of injected fluid. For simplicity 

we replace 
iS  by S. 

 

4. METHOD OF NUMERICAL SOLUTION 

The interval [0,1] is divided into N elements with equal 

length X h   by the knots 
iX  such that  

0 1 20 ...... 1.NX X X X       Cubic  B-Splines [10] 

are defined by 
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where m = -1, 0, 1….,N 

 

Then the set of cubic B-splines  
1

1

N

m m





constitutes a basis 

for the functions defined on [0, 1] and the approximate 

solution S(X, T) on [0, 1] to the exact solution of the 

problem is written as 

 

     
1

1

,
N

m m

m

S X T T X 




         (30) 

 



IJRET: International Journal of Research in Engineering and Technology         eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 04 Issue: 08 | August-2015, Available @ http://www.ijret.org                                                                            18 

where  m T are time dependent unknowns parameters 

which are to be determined at each time level. 

 

By definition of cubic B-splines it is evident that each spline 

covers four consecutive subintervals so that each subinterval 

covered by four consecutive cubic B-splines. Therefore, at 

the node
mX , the value of unknown variable 

mS and its first 

and second order derivatives with respect to the space 

variable can be related by
1m 
, ,m 1m 

. 
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Rewriting equation (27) into the simple form 

 

 
21a a

T XX XS S S aS S          (32) 

 

To solve the equation (32), discretizing the time derivative 

using forward difference formula and applying  -weighted 

 0 1   scheme to the space derivative the equation 
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where T is time step and  n and n + 1 denote the 

successive time levels,  is obtained. 

 

Letting  = ½, equation (33) may be written as 
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Using Taylor series the nonlinear terms in equation (34) are 

linearized by 
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For the sake of simplicity we use the notations
1T ,

2T , 
3T for 

' '', ,m m mS S S  , respectively, at nth time step. 
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Using equations (35) and (36) in equation (34) and 

simplifying, we get 
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Equation (37) represents the recurrence relation at
mX , 

where '

mX s  are collocation points with m = 0, 1, 2,…., N. 

 

5. RESULTS AND DISCUSIONS 

The Equation (37) gives the linear system of N + 1 

equations in N + 3 unknowns. After applying two boundary 

conditions given in equations (27a) and (27b) two unknowns 

are eliminated and hence the system reduced to N + 1 

equations in N + 1 unknowns. Also due to the cubic spline 

functions system (37) is tridiagonal and it can be easily 

solved by a well-known Thomas Algorithm. To compute 

numerical results h = 0.001 and 0.01T    are taken and 

suitable boundary conditions
0 1iS  , 0iLS   and initial 

condition 0

XS e are considered.  Equation (27) together 

with boundary conditions (28a), (28b) and initial condition 

(29) is recursively solved for fixed value of a. Numerical 

values of saturation of injecting fluid are presented in Table 

1- 3 for  a = 1 -  3 respectively. Fig. 2 - 4 show the graphical 

representation of the saturation for various dimensionless 

time and Fig. 5 – 7 represent the saturation for 

dimensionless distance. From Fig. 2 - 4 saturation of 

injected fluid decreases with distance and from Fig. 5 - 7 

saturation of injected fluid increases with time. 

 

Table- 1: Saturation of injected fluid when a = 1 

X  / T 0.2000 0.4000 0.6000 0.8000 1.0000 

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1000 0.9496 0.9646 0.9763 0.9847 0.9903 

0.2000 0.8973 0.9286 0.9525 0.9694 0.9807 

0.3000 0.8440 0.8927 0.9292 0.9547 0.9715 

0.4000 0.7906 0.8577 0.9070 0.9408 0.9630 
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0.5000 0.7387 0.8248 0.8865 0.9282 0.9552 

0.6000 0.6902 0.7951 0.8685 0.9173 0.9485 

0.7000 0.6476 0.7700 0.8536 0.9083 0.9431 

0.8000 0.6138 0.7509 0.8425 0.9017 0.9391 

0.9000 0.5920 0.7388 0.8356 0.8976 0.9367 

1.0000 0.5844 0.7347 0.8333 0.8962 0.9358 

 

Table- 2: Saturation of injected fluid when a = 2 

X  \   T 0.2000 0.4000 0.6000 0.8000 1.0000 

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1000 0.9702 0.9786 0.9852 0.9902 0.9938 

0.2000 0.9369 0.9556 0.9697 0.9803 0.9875 

0.3000 0.8998 0.9310 0.9539 0.9704 0.9814 

0.4000 0.8586 0.9053 0.9381 0.9609 0.9757 

0.5000 0.8131 0.8788 0.9228 0.9520 0.9704 

0.6000 0.7634 0.8526 0.9088 0.9440 0.9657 

0.7000 0.7102 0.8281 0.8966 0.9374 0.9619 

0.8000 0.6567 0.8076 0.8872 0.9324 0.9591 

0.9000 0.6119 0.7936 0.8812 0.9292 0.9573 

1.0000 0.5931 0.7887 0.8791 0.9282 0.9567 

 

Table- 3: Saturation of injected fluid when a = 3 

X  \   T 0.2000 0.4000 0.6000 0.8000 1.0000 

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1000 0.9839 0.9890 0.9926 0.9952 0.9970 

0.2000 0.9654 0.9770 0.9848 0.9904 0.9940 

0.3000 0.9443 0.9640 0.9769 0.9856 0.9911 

0.4000 0.9201 0.9502 0.9689 0.9809 0.9883 

0.5000 0.8923 0.9359 0.9612 0.9765 0.9858 

0.6000 0.8603 0.9215 0.9540 0.9726 0.9835 

0.7000 0.8236 0.9080 0.9478 0.9693 0.9817 

0.8000 0.7821 0.8965 0.9430 0.9669 0.9803 

0.9000 0.7409 0.8886 0.9399 0.9653 0.9795 

1.0000 0.7203 0.8858 0.9389 0.9648 0.9792 

 

 
Fig- 2: Saturation of injected fluid for various dimensionless 

times when a = 1 

 
Fig- 3: Saturation of injected fluid for various dimensionless 

times when a = 2 

 

 
Fig- 4: Saturation of injected fluid for various dimensionless 

times when a = 3 

 

 
Fig- 5: Saturation of injected fluid for various dimensionless 

distances when a = 1 
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Fig- 6: Saturation of injected fluid for various dimensionless 

distances when a = 2 

 

 
Fig- 7: Saturation of injected fluid for various dimensionless 

distances when a = 3 

 

6. CONCLUSION 

In the present paper one dimensional second order time 

dependent partial differential equation arising in instability 

phenomenon has been solved by Cubic B-spline Collocation 

method. This method can equally apply for solving higher 

order partial differential equations. Cubic Splines provides 

second order smooth solution. Saturation of injected fluid 

decreases with distance and increases with time. Further, it 

can be concluded that for any fixed distance and fixed time, 

the saturation of injected fluid increases by increasing value 

of a.  This fact is consistent and hence the numerical results 

resemble the physical phenomenon of the problem. 
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