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Abstract 
A reliability-based design approach using sensitivity analysis is presented for the selection of standard steel beams subjected to 

concentrated and or distributed loads, assuming lognormal probability density function. Serviceability criteria of bending stress, 

transverse deflection, and web maximum shear stress are considered. The load, strength, and geometric parameters are 

considered to be log normal in distribution. Equations are developed for the coefficients of variation for the mentioned 

serviceability criteria so as to determine design reliability. Deterministic design equations are transformed into probabilistic ones 

by replacing the traditional “safety factor” with a “reliability factor”. The reliability factor is determined from a specified 

reliability goal and the coefficients of variation in design models and parameters.  

 

Design examples are presented and results are compared with solutions based on the traditional ASD (Allowable Stress Design) 

method. Two of the four design examples have identical solutions with the ASD method. The third example result is practically the 

same as that of ASD method, except that the beam is slightly lighter. The fourth example has a similar result as the ASD method 

but the beam is deeper. The deeper beam solution stems from the use of both bending stress and deflection serviceability criteria 

in the new approach while only the bending stress criterion was used in the ASD method. All the chosen beams indicate a 

reliability of at least 99.73% for bending stress and at least 95.22% reliability for deflection. In all the chosen beams, the web 

maximum shear stress has a reliability factor of at least 4.91, making shear failure improbable. The agreement between the 

results of these different methods is amazingly interesting. All computations in the study were done on Microsoft Excel 

Spreadsheet, demonstrating that probabilistic design can be done with inexpensive computer resource and not too advanced 

analytical skills.  

 

This study shows that acceptable design solutions can be achieved by modification of deterministic or traditional design method 

through probabilistic consideration of “design or safety factor”. From the very favorable comparison of the results between the 

new approach and ASD method, it appears reasonable to conclude that the method proposed in this paper is satisfactory for the 

probabilistic design of standard steel beams. The covs for practical design applications should be based on data from material 

vendors and historical data on loads. Engineering companies providing design services would have such data and a simple 

statistical analysis will give realistic cov values for use in their design practice.  
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--------------------------------------------------------------------***------------------------------------------------------------------ 

1. INTRODUCTION 

Interest in probabilistic design approaches is largely due to 

the fact that design parameters are more realistically modeled 

as random variables [1, 2]. Random variable analysis shows 

that mean values of functional relationships are obtained by 

substituting mean values of the variates [3]. Probabilistic 

design methods allow quantification of survival or failure 

probability and provide justification for safety assessment. 

When quality, reliability, and safety are paramount, 

probabilistic design is the preferred method desired for 

design [2, 4, 5]. Safety of structure is a fundamental criterion 

for design [6]. 

 

The main factors that affect uncertainties in design are 

variation in loads, material properties, geometry, and 

accuracy of analytical model. Variability in service load is 

usually the largest but most difficult to predict, especially at 

the design phase [7]. The user may not follow guidelines; 

service environment may be different from that assumed 

during design, and in fact, a host of variables completely 

outside the control of the designer come into play. Variations 

in material properties and component geometry are controlled 

by manufacturing practices. Engineering design models are 

approximations of reality and formulations for the same 

problem vary. However, simplified models in engineering 

design have been in practice for over two hundred years [8]. 

Statistically, variability is measured by variance or standard 

deviation. But the use of the coefficient of variation (ratio of 

standard deviation to the mean) in characterizing variability 

is particularly desirable since it can conveniently summarize 

a large class of materials and parts [9].  

 

Several approaches are possible in probabilistic design. These 

include simulation [1, 4, 5, 7, 10], experimental [12, 13], and 

analytical [6, 14, 15, 16]. Simulation methods are varied but 

Monte Carlo techniques are perhaps the most popular and 

they can be used to study means, variances, range, 

distributions, etc. and offer a comprehensive and accurate 

approach to probabilistic design. Simulation methods are 

computationally intensive and therefore costly to implement 

in time and resources. Monte Carlo Simulation is not 

economical for simple component design. Experimental 

probabilistic design methods generally use design of 
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experiments (DOE) techniques. Taguchi methods are typical 

examples of experimental probabilistic methods which can be 

used to determine optimal mean values of design parameters 

that minimize performance variation.  Randomization 

techniques are used to select design points or parameter 

levels so as to minimize efforts. Because experiments can be 

costly, this is not always possible but can yield cheaper 

solutions than Monte Carlo simulation. DOE is recommended 

when distributions are unknown or when some parameters 

vary uniformly. Analytical methods generally use sensitivity 

analysis often of the Taylor’s series expansion type. First 

order Taylor’s series expansion is more common but second 

order expansion can be used to improve accuracy. The 

method is good for linear functions and less accurate for 

operating points in non-linear functions. However if 

variability is small, it may still yield good results for non-

linear functions. Analytical models are the least expensive 

and generally more efficient than Monte Carlo simulation or 

DOE but less accurate when responses are not close to linear 

region of samples [1]. All these methods incorporate varying 

levels of optimization. 

 

Structural beams primarily resist bending loads. They include 

girders, spandrels, joists, stringers, girts, lintels, rafters, and 

purlins. They may be categorized into primary and secondary 

beams. Generally primary beams in buildings such as girders 

carry their self-weight as distributed load and the transferred 

load from secondary beams as concentrated loads. Secondary 

beams such as joists usually carry distributed loads of self-

weight, weight of supported building materials, and 

prescribed live loads depending on occupancy. The common 

practice in structural design is to examine the floor or roof 

framing plan and determine the most loaded rafter, joist, or 

girder for design analysis. Design analysis is conceived as 

consisting of design sizing and design verification tasks. The 

objective of design sizing is to determine the size of a 

component while the objective of design verification is to 

determine the adequacy of a sized component based on 

desired reliability value. For ordinary steel beams, sizing and 

verification are based on serviceability criteria of bending 

stress and deflection. For deep slender webbed beams such as 

plate girders, shear stress in the web and buckling of web and 

flange are possible failure modes that should be checked. 

 

Traditional or deterministic engineering design methods 

using a “factor of safety” in simplified analytical models give 

results that are to all intent and purposes correct [8]. 

According to Shingley and Mischke [3] deterministic and 

familiar engineering computations are useful in stochastic 

problems if mean values are used. Several authors [3, 17, 18, 

19, 20], have presented the “factor of reliability” approach in 

design in some various forms and titles. However, they have 

concentrated mainly at the design verification task in which 

the adequacy of a design is assessed using a factor of safety. 

In this study, the focus is on using probability-based “factor 

of reliability” for design sizing tasks, while design 

verification is based on desired reliability. The term 

“Reliability factor” is used to describe a probabilistically 

determined “factor of safety” based on the variability of 

design parameters and a target reliability. The study presents 

a systematic and generic approach to evaluating reliability 

factor using first order Taylor’s series expansion. Expressions 

for the coefficients of variation required for calculating the 

reliability for bending stress, web shear stress, and transverse 

deflection of beams are presented. Some design examples are 

presented, demonstrating the applicability of the method. All 

symbols used in design equations are defined in 

Nomenclature section at the end of the paper. 

 

2. A LOGNORMAL RELIABILITY MODEL 

The concept of a safety or design factor is an old one but its 

value was and is experiential and somewhat accounted for 

uncertainties in design. A statistical equivalent called 

reliability factor is proposed [21, 22] based on the lognormal 

probability distribution of design parameters. The model was 

initially based on fatigue design, now it is being applied to 

standard steel beam design and other serviceability criteria in 

this study.  The reliability factor zn  can be defined as: 

 

Value Model  Expected

Value Failure  Average
zn

  
           (1) 

 

In a stress-based design, the serviceability failure value may 

the yield strength in a static failure of ductile material as in 

most structural design situations. In a deformation-based 

design such as lateral deflection, axial deformation or torsion 

deformation, the serviceability failure value is the maximum 

allowable deformation. In each failure mode, a limit value 

can be established for the serviceable criterion, and a design 

model expected value can be evaluated.
  

The lognormal probability distribution model has inherent 

properties that recommend it for machine and structural 

design applications [3, 21]. A reliability model based on the 

lognormal distribution function proposed by [22] gives the 

reliability factor which is rendered as: 

 

  nnz szsn 5.0exp                 (2) 

 

   22 11In MFns  
              

(3) 

 

In some design situations such as fatigue and as explained 

later in structural design, an approximation Mo  of M  is 

used to estimate zn . This is because M cannot be accurately 

evaluated in some design situations until dimensions of a 

component are known. In such cases, an approximate 

reliability factor, which is here called design factor on , is 

obtained from Eqn. 2 as:  

 

  nonoo szsn 5.0exp 
               

(4) 

 

   22 11In MoFnos  
              

(5) 

 

In general, it will be assumed that the design sizing of a 

component is based on on instead of zn
 

since the later 



IJRET: International Journal of Research in Engineering and Technology         eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 04 Issue: 07 | July-2015, Available @ http://www.ijret.org                                                                               127 

cannot always be determined with confidence at the 

beginning of a design task. However, zn  should be evaluated 

during design verification. For design verification, the unit 

normal variate and the corresponding reliability are 

evaluated. From Eq. 2, the unit normal variate is [22]: 

 

n

nz

s

sn
z

25.0)(ln 
                               (6) 

 

For 1.28 < z < 7.0, the reliability can be estimated as [24]: 

 

)3818.02299.02006.0( 2

101  zz
zR                            (7) 

 

Eq. 6 gives the unit normal variate z based on the reliability 

factor and design model parameters variability. Eq. 7 gives 

the reliability for the unit normal variate z . If a desired 

reliability or failure probability is specified, then z is known 

and the necessary reliability factor zn for achieving this 

reliability can be obtained from Eq. 6.  

 

The mean and standard deviation or cov of design models 

must be evaluated in order to apply Eqs. 2 to 7. Suppose a 

function χ, has the random variables 
nxxxx .......,, 321

as 

independent variables. Then: 

 

 nxxxxf ...,,, 321                       (8) 

 

Taylor series expansion can be used to estimate expected 

values and variances (or standard deviation) for unskewed or 

lightly skewed distributions [3]. Based on Taylor series 

expansion, a first order estimate of the mean and standard 

deviation of χ may be obtained respectively: 

 

 xnxxxf  ...,,, 321                 (9a) 
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The coefficient of variation is the ratio of standard deviation 

to the mean value: 









                (10) 

 

Eqn. 9a simply says that the mean value of a function is 

obtained by substituting mean values of its independent 

variables. Eqns. 9b and 10 provide means of quickly 

obtaining the standard deviation and cov of the function using 

partial differentiation.  

 

3. DESIGN PROCEDURE OF STEEL BEAMS 

1. Load Analysis 

a. Identify all load types acting on member. 

b. Draw load diagrams and determine support 

reactions. 

c. Draw the shear force and bending moment diagrams. 

d. Determine maximum shear force and maximum 

bending moment values. 

 

Sub steps b. c., and d. can be replaced with use of 

formula if load configuration is standard. Alternatively, 

use available software for load analysis.  

 

2. Establish Serviceability criteria 

a. Determine principal failure modes of member. 

i. Maximum bending stress and shear stress can 

be limiting criteria. 

ii. Maximum lateral deflection and torsional 

buckling can be limiting criteria.  

b. Establish material property for each failure mode. 

c. Determine desired reliability target. 

 

3. Material Selection 

a. Examine usage environment of member 

(temperature, humidity, corrosiveness, etc.). 

b. Use serviceability criteria to identify applicable 

material properties in environment. 

c. Establish failure value for each serviceability failure 

mode.  

d. Identify and select candidate material. Use software 

if available. 

4. Design Sizing 

a. Establish or develop design model. 

b. Use proportional design as much as possible. 

c. Set up primary dimension of member as objective of 

design model. 

d. Calculate primary and other dimensions. 

   

5. Design Verification 

a. Determine weight of member and add to loads. 

b. Refine maximum shear force and maximum bending 

moment values. 

c. Determine expected values of design model(s). 

d. Determine  reliability 

e. Assess design adequacy. 

6. If design is inadequate, resize and verify (Step 5) until it 

is adequate. Note that it may be necessary to select a 

different grade of a material or a different material 

altogether to achieve desired reliability target 

sometimes. 

 

4. DESIGN BASIS 

The principal failure modes of standard steel beams are 

excessive bending stress and excessive deflection. Such 

beams must possess enough section modulus ( xZ ) so that the 

service induced maximum bending stress precludes failure. I-

beams (W-Shapes and S-shapes) are the most popular 

standard steel beams. The maximum bending stress usually 

occurs at the flanges in I-beam. When shear force is high, 

stiffeners may be required or thicker webbed shapes are 

chosen. A check for the maximum web shear stress is often 

done. According to Onouye [23], flanges in I-beams resist 
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90% of the bending stress while the web resists 

approximately 90% of the total shear stress. Also, standard 

steel beams should have enough second moment of area ( xI ) 

so that the induced maximum deflection is acceptable. The 

second moment of area is here called area inertia, so as to 

distinguish it from the second moment of mass (mass inertia) 

that is commonly used in dynamics, mechanics of machines, 

and machine design disciplines. This will help to avoid any 

possible confusion. Generally, deeper sections are often 

lighter so they are preferred because they are least expensive 

[24]; except some other factor(s) indicate otherwise. Standard 

steel beams are designed by selecting standard steel sections 

with predefined shapes that meet design requirements.  

 

The design of main structural members such as beams and 

columns are firmly established and formulas are available in 

textbooks and specifications of organization such as AISC 

(American Institute of Steel and Construction). Analysis of 

the principal failure modes of bending stress and transverse 

deflection follows. Equations developed are made for the 

purpose of providing means of evaluating covs of analytical 

design model and model parameters. Where commercial 

software is available for any of the steps in the design 

procedures above, it should be employed 

 

4.1 Flange Bending Stress Design 

For beams under only uniformly distributed load only, such 

as secondary structural beams like joists, the design stress 

model for beams is: 

 

x

x

Z

M
                  (11) 

 

The bending moment is: 

 

dLdDx MMM             (12a) 

 
2LqM DddD              (12b) 

 
2LqM LddL              (12c) 

 

If a uniformly distributed load Dq  or Lq is constant over the 

beam span, d  = 0.125 (1/8). This is the most common case 

in structural beam design. Otherwise it can be evaluated for 

any given configuration. However, if load analysis is 

performed with software, it is not necessary to know d  

since dDM  or dLM  will be directly available. Eq. (12) is 

used to estimate the contributions of these moments to design 

model variability. 

 

Apply rules of Eq. (9b), and Eq. (10) to Eq. (12a) to obtain: 

 

22221
dLxdLdDxdD

x
Mx MM

M
            (13a) 

 

Apply rules of Eq. (9b), and Eq. (10) to Eq. (12b) and (12c) 

to obtain, respectively: 

 

22 4 lDxdD              (13b) 

 

22 4 lLxdL              (13c) 

 

Note that the self-weight of a joist should be included in Dq , 

but in general, it will be unknown at the beginning of a 

design problem.  An allowance may be made for it by 

introducing a beam weight factor greater than unity in either 

Eq. (11) or Eq. (12b). Therefore, x can only be an 

approximation at the start of the design and hence the 

reliability factor based on it is only approximate then. Thus 

the use of design factor appears appropriate for design sizing 

since it is defined as an approximation of the reliability 

factor.  

 

Apply rules of Eq. (9b), and Eq. (10) to Eq. (11) to obtain the 

cov for the design model as:  

 

  5.022
Zx               (14a) 

 

  5.022
  mM           (14b) 

 

The cov of the failure parameter is: 

 

YF               (14c) 

 

For design sizing: 

 

o

Y

n

S
               (15) 

 

Use Eqs. (14), (4) and (5) to estimate on  and determine the 

required section modulus for the beam. For standard steel 

shapes or sections, combine 11, 12a and 15 to obtain: 

 

Y

xo
x

S

Mn
Z                (16) 

 

Value from Eq. (16) is used to lookup section shape property 

tables and a size is chosen. The properties of the chosen 

section can then be used for design verification.  

 

For design verification, evaluate  (Eq. (11)) and then: 

 


Y

z

S
n                (17) 
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Next re-evaluate ns (Eq. (3)) if necessary, and then determine 

the unit normal variate z (Eq. (6)) and the expected 

reliability, zR (Eq. (7)). 

 

The bending moment under combined uniformly distributed 

and concentrated loads is: 

 

xLxDx MMM             (18a) 

 

cDdDxD MMM             (18b) 

 

cLdLxL MMM              (18c) 

 

For the purpose of variability evaluation: 

 

LFM cDLccD              (19a) 

 

LFM cLLccL              (19b) 

 

If a concentrated load is at the midspan of a beam, then c = 

0.25. For other configurations it can be evaluated. However, 

if load analysis is performed with software, it is not necessary 

to know c  since cDM  or cLM  will be directly available. 

 

Apply rules of Eq. (9b), and Eq. (10) to Eq. (18) to obtain the 

cov for the bending moment as:  

 

22221
xLxLxDxD

x

Mx MM
M

            (20a) 

 

22221
dDxdDcDxcD

xD

xD MM
M

          (20b) 

 

22221
dLxdLcLxcL

xL

xL MM
M

            (20c) 

 

22

lDxcD              (20d) 

 

22
lLxcL              (20e) 

 

The design stress model for beams under combined 

uniformly distributed and concentrated loads is given by:  

 

o

Y

x

x

n

S

Z

M
                 (21) 

 

Apply rules of Eq. (9b), and Eq. (10) to Eqs. (21) and the cov 

for the design model is: 

 

 2
1

22
ZxM              (22a) 

    5.02225.022
ZMxmmM                (22b) 

 

The cov of the failure parameter is given by Eq. (14c). 

 

For design sizing, use Eq. 16. Then use Eqs. (3, 20, 17, 6) 

and (7) for design verification. 

 

4.2 Beam Transverse Deflection Design 

The maximum transverse deflection of a beam under 

uniformly distributed dead load is: 

 

dLdD                       (23a) 

 

xd

L

dL
EIK

Lq 4

             (23b) 

 

xd

D

dD
EIK

Lq 4

             (23c) 

 

If a uniformly distributed load Dq  or Lq is constant over the 

beam span, dK  = 76.8 (384/5). This is the most common 

case in structural beam design. Otherwise it can be evaluated 

for any given configuration.  

 

Apply rules of Eq. (9b), and Eq. (10) to Eq. (23), and the cov 

of the beam deflection is: 

 

 
5.0

2222 16 IlEDdD             (24a) 

 

 
5.0

2222 16 IlELdL             (24b) 

 

 
5.0

22221
dLdLdDdD 


             (24c) 

 

  5.022
  mM            (24d) 

 

The cov of the failure parameter is: 

 

AF               (24e) 

 

For design sizing: 

 

o

A

n


              (25a) 

 




L
A              (25b) 
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To size standard steel shapes or sections, combine 25a, 25b, 

and 23 to obtain: 

 

 LD

d

o

x qq
EK

Ln
I 

3
             (26) 

 

Value from Eq. (26) is used to lookup section shape property 

tables and a size is chosen. The properties of the chosen 

section can then be used for design verification.  

 

For design verification, evaluate  using Eq. (23) and then: 

 



A
zn                (27) 

 

Next re-evaluate ns (Eq. (3)) if necessary, and then determine 

the unit normal variate z (Eq. (6)) and the expected 

reliability, zR (Eq. (7)). 

 

The design model for beam deflection under combined 

uniformly distributed and concentrated loads is: 

 

DL               (28a) 

 

cDdDD               (28b) 

 

cLdLL               (28c) 

 

xc

cDL

cD
EIK

LF 3

            (29a) 

 

xc

cLL

cL
EIK

LF 3

            (29b) 

 

If a concentrated load cDLF  or cLLF is at the midspan of the 

beam span, cK  = 48. It is 28.2 for two equal concentrated 

loads located symmetrically on a beam span, and 20.1 for 

three equal concentrated loads located symmetrically on a 

beam span [23]. It can be evaluated for any other given 

configuration.  

 

Apply rules of Eq. (9b), and Eq. (10) to Eqs. (28, 29), and the 

cov of the beam deflection is: 

 

 2
1

22221
LLDD  


             (30a) 

 

 2
1

22221
cDcDdDdD

D

D 


             (30b) 

 

 2
1

22221
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L

L 


             (30c) 

 

  2
1

2222 9 IElDcD             (30d) 

 

  2
1

2222 9 IElLcL             (30e) 

 

  5.022
  mM             (30f) 

 

The cov of the failure parameter is given by Eq. (25c). 

 

To size standard steel shapes or sections, combine (26a), 

(26b) and (29) to obtain: 
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LD qqq              (31b) 

 

cLLcDLc FFF             (31c) 

 

dLLdDLd FFF             (31d) 

 

Note that cDLF  and cLLF  are assumed to be acting at the 

same point on a beam in Eq. (31a). Value from Eq. (31a) is 

used to lookup section shape properties tables and a size is 

chosen. The properties of the chosen section can then be used 

for design verification.  

 

For design verification, use selected shape properties and 

loads to evaluate  using Eq. (26) and
zn  using Eq. 25. Then 

use Eqs. (3, 6, and 7) to evaluate the reliability.  

 

4.3 Web Shear Stress Check 

Most of the resistance to shear in thin-webbed I-beams is 

provided by the web and the average shear stress on it is 

slightly smaller than the maximum value. So a simplified 

method that divides the maximum shear force by the “web 

area” is often used to estimate the maximum shear stress on 

the web. If the “web area” is estimated as the product of the 

total beam depth and web thickness (depth area), the shear 

stress obtained is about 15% to 20% [24, p.284; 25, p. 436-7] 

less than the maximum value. If the “web area” is estimated 

as the product of the web depth and web thickness (web 

area), the shear stress obtained is at most about 10% [25] less 

than the maximum value. Hence a conservative estimate of 

the maximum shear stress should be obtained by using the 

web area and multiplying the value obtained by 1.1. 

Structural steel materials are ductile so the distortion energy 

failure rule of ductile materials can be used to estimate their 

shear yield strength.  
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w

w
A

F                (32) 

 

LD FFF               (33a) 

 

cDdDD FFF               (33b) 

 

cLdLL FFF              (33c) 

 

LqF DddD
/              (34a) 

 

LqF LddL
/            (34b) 

 

cDLccD FF /              (34c) 

 

cLLccL FF /            (34d) 

 

Eqs. 33 and 34 may seem intimidating, but there may be no 

need to evaluate them manually if software is used for load 

analysis. In that case, dDF , dLF , cDF , and cLF are obtained 

directly from the shear force diagrams if each load type is 

treated separately. However, if a uniformly distributed 

load Dq  or Lq is constant over the beam span, /
d  = 0.5 

(1/2). Also /
c = 0.5 if concentrated load is at midspan of 

beam or if multiple concentrated loads are symmetrically 

located on beam span. The equations help in estimating 

design model variability contributions. 

 

Apply rules of Eq. (9b), and Eq. (10) to Eqs. (33, 34), and the 

cov of the maximum shear force model is obtained as: 

 

 
5.0

22221
FDDFLLF FF

F
 



            (35a) 

 

  
5.0

222221
LcLdLlL

L

FL FF
F

 



          (35b) 

 

  
5.0

222221
DcDdDlD

D

FD FF
F

 



          (35c) 

 

Neglecting the slight taper of inner faces of flange and small 

fillets at flange-web joints for standard shapes, the web 

height is approximated as: 

 

fw thh 2             (36a) 

 

The web area is estimated as: 

 

www htA             (36b) 

 

 

 

The maximum shear stress is estimated as: 

 

w 1.1max                (37) 

 

The cov of max  is: 

 

  5.022
max AF               (38a) 

 

The cov of the maximum web shear stress design model is: 

 

    5.02225.02
max

2
AFmmM             (38b) 

 

The cov of the failure parameter is given by Eq. (14c). 

 

Based on the distortion energy failure rule of ductile 

materials, the reliability factor of the web for shear stress 

failure is evaluated as: 

 

max3

Y
z

S
n               (39) 

 

Then use Eqs.  (3, 6, and 7) to evaluate the reliability. 

 

5. DESIGN PARAMETERS’ VARIABILITY 

The application of the reliability model assumes that the covs 

of design model parameters are known so that the design 

model variability can be estimated. The Young’s modulus for 

many materials has a cov of 3 to 5% [2]. The cov of Young’s 

modulus will be taken as 5%. Typical values of cov for 

analytical model uncertainties are 3 – 15% and the cov for 

dead loads is 5 – 10% [26]. A cov value of 10% will be 

assumed for analytical model. The cov value for dead load 

will be taken as 10%  and the cov for live loads is taken as 

25% as used in [27]. The cov of the yield strength of ordinary 

structural steel is taken as 10% [27]. The cov of allowable 

deflection is assumed to be of the same order as the yield 

strength; that is 10%.  

 

The covs of beam length, depth, area, section modulus, and 

area inertia (geometric attributes) are also needed in the 

reliability model for beam design. The cov on section 

modulus of standard structural steel sections is stated as 5% 

[27]. The covs on beam depth, cross-sectional area, and area 

inertia can be estimated from that of the section modulus by 

assuming proportional design. That is:
3khZ  ; where 

Z section modulus, k proportionality factor, h beam 

depth. Applying rules of Eq. (9b), and Eq. (10) to Z: 

hZ  3 . Hence 53 h  and 67.1h . Similarly: 

34.32  hA   (3.5) and 68.64  hI  (7). The covs for 

cross-sectional area and area inertia will be taken as 3.5% and 

7%, respectively. The cov for beam length is assumed as 

0.2%. Table 1 summarizes the covs of the design parameters. 
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Table 1: Summary of Design Parameter Covs 

Design Parameter COV (%) 

Live load 25.0 

Dead load 10.0 

Analytical model 10.0 

Yield strength 10.0 

Allowable deflection 10.0 

Elastic modulus 5.0 

Shape area 3.5 

Section modulus 5.0 

Area inertia 7.0 

Beam length 0.20 

 

6. DESIGN EXAMPLES  

Design examples are provided in this section as 

demonstration of applications of the reliability model above. 

Structural steel beam is designed currently either by 

Allowable Stress Design (ASD) or Load and Resistance 

Factor Design (LRFD) and both methods yield similar 

results. The examples considered here were previously 

designed using ASD method. Example 1 is joist design while 

Example 2 is a girder design. These two examples form the 

main structural members of floor assembly. Example 3 is 

similar to Example 2, except that the concentrated loads are 

not all equal. Example 4 is added because a different material 

grade is used. 

 

6.1 Examples 1 & 2: Floor Assembly 

The floor assembly of Fig. 1 consists of light weight concrete 

on a steel deck. The joists are spaced 3.05 m on center while 

the girders are spaced 8.54 m on center. The floor supports a 

live load pressure of 2.873 kPa and a dead load pressure of 

1.915 kPa. The dead load includes allowance for the concrete 

slab and other structural members. The deflection due to the 

live load is limited to L/360. Select the lightest A36 W-

shapes for the joists and girders [23, p. 352 - 356]. Data 

units’ conversion to SI is done by author.  

 

From Fig. 1, the span of a joist is 8.54 m while that of a 

girder is 12.2 m. The three middle joists (one of them is 

labeled J) are the most loaded while the middle girder 

(labeled G) is the most loaded. These will be used in the 

design, assuming that the other joists and girders are of the 

same size, respectively.  

8.54 m 8.54 m

3. 05m

3.05 m

3.05 m

3.05 m
G

J

 
Fig. 1: Floor framing plan (After [23]) 

 

Fig. 2 shows the loading on the joist while Fig. 3 shows the 

loading on the girder. The A36 material specified in the 

design problem has minimum yield strength of 250 MPa [23]. 

According to Hess et al [28] the mean yield strength of 

ordinary structural steel is about 1.3 times the minimum. 

Hence the mean yield strength of A36 will be taken as 325 

MPa.  

 

8.54 m

q = 14.593 kN/m

 
Fig. 2: Floor joist loading (After [24]) 

 

12.2 m

q = ?
F = 124.5 kNc F = 124.5 kNc F = 124.5 kNc

 
Fig. 3: Floor girder loading (After [24]) 

 

6.2 Example 3 

Select the lightest steel wide-flange section (W-shape) for the 

beam in Fig. 4. Consider moment and shear. The allowable 

bending stress is 165 MPa, and the allowable shear stress is 

100 MPa. [29, p. 406 – 408].  From the stipulated allowable 

stresses, ASTM A36 material is assumed for the beam 

material. 

 

8.0 m

q = 44 kN/mF = 18 kNc

F=24 kNc

F = 18 kN

2.0 m 2.0 m

 
Fig. 4: Beam1 loading (After [29]) 
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6.3 Example 4 

Select the lightest W-beam that will support a point load of 

178 kN as shown in Fig. 5. Assume that the steel material has 

minimum yield strength of 345 MPa (50 ksi) [30]. According 

to Hess et al [28] the mean yield strength of high strength 

structural steel is about 1.19 times the minimum. Hence the 

mean yield strength of the material will be taken as 410 MPa. 

 

F = 178 kNc

9.144 m

q = ?4.572 m

 
Fig. 5: Beam2 loading (After [30]) 

 

7. DESIGN SOLUTIONS 

For load analysis (please refer to section 3.), the maximum 

shear force and maximum bending moment on the joist were 

obtained using standard formulas. Software was used for the 

load analysis of the girder. This took care of Step 1 of the 

design procedure. The principal failure modes of standard 

steel I-beams were analyzed above which took care of Step 2 

of the design procedure, except the reliability target. This is 

addressed below. Step 3 of the design procedure is skipped as 

the beam material is specified in the problem. Step 4a is 

covered in section 4: Design Basis. Steps 4b to 6 of the 

design procedure are implemented by coding the formulas 

derived in the previous section in Excel spreadsheet.  

 

In reliability-based design, a reliability target is used for 

design adequacy assessment. In ASD method, a design factor 

based on experience is specified and minimum yield strength 

is used to characterize the material capability. According to 

Mischke [3, p. 2.3], minimum strength is a percentile strength 

often placed at 1% failure level (99% reliability), sometimes 

called the ASTM minimum. Hence for this study, the target 

reliability was taken as 99% for bending stress design. Note 

that average or mean strength is used in probabilistic studies, 

not minimum strength. 

 

While yield strength is a material property for structural 

beams, limit for beam deflection is not. Deflection limits are 

largely based on experience and values are stipulated for 

combined dead and live loads or for live load only. For floor 

joists and girders, the total load deflection is typically limited 

to 240/L  while the live load only deflection is limited to 

360/L [23, p. 290]. Traditionally, no design factor is used in 

the evaluation of beam deflection. In this study, the beam 

deflection criterion for combined dead and live loads was 

used for design sizing with a design factor applied. Then the 

live load only deflection was used to verify the design with a 

unity design factor. The reliability was then evaluated when 

the live load deflection satisfied the typical limitation.   

 

 

 

 

7.1 Analysis Factors for Design Examples 

7.1.1 Examples 1 

The equations above were coded in Microsoft Excel for the 

design of the joist carrying only uniformly distributed load as 

shown in Fig. For joist, so d  = 0.125, 8; /
d  = 0.50, and 

dK = 76.8.  

 

7.1.2 Example 2 

The transferred load from the joists of Fig. 2 to the girder as 

concentrated loads as shown in Fig. 3. Note the distributed 

load in Fig. 3 is unknown (q = ?) at the beginning of the 

design. For the girder design c  = 0.25, /
c  = 0.50, and cK  

= 20.1 [23]. 

 

7.1.3 Example 3 

For Fig. 4 girder design c  = 0.25, /
c  = 0.50. For the beam 

self-weight, dK = 76.8 and cK  = 20.1 for 18 kN 

concentrated load at three locations. At midspan, additional 

load 6 kN is require for which  cK  = 48 [23].  Because the 

load on the beam is not classified into dead and live loads, 

live load is assumed so as to be conservative. 

 

7.1.4 Example 4 

For Fig. 5 design c  = 0.25, /
c  = 0.50. For the beam self-

weight, dK = 76.8 and cK  = 48 for midspan concentrated 

load [23]. Because the load on the beam is not classified into 

dead and live loads, live load is assumed so as to be 

conservative. 

 

7.2 Load Analysis Results 

The results of the load analysis are summarized in Tables 2 

and 3. Table 2 gives the results for the maximum shear forces 

acting on the beams. Table 3 gives the results for the 

maximum bending moments acting on the beams. Note that 

the self-weight of the beams in Examples 2, 3, and 4 are 

neglected at this stage because the beam sizes are not known 

yet. If they are summed in a design situation, they should be 

treated as distributed dead loads and can then be included in 

the appropriate cells in the table. The self-weight for example 

is said to be included in the loading for example 1 in the 

problem statement. 

 

Table 2: Shear Force Load Analysis 

Design 

Example 

Dead Load (kN) Live Load (kN) 

Dist.* Conc.** Dist. Conc. 

1 25 0 37.312 0 

2 0 74.70 0 112.05 

3 0 0 176 30 

4 0 0 0 89 

*Dist. = Distributed;   **Conc. = Concentrated 
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Table 3: Bending Moment Load Analysis 

Design 

Example 

Dead Load 

(kNm) 

Live Load 

(kNm) 

Dist. Conc. Dist. Conc. 

1 53.215 0 79.825 0 

2 0 303.78 0 455.67 

3 0 0 352 84 

4 0 0 0 407 

 

7.3 Design Sizing Results 

Table 4 provides a summary of the design sizing results for 

the four examples. Values of xZ  are based on bending 

strength capability (Eq. (16)) while values of xI  are based on 

combined dead and live load deflection limitation 

of 240/L (Eqs. (26) and (31a)). These values were evaluated 

at 99% reliability. Note that the use of both xZ  and xI in 

section property table search for standard steel beams reduces 

the search space. 

 

Table 4: Summary of Design Sizing Results 

Design 

Example 

Section Properties Required (99% 

Reliability) 

xZ  (10
4
) mm

3
 xI  (10

7
) mm

4
 

1 68.47 23.29 

2 393.55 166.89 

3 223.88 71.85 

4 165.65 62.07 

 

7.4 Standard Beam Search Results 

Table 5 summarizes the beam search results for the four 

design examples. Two candidate beams were chosen for each 

example demonstration purposes. The lighter ones of these 

two beams are the preferred since the design statements 

stipulated the selection of the lightest beams. 

 

Table 5: Identification of Candidate Beams 

Design 

Example 

Candidate 

Beam* 

Section Properties   

xZ (10
4
) 

mm
3
 

xI (10
7
) 

mm
4
 

1 
W460x52 94.39 21.23 

W410x60 92.59 18.65 

2 
W760x147 440.81 166.08 

W690x152 437.74 150.68 

3 
W610x101 252.36 76.17 

W530x109 274.44 66.60 

4 
W530x92 208.12 55.36 

W460x113 239.25 55.36 

*Specification is converted to Metric from English 

units 

 

7.5 Design Verification Results 

Table 6 provides a summary of the design verification results 

for bending stress for the design examples. All the candidate 

beams meet the target reliability of 99%, except the last one 

of design example 4. Notice that the least value of the 

reliability factor in this table is 1.81. This is higher than the 

minimum design factor value of 1.5 commonly used in ASD 

method. Hence the selected beams are acceptable from this 

perspective. Since the search is for the lightest beam, the first 

beam for each design example will be chosen.  

 

Table 6: Bending Stress Design Verification 

Design 

Example 

Beam 

Candidate zn  zR  

1 
W460x52 2.23 99.991 

W410x60 2.49 99.999 

2 
W760x147 1.82 99.700 

W690x152 1.81 99.661 

3 
W610x101 1.85 99.011 

W530x109 1.81 99.783 

4 
W530x92 2.25 99.698 

W460x113 1.86 98.041 

 

Table 7 summarizes the design verification results based on 

live load only deflection. The maximum allowable deflection 

is the denominator in column 3 while the numerator is the 

expected deflection under the live loads. All the candidate 

beams meet the criterion, but the lighter ones will be chosen. 

 

Table 7: Deflection Design Verification 

Design 

Example 

Beam 

Candidate 

Live Load 

Deflection 

(mm) 
zR  

1 
W460x52 13.8/23.7* 95.926 

W410x60 13.6/23.7 96.339 

2 
W760x147 19.7/33.9 98.590 

W690x152 21.7/33.9 94.217 

3 
W610x101 18.8/22.2 99.819 

W530x109 21.5/22.2 97.946 

4 
W530x92 22.9/25.4 99.030 

W460x113 24.7/25.4 95.593 

*Numerator is expected live load only deflection; 

denominator is maximum allowable live load only 

deflection. 

 

Table 8: Web Maximum Shear Stress Verification 

Design 

Example 
Beam 

Max. Shear 

Stress (MPa) zn  

1 W460x52 21.75 8.63 

2 W760x147 22.65 8.28 

3 W610x101 38.24 4.91 

4 W530x92 18.77 12.61 

 

Based on the design verification analysis, the chosen beams 

were checked for web maximum shear stress. Table 8 

provides a summary of this check. In ASD method, a design 

factor of 1.5 is used as minimum for shear stress. The 

reliability factors in Table 8 are all above 4; therefore, the 

web maximum shear stresses are well below the shear yield 

strengths of the beam materials. Hence failure in shear is not 

anticipated. 
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7.6 Comparison of Results 

Table 9 shows a comparison of current design results with 

previous solutions. From Table 9, it is observed that the new 

method provides solutions that are identical for Design 

Examples 1 and 2. Design Example 3 solutions are 

practically the same, with the new solution beam lighter in 

weight. Solutions for Design Example 4 are similar in weight 

but the new has a deeper beam. The difference is attributed to 

the fact that the previous solution is based only on bending 

stress while deflection is considered along with bending 

stress in the new selection. In fact when the properties of 

W18x60 (previous solution) were used for live load only 

deflection design verification, it was found that the live load 

deflection exceeded the limit allowable. It is amazingly 

interesting that the new method provides so closely matching 

results with the ASD method.  

 

Table 9: Comparison of Results 

Design 

Example 

Beam Selection 

New Method ASD Method 

1 W460x52 W460x52 

2 W760x147 W760x147 

3 W610x101 W610x113 

4 W530x92 W460x89 

 

8. CONCLUSION 

Table 10 gives the design reliability estimates for the selected 

beams based on the criteria of bending stress and transverse 

deflection. Note that all the chosen beams have a reliability of 

at least 99.73% for bending stress and at least 95.22% 

reliability for deflection. This table suggests that different 

reliability targets for different design criteria may be 

permissible for reliability-based design.  

 

Table 10: Design Reliability 

Design 

Example 
Beam 

Reliability 

Bending 

Stress 
Deflection 

1 W460x52 99.99 95.93 

2 W760x147 99.73 95.22 

3 W610x101 99.81 99.71 

4 W530x92 99.97 95.55 

 

The results from this study suggest: 

 Traditional engineering design methods can be 

transformed into probabilistic design methods by 

evaluating the design factor on probabilistic basis. 

 A design or reliability factor depends only on the covs 

of design model parameters and the unit normal 

variate which represents a specific survival or failure 

probability. 

 The traditional design or safety factor (reliability 

factor) can be quantitatively associated with survival 

or failure probability through this approach.    

 A reliability-based design method for selecting 

standard structural beams assuming the lognormal 

probability distribution gives results that very closely 

match those of ASD method. 

 Minimum reliability target of 99% is suggested for 

bending stress design for comparison with ASD 

method.  

 An integrated steel beam deflection design approach 

using combined dead and live loads and live load only 

is developed that allows reliability estimation. 

 Minimum reliability target of 95% is suggested for a 

deflection limit of 240/L  for design sizing of floor 

beams using combined dead and live loads.  

 Deflection design verification should be based on live 

load only deflection, limited to 360/L . The reliability 

can then be estimated. 

 Reliability-based design need not require expensive 

software or very specialized skills since Microsoft 

Excel: a spreadsheet program was used in the study. 

 

It was observed during the study that the covs for loads, 

material properties, and analytical modeling appear to have 

more influence on reliability. The cov of geometric 

parameters appear to have negligible effects because of their 

relatively smaller values. Particularly, covs of area inertia, 

section modulus, and shape area are relatively more 

significant than the cov of beam length. The covs for 

practical design applications should be based on data from 

material vendors and historical data on loads. Engineering 

companies providing design services would have such data 

and a simple statistical analysis will give realistic cov values 

for use in their design practice. 

 

Specific design requirements may necessitate reliability 

target higher than 99% for bending stress and 95% for 

deflection. Specifying reliability target in terms of the 

number of “nines” appears attractive because the failure rate 

decreases by one-order of magnitude for each additional nine. 

For instance, a reliability target of three nines (99.9%) has 10 

times less failure rate than a reliability target of two nines 

(99%). Similarly, a reliability target of five nines (99.999%) 

has 10 times less failure rate than that of four nines (99.99%).  

A reliability target of 99% means 1 failure in 100 designs on 

the average, 99.9% means 1 failure in 1000, etc. 
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NOMENCLATURE 

COV, Cov, cov = coefficient of variation 

zn
 
reliability factor 

ns  standard deviation of design model  

on  design factor (approximation of zn ) 

nos  = approximation of ns  

zR  reliability at z-value 

z  unit normal variate 

    generalized design model 

 expected value of generalized design model         

 standard deviation of generalized design model 

  cov of generalized design model 

summation symbol 

 

  f generalized function representation 

q combined distributed load per unit length 

L span of beam 

Lq  load per unit length from live load 

Dq  load per unit length from dead load 

d distributed load bending moment factor 

c concentrated load bending moment factor 


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  maximum expected stress 

xZ major section modulus 

YS  yield strength of beam material 

xM maximum bending moment  

dLM distributed live load bending moment 

cLM concentrated live load bending moment 

dDM distributed live load bending moment 

cDM concentrated dead load bending moment 

E elastic modulus of material 

xI major area inertia of shape 

dK distributed load deflection factor 

cK concentrated load deflection factor 

 span deflection factor 

  maximum expected deflection 

A maximum allowable deflection of beam 

  total deflection 

L live load deflection 

D dead load deflection 

dL distributed live load deflection 

cL concentrated live load deflection 

dD distributed dead load deflection 

cD concentrated dead load deflection 

cF  total concentrated load  

dF  total distributed load  

cDLF concentrated dead load 

cLLF concentrated live load 

dDLF distributed dead load 

dLLF distributed live load 

F maximum shear force 

DF  total dead load shear force 

LF  total live load shear force 

dDF  distributed dead load shear force 

cDF  concentrated dead load shear force 

dLF  distributed live load shear force 

cLF  concentrated live load shear force 

/
c concentrated load shear force factor 

/
d distributed load shear force factor 

h  beam depth 

wh web depth  

wt web thickness 

ft flange thickness 

wA  area of web 

w average web shear stress 

Y cov for yield strength 

E cov for elastic modulus 

l cov for beam span 

A  cov of section area 

Z cov for section modulus 

I cov for area inertia 

m cov for design model 

M  cov of design model expected value 

Mo  = approximation of M  

F  cov of serviceability failure value 

L  cov for live load 

D  cov for dead load 

dD cov for distributed dead load 

dL cov for distributed live load 

  cov for bending stress 

Mx cov for bending moment 

xD cov for dead load bending moment 

xL cov for live load bending moment 

xdD cov for distributed dead load bending moment 

xdL cov for distributed live load bending moment 

xcD cov for concentrated dead load bending moment 

xcL cov for concentrated live load bending moment 

A  cov of allowable deflection 

 cov for total defection 

D cov for dead load deflection 

L cov for live load deflection 

dD cov for distributed dead load deflection 

dL cov for distributed live load deflection 

cD cov for concentrated dead load deflection 

cL cov for concentrated live load deflection 

cD concentrated dead load deflection 

F cov for total shear force load 

FD cov for dead shear force load 

FL cov for live shear force load 

max  cov for web maximum shear stress 


