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Abstract 
This being the era of fast, high performance computing, there is the need of having efficient optimizations in the processor 

architecture and at the same time in memory hierarchy too. Each and every day, the advancement of applications in 
communication and multimedia systems are compelling to increase number of cores in the main processor viz., dual-core, quad-

core, octa-core and so on. But, for enhancing the overall performance of multi processor chip, there are stringent requirements to 

improve inter-core synchronization.  Thus, a MPSoC with 8-cores supporting both message-passing and shared-memory inter-

core communication mechanisms is implemented on Virtex 5 LX110T FPGA. Each core is based on MIPS III (Microprocessor 

without interlocked pipelined stages) ISA, handling only integer type instructions and having six-stage pipeline with data hazard 

detection unit and forwarding logic. The eight  processing cores and one central shared memory core are inter connected using 

3x3 2-D mesh topology based Network-on-chip (NoC) with  virtual channel router. The router is four stage pipelined supporting 

DOR X-Y routing algorithm and with round robin arbitration technique. For verification and functionality test of above fully 

synthesized multi core processor, matrix multiplication operation is mapped onto the above said. Partitioning and scheduling of 

multiple multiplications and addition for each element of resultant matrix has been done accordingly among eight cores to get 

maximum throughput. All the codes for processor design are written in Verilog HDL. 
 

Keywords: MPSoC, message-passing, shared memory, MIPS, ISA, wormhole router, network-on-chip, SIMD, data 

level parallelism, 2-D Mesh, virtual channel 

--------------------------------------------------------------------***----------------------------------------------------------------------

1. INTRODUCTION 

Multicore systems are dominating the processor market; 

they enable the increase in computing power of a single chip 

in proportion to the Moore's law-driven increase in number 

of transistors. A similar evolution is observed in the system-

on-chip (SoC) market through the emergence of multi-

processor SoC (MPSoC) designs. Nevertheless, MPSoCs 
introduce some challenges to the system architects 

concerning the efficient design of memory hierarchies and 

system interconnects while maintaining the low power and 

cost constraints. Finally, a qualitative analysis of the impact 

of instruction reuse, number of cores, and memory 

bandwidth on the system throughput in MPSoC systems is 

presented. 

 

In recent years, the progress of computer science has been 

focused on the development of parallel computing systems 

(both hardware and software) and making those systems 
efficient, cost effective, and easy to program. Parallel 

computers have been around for many years. However, with 

the ability to now put multiple processing cores on a single 

chip the technologies of the past are in many cases obsolete. 

Technologies which have enabled parallel computing in the 

past must be re-designed with new constraints in mind. One 

important part of achieving these objectives has been to 

investigate various means of implementing mechanisms for 

communication between on-chip processing elements. 

This ultimately has lead to the use of on-chip 

communication networks [9, 10]. There has been a 

significant amount of research devoted to on-chip networks, 

also known as Networks-on-Chip (NoC). Much of this has 

focused on the development of network topologies, routing 
algorithms, and router architectures that minimize power 

consumption and hardware cost while improving latency 

and throughput. However, no one solution seems to be 

universally acceptable. It follows that standardized methods 

to provide communication services on a multicore system-

on-chip (SoC) also remain unclear. This can only slow the 

progress of the adoption of concrete parallel programming 

practices, which software developers are desperately in need 

of. 

 

2. LITERATURE REVIEW 

Implementation of multicore architecture on FPGAs has 

been the subject of several research projects. In [9] Del 
Valle et al present an FPGA-based emulation framework for 

multiprocessor system-on-chip (MPSoC) architectures. 

LEON3 [1], a synthesizable VHDL model of a 32-bit 

processor compliant with the SPARC V8 architecture, has 

been used in implementing multiprocessor systems on 

FPGAs. Andersson et al [2], for example, use the LEON4FT 

microprocessor to build their Next Generation Multipurpose 

Microprocessor (NGMP) architecture, which is prototyped 

on the Xilinx XC5VFX130T FPGA board. However, the 
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LEON architecture is fairly complex, and it is difficult to 

instantiate more than two or three on a medium size FPGA. 

Clack et al [4] investigate the use of FPGAs as a prototyping 

platform for developing multicore system applications. They 

use Xilinx MicroBlaze processor for the core, and a bus 

protocol for the inter-core communication. James-Roxby et 
al [5] shows similar FPGA design in their proposed 

architecture for supporting a single program multiple data 

model of parallel processing. A VHDL-based cycle accurate 

RTL model for evaluating power and performance of NoC 

architectures is presented in Banerjee et al [3]. 

 

Traditionally, processors in a parallel computer 

communicate through either shared memory or message 

passing [13]. In a shared memory system, processors have at 

least some shared address space with the other processors in 

the system. When multiple processors are working on the 
same task they often access the same data. To ensure 

correctness, accesses to the same data (or variable) must be 

mutually exclusive. Therefore, when one processor is 

accessing a shared variable, the others must wait for their 

turn. This typically works fine when there are only a few 

processors. However, when there are many, the time 

required to obtain access can become a serious performance 

limitation. Perhaps the biggest issue with performance in 

parallel systems is with data locality [12, 13]. Anytime a 

program accesses data there is a cost associated with that 

access. The further the physical location of the data is from 

the processor, the larger the cost is for accessing it. Caches 
and memory hierarchies help to combat this problem. 

However, as systems scale more aggressively the hardware 

that controls these hierarchies becomes more complex, 

power hungry, and expensive. Therefore, the programmer 

must have some control over locality. Through the tool 

chain, instruction set, or operating system the programmer 

should be able to specify the location of data structures and 

the location of the processor that will run the code that uses 

these data structures. 

 

Each of these challenges is addressed in this work. Limited 
parallelism is addressed by designing a highly efficient 

communication system, thus making a program with 

frequent synchronization points more capable of performing 

well. Data locality is also dealt with. Lightweight message 

passing provides a programmer with the ability to copy data 

to where it needs to be for efficient use. To avoid inefficient 

use of memory, certain modifications provide the ability to 

statically allocate memory to only the core that uses it. 

Likewise, ISA (instruction set architecture) modifications 

provide the programmer with the ability to specify which 

core runs which code. 

 

3. SYSTEM ARCHITECTURE 

The 8-core processor proposed [14] has 3x3 2D Mesh NoC 

that links eight processor cores (PCore) based on MIPS III 

instruction set architecture [16] and a memory cores 

(MCore). A hybrid inter-core communication scheme is 

employed supporting both shared-memory and message-

passing communications. Shared memory in MCore enables 

shared-memory communications within the cluster, and the 

NoC enables message-passing among all PCores. The 

cluster comprises eight Pcores and one MCore, shared 

memory in MCore can be accessed by PCores in the same 

cluster. Data enters the processor through the input First in 

First out (FIFO), and exits through the output FIFO. An on-

chip oscillator generates the system clock, necessary for 
circuit functioning. Fig. 1 depicts the architecture overview 

and key features of the proposed processor [15]. 

 

 
Fig -1: Architecture Overview of project 

 
The PCore includes a typical Reduced Instruction Set 

Computer (RISC) style processor core with six-stage 

pipeline, a 256-word instruction memory, a 256-word 

private data memory, a router and interfaces for inter-core 

communications. The MCore includes an 1k-word shared 

memory with four banks. Detailed design and 

implementation of 32 bit MIPS processor of Pcore is 

discussed in the following section. 

 

3.1 Processor Overview 

The processor core uses a 6-stage in-order pipeline [15] as 

shown in Fig. 3.3. Initially, a program counter is 

incremented in stage 1 to provide an address for the 

instruction fetch in stage 2. It is reasonable to assume that 
all instruction fetches will complete in one clock cycle. 

Stage 3 decodes the 32-bit instruction by extracting it’s 

various fields and setting the appropriate control signals 

based on those fields. The register file is also accessed in 

this stage. Note that a register can be read in the same clock 

cycle that it is written to without conflict. Next, the 

functional units perform the computation for the bulk of the 

instruction set. The router at each node handles all 

communication oriented instructions that have been added to 

the MIPS ISA in this design. Accesses to data memory are 

handled in stage 5. Operations in this stage may stall the 
pipeline. Finally, results of memory or functional unit 

operations are written to their destination registers in stage 

6. Much of the basic design follows from the MIPS[16] 

processor architecture presented in [7]. This includes the 

logic used for data forwarding, hazard detection, and 
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pipeline organization. Though it has been heavily modified 

in this implementation, the design in [7] is a fundamental 

starting point for any student of this work. 

 

 
Fig -2: Six-stage pipeline of implemented processor 

 

4. OVERVIEW OF DESIGNED ROUTER 

The 2D-NoC system is based upon Mesh topology, where x-

addr and y-addr are attributed to each router and define its 

X and Y coordinates respectively and its position along the 

network. Many topologies exist for the implementation of 

NoCs, some are regular (Torus, tree-based) and other 

irregular topologies are customized for some special 
application. We choose the Mesh topology for this design 

thanks to its several properties like regularity, concurrent 

data transmission, and controlled electrical parameters [9]. 

Figure.3 shows a configuration example of the router 

designed for implementing 3x3 2D- NoC design. 

 

 
Fig -3: Router Architecture 

 

We can see in this figure that router is having five ports: Out 

of which four are for four directions’ routing and one is 

local to particular processing element node connected 

through network interface. Each port is equipped with 
buffering modules to handle multiple traffic loads. 

 

4.1 Routing Algorithm 

The designed system router is based upon the Dimension 

Order Routing (DOR) XY algorithm [17]. XY routes flits 

first along the X dimension and then along the Y and to 

reach its destination. This process is done by comparing the 

address of the processing node with the destination node’s 

address to determine the Output-Port: The routing algorithm 
implemented in the designed router is summarized in the 

table -1. 

 

Table -1: Routing Algorithm 

X 

Y 

xdest > 

xaddr 

xdest = 

xaddr 

xdest < 

xaddr 

ydest > 

yaddr 

East North West 

ydest = 

yaddr 

East Local West 

ydest < 

yaddr 

East South West 

 

 If xdest is larger than xaddr then Output-Port will 

be EAST. In the opposite case Output-Port will be 

WEST. 

 If ydest is larger than yaddr then Output-Port will 

be NORTH, else Output-Port will be SOUTH. 

 If xdest is equal to xaddr, ydest is equal to yaddr  

then Output-Port will be SELF 

 

4.2 Pipeline 

The pipeline for this designed router comprises of the 

general four stages. Taking a closer look at Fig. 4, we can 

see that conventional XY-based router pipeline design 

contains 4 main pipeline stages: Buffer Writing (BW) where 

the incoming flit is stored in the input buffer, then in 

Routing Calculation stage (RC) destination address is 

fetched and decoded to determine the Output-Port direction. 

Information about the selected Output-Port is sent to the 

next stage, Switch Arbitration (SA), to resolve any 

competition between different requests from different input-

ports. Finally the Crossbar traversal stage (CT) handles the 

transfer of the flit to the next neighboring node. This 4 
pipelines router design increases the flit latency and its 

associated power consumption, since any flit should go 

through all these stages at each hop while traveling from 

source to destination. 

 

Fig -4: Router pipeline stages 
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4.3 Switch Arbitration 

When two or more packets need to use the same link they 

must go through an arbitration process to determine which 

packet should get exclusive access to the link. The arbiter 

must be fair, but must be capable of granting access very 

quickly. The arbitration process used in both network types 

is governed by the finite state machine (FSM) [9, 23] given 
in Fig. 5. For simplicity, only 3 input channels (north, south, 

and east) are used and state transitions to and from the initial 

state have been omitted. This arbitration FSM is instantiated 

for each output port. 

 

 
Fig -5: Arbitration FSM 

 
The directions (abbreviated by N, S, and E) in the diagram 

represent requests and grants to each input channel for use 

of the output channel associated with the FSM instantiation. 

The request signals are generated by the routing function 

and the direction that a packet needs to go. This signal only 

returns to zero when a tail flit is seen. Notice that each state 

gives priority to the channel that currently has the grant 

token. If that request returns to zero (from a tail flit), priority 

goes to the next channel in a round robin sequence. If there 

are no pending requests then the FSM returns to the initial 

state. 

 

5. EVALUATION METHODOLOGY 

Our system was designed in Verilog HDL, synthesized and 

prototyped on commercial CAD tools and FPGA 

respectively [8]. We evaluate the hardware complexity of 

this octa-core MPSoC, when implemented Virtex 5 LX110T 

FPGA, in terms of area utilization, power consumption and 

clock frequency. 

 

When implementing an application in parallel, the 

application must be broken down so that separate portions 

may be executed at the same time. This may be done via 

task parallelism in which the separate tasks undertaken by 

the application are executed concurrently, or it may be done 
via data parallelism in which the data to be operated on is 

broken into separate sections and each section of data is 

operated on at the same time. The data parallelism style of 

programming is ―the most common strategy for scientific 

programs on parallel machines‖[13]. To evaluate the 

performance of this octa-core processor, we selected a well 

known benchmark: Matrix multiplication, which is a well 

known application frequently used by many researchers. We 

chose the Matrix-multiplication since it is widely used in 

scientific applications. This choice is also made thanks to its 
potential to achieve its best performance in a parallel 

architecture [13]. 

 

5.1 Matrix-Multiplication 

 
𝑨𝟏𝟏 ⋯ 𝑨𝒌
⋮ ⋱ ⋮
𝑨𝒊𝟏 ⋯ 𝑨𝒊𝒌

 ×  
𝑩𝟏𝟏 ⋯ 𝑩𝟏𝒋
⋮ ⋱ ⋮
𝑩𝒌𝟏 ⋯ 𝑩𝒌𝒋

 

=  
𝑹𝟏𝟏 ⋯ 𝑹𝟏𝒋
⋮ ⋱ ⋮
𝑹𝒊𝟏 ⋯ 𝑹𝒊𝒋

  

Fig -6: Matrix multiplication example 

 

First we assume that an ixk matrix A has i rows and k 

columns, where Aik  is an element of A at the i-th row and k-
th column. As it demonstrated in Fig.6, an ixk matrix A can 

be multiplied by a kxj matrix B to obtain an ixj matrix R. 

Figure. 6 present how the matrix R can be obtained 

according to following formula. 

 

𝑹𝒊,𝒋 = 𝑨𝒊,𝒏 ∙ 𝑩𝒏,𝒌

𝒌−𝟏

𝒏=𝟎

 

 

When implemented onto octa-core processor, and for sake 

of convenience or without loss in generality, we can assume 

that all the matrices are square and having nxn size. In this 

project, each element of the two matrices is assigned to a 
processor core module which is connected to one router. As 

a result the number of routers connected to the network is 

 

Fig -7: Simple example demonstrating the Matrix 

multiplication calculation. 

 

the sum of all the elements of three matrices which is equal 

to 2n2. Each element of the matrix B receives n flits from n 

different elements of the matrix A in order to make the 

multiplication. Then, each element of the matrix B sends n 

flits to n different elements of the matrix R where all the 

received values are summed then the final resulted value is 

outputted. 
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Fig -8: Working summary of Mapped Program 

 

At present, this procedure is purely manual. Figure 8 

manifests the overall idea of tasks distribution done among 

eight cores. The clocking numbers shown are just for 

explanation and not the exact ones from simulation timings. 

The figure 8 is just explaining the program flow steps in 

brief. Firstly, program addresses are loaded into each cores’ 

PC, then data is loaded and finally step by step execution 

goes on. 

 

5.2 Synthesis Results 

After the HDL synthesis phase of the synthesis process, the 
RTL Viewer is used to view a schematic representation of 

the pre-optimized design in terms of generic symbols that 

are independent of the targeted Xilinx device, for example, 

in terms of adders, multipliers, counters, AND gates, and 

OR gates. 

 

Figure 9 is the top block automatically generated by RTL 

Viewer when real_cores_mesh.ngr file [18] is opened and 

run. Further opening means elaborating this top block gives 

all the basic components utilized and their inter-connections 

in detail to realize the proposed designed octa-core system 

can be visualized and analyzed from figure 9. 
 

 
Fig -9: RTL Schematic of Top block real_cores_mesh 

 

 
(a) router 
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(b)  MIPS_core 

 

Fig -10:  RTL schematic of other blocks 

 

Figure 10 shows the RTL schematic of other vital sub-

blocks of the Octa-core project top module 

real_cores_mesh. Each of the individual MIPS 32-bit 

processor module’s MIPS_core .ngr file gives details of 

RTL logic as shown in figure 10 (b). The router module 

designed for interconnecting each of cores is synthesized 
using file router.ngr. Its system generated RTL schematic 

can be seen in figure 10 (a). Technology Viewer can be used 

to view a schematic representation of the design in terms of 

logic elements optimized to the target Xilinx device or 

"technology," for example, in terms of LUTs, carry logic, 

I/O buffers, and other technology-specific components. 

 

5.3 Device Utilization 

The key architectural characteristics of the octa-core were 

summarized in earlier section 5.2. The actual resources 

utilization of the selected target device by the designed 

modules is now presented here. They are being synthesized 

by Xilinx’s ISE design Suite 14.5 EDA tool [18] and create 
a web file of Design Summary in the related project file. 

 

Table 2 summarizes the FPGA resource utilization by the 

different systems in terms of registers; lookup tables, and 

block RAMs. The real_cores_mesh module uses 99% of 

block RAM resources at 256 words of local memory per 

core. 

 

Table -2: Device utilization summary of real_cores_mesh 

TARGET DEVICE: Xc5vls110t-1ff1136 

Logic Utilization Used Available Utilization 

Number of Slice Registers 51397 69120 74% 

Number of Slice LUTs 60916 69120 88% 

Number of fully used LUT-FF pairs 25088 87225 28% 

Number of bonded IOBs 499 640 78% 

Number of Block RAM/FIFO 148 148 100% 

Number of BUFG/BUFGCTRL 17 32 54% 

Clock Rate (MHz) : 100 

Critical Path  (ns)    : 14.253 

 

Table -3:  Device utilization summary of MIPS_core 

TARGET DEVICE: Xc5vls110t-1ff1136 

Logic Utilization Used Available Utilization 

Number of Slice Registers 11278 69120 17% 

Number of Slice LUTs 15792 69120 23% 

Number of fully used LUT-FF pairs 9861 87225 11% 

Number of bonded IOBs 499 640 78% 

Number of Block RAM/FIFO 34 148 23% 

Number of BUFG/BUFGCTRL 17 32 54% 

Clock Rate (MHz) : 100 

Critical Path  (ns)    : 4.053 

 

Table -4: Device utilization summary of router 

TARGET DEVICE: Xc5vls110t-1ff1136 

Logic Utilization Used Available Utilization 

Number of Slice Registers 2640 69120 4% 
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Number of Slice LUTs 11622 69120 17% 

Number of fully used LUT-FF pairs 2199 87225 3% 

Number of bonded IOBs 37 640 6% 

Number of BUFG/BUFGCTRL 1 32 0% 

Clock Rate (MHz) : 33.33 

Critical Path  (ns)    : 23.697 

 

 

The real_cores_mesh system is running at 100 MHz, which 

is the clock frequency of the top module, regardless of the 

size of the mesh. The router module runs slower at 33 MHz 

speed and introduces some latency. This causes delay in the 
outcome of desired result. The worst case timing is said to 

have critical path. Its timing is also quoted in the tables. 

 

5.4 Simulation Results 

Here, we have taken an example showing the matrix 

multiplication of two 2x2 matrices. The program for this 

was loaded into the memory.mem [21] file of instruction 

memory. The data for two input 2x2 matrices is stored in 

array in the shared memory from where each P core 

accesses it as per the described  partition of data in the code 

and runs their instruction following strict scheduling 

constraints given by programmer. Manually, calculated 

results and those obtained from the simulation were verified 

and found to be correct. All the data is in Hexadecimal 
system. 

 

The simulation waveform generated for the written and 

loaded test code is shown in figure 11. The simulation for 

data memory block is summarized here. The console data is 

printed by test bench for easy verification of results. It 

shows the results of program run in previous simulation 

waveform, being written back to memory addresses 

specified by program code. A snapshot of data in the 

console window of ISim  is shown in figure 12. 
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Fig -11: Simulation Waveform for each processor and the memory contents 

 

 

 

 
Fig -12: Snapshot of console window of ISim showing 

results of program run 

 

A brief description of simulation is explained here:  During 

first clock cycle after reset and as soon as PROG pin is high, 

it allows the address of program instructions to be loaded 

into the PC (program counter) of each core correspondingly 
at the same time. Due to this a small multiplication program 

is loaded into instruction memory of each core. As per 

partitioned data, each core accesses its data elements and 

starts performing multiplication of each row and 

corresponding column element. Some of the clock cycles are 

invested in these computations. Then respective cores 

request for the partial result data which it needs to add with 

its result for resultant matrix element. Thus, we get the fast 

execution of matrix multiplication with less latency by 

exploiting the parallelism of data manipulation. 

 

5.5 Implementation Results 

A large number of cores can be implemented on a modern 
FPGA. Moreover, having a simple RISC core, MIPS in our 

case, for the processing element (PE) allows for a good size 

multicore system. The board being used to verify the multi 

core processor was a Xilinx University Program (XUP) 

board that contains Xilinx Virtex 5 XUP VLX110T FPGA, 

package 1ff1136 [20]. The processor was instantiated into 

an FPGA module to connect internal signals of the processor 

to the I/O of the board (push buttons, dip switch, and LEDs) 

shown in figure 13. 
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Fig -13:  Hardware Implementation of designed Octa- core 

processor on Virtex 5 FPGA 

 

The FPGA module supports two modes of operation: the 

onboard 33 MHz [18] clock or a step clock triggered by 

pressing a push button. The clock mode is set by dip switch 
1. An onboard 100 MHz clock is used here. Other available 

clocking options could be implemented by modifying the 

user constraint file (UCF) [21]. iMPact tool targets the 

FPGA device by initializing the chain and then programs the 

selected device by loading the generated .bit file through 

JTAG programming cable. 

 

6. CONCLUSION 

We have presented a complete, realistic, fully 

parameterized, synthesizable, modular, multicore 

architecture. The system, an octa-core processor, uses a 

component-based design approach, where the processing 

element or core, the router and the network-on-chip, and the 
memory subsystem are independent building blocks, and 

can be used in other designs. The baseline system has a 6-

stage integer-based MIPS core, a virtual-channel wormhole 

router, with support for both shared memory and message-

passing inter core communication techniques. It has been 

successfully implemented on the Xilinx Virtex-5 LX110T 

FPGA board. We have introduced a small matrix 

multiplication program, now presently being written and 

dumped in the system memory manually. Also the workload 

distribution amongst multiple cores according to application 

being run is still a manual process. 
 

6.1 Opportunities 

 Good attempt being made to combine the best of both 

inter-core communication technique viz. Shared 

memory and Message passing. 

 Efficient memory distribution by separating instruction 

and data memory amongst each core. Thus, memory 

accesses provide low latency. 

 Low power consumption of the system as it is running 

on slower clock speed viz.100MHz. But, at the same 

time performance is not sacrificed because of multiple 

cores. 

 

6.2 Limitations 

 Mostly known, parallel programming is quite different 
and complex than traditional sequential style of 

programming. So stringent, excellent and careful 

programming skills are required. 

 At present, due to absence of software tool chain 

program loading into instruction memory and the 

workload distribution among cores is manual. Thus, it 

is quite tedious job and requires cautious efforts to 

avoid any discrepancies. 

 During the specific parallel program execution, some 

of the cores remain idle. Thus, some dynamic task 

distribution technique need to be revised for efficient 
exploitation of work capabilities of multiple core 

system. 

 Instruction  set implemented for the project has 

excluded the floating point instruction and some other 

advanced version of load and store instruction. So, for 

real time applications instruction set need to be 

extended 

 

7. FUTURE WORK 

As mentioned above, the processing element designed above 

was simple supporting only basic instructions dealing with 

integer type only. For future, optimizing this multicore 

processor by involving all the UART, interrupt handler and 
real time related peripherals for some specific application is 

the goal. Designing software toolchain in Linux 

environment for mapping multi-threaded parallel running 

programs on multicore platform and exploring appropriate 

technique for managing dynamic runtime workload among 

the cores are some of the future goals. 
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