
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 05 | May-2015, Available @ http://www.ijret.org 377

AN OCTA-CORE PROCESSOR WITH SHARED MEMORY AND

MESSAGE-PASSING

Jinal K. Tapar
1
, Shrushti K. Tapar

2
, Ashish E. Bhande

3

1
PG student, ECE Dept., HVPM’s CoET, M.S, India

2
PG student, ECE Dept., HVPM’s CoET, M.S, India

3
Asst. Professor, ECE Dept., HVPM’s CoET, M.S, India

Abstract
This being the era of fast, high performance computing, there is the need of having efficient optimizations in the processor

architecture and at the same time in memory hierarchy too. Each and every day, the advancement of applications in
communication and multimedia systems are compelling to increase number of cores in the main processor viz., dual-core, quad-

core, octa-core and so on. But, for enhancing the overall performance of multi processor chip, there are stringent requirements to

improve inter-core synchronization. Thus, a MPSoC with 8-cores supporting both message-passing and shared-memory inter-

core communication mechanisms is implemented on Virtex 5 LX110T FPGA. Each core is based on MIPS III (Microprocessor

without interlocked pipelined stages) ISA, handling only integer type instructions and having six-stage pipeline with data hazard

detection unit and forwarding logic. The eight processing cores and one central shared memory core are inter connected using

3x3 2-D mesh topology based Network-on-chip (NoC) with virtual channel router. The router is four stage pipelined supporting

DOR X-Y routing algorithm and with round robin arbitration technique. For verification and functionality test of above fully

synthesized multi core processor, matrix multiplication operation is mapped onto the above said. Partitioning and scheduling of

multiple multiplications and addition for each element of resultant matrix has been done accordingly among eight cores to get

maximum throughput. All the codes for processor design are written in Verilog HDL.

Keywords: MPSoC, message-passing, shared memory, MIPS, ISA, wormhole router, network-on-chip, SIMD, data

level parallelism, 2-D Mesh, virtual channel

--***--

1. INTRODUCTION

Multicore systems are dominating the processor market;

they enable the increase in computing power of a single chip

in proportion to the Moore's law-driven increase in number

of transistors. A similar evolution is observed in the system-

on-chip (SoC) market through the emergence of multi-

processor SoC (MPSoC) designs. Nevertheless, MPSoCs
introduce some challenges to the system architects

concerning the efficient design of memory hierarchies and

system interconnects while maintaining the low power and

cost constraints. Finally, a qualitative analysis of the impact

of instruction reuse, number of cores, and memory

bandwidth on the system throughput in MPSoC systems is

presented.

In recent years, the progress of computer science has been

focused on the development of parallel computing systems

(both hardware and software) and making those systems
efficient, cost effective, and easy to program. Parallel

computers have been around for many years. However, with

the ability to now put multiple processing cores on a single

chip the technologies of the past are in many cases obsolete.

Technologies which have enabled parallel computing in the

past must be re-designed with new constraints in mind. One

important part of achieving these objectives has been to

investigate various means of implementing mechanisms for

communication between on-chip processing elements.

This ultimately has lead to the use of on-chip

communication networks [9, 10]. There has been a

significant amount of research devoted to on-chip networks,

also known as Networks-on-Chip (NoC). Much of this has

focused on the development of network topologies, routing
algorithms, and router architectures that minimize power

consumption and hardware cost while improving latency

and throughput. However, no one solution seems to be

universally acceptable. It follows that standardized methods

to provide communication services on a multicore system-

on-chip (SoC) also remain unclear. This can only slow the

progress of the adoption of concrete parallel programming

practices, which software developers are desperately in need

of.

2. LITERATURE REVIEW

Implementation of multicore architecture on FPGAs has

been the subject of several research projects. In [9] Del
Valle et al present an FPGA-based emulation framework for

multiprocessor system-on-chip (MPSoC) architectures.

LEON3 [1], a synthesizable VHDL model of a 32-bit

processor compliant with the SPARC V8 architecture, has

been used in implementing multiprocessor systems on

FPGAs. Andersson et al [2], for example, use the LEON4FT

microprocessor to build their Next Generation Multipurpose

Microprocessor (NGMP) architecture, which is prototyped

on the Xilinx XC5VFX130T FPGA board. However, the

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 378

LEON architecture is fairly complex, and it is difficult to

instantiate more than two or three on a medium size FPGA.

Clack et al [4] investigate the use of FPGAs as a prototyping

platform for developing multicore system applications. They

use Xilinx MicroBlaze processor for the core, and a bus

protocol for the inter-core communication. James-Roxby et
al [5] shows similar FPGA design in their proposed

architecture for supporting a single program multiple data

model of parallel processing. A VHDL-based cycle accurate

RTL model for evaluating power and performance of NoC

architectures is presented in Banerjee et al [3].

Traditionally, processors in a parallel computer

communicate through either shared memory or message

passing [13]. In a shared memory system, processors have at

least some shared address space with the other processors in

the system. When multiple processors are working on the
same task they often access the same data. To ensure

correctness, accesses to the same data (or variable) must be

mutually exclusive. Therefore, when one processor is

accessing a shared variable, the others must wait for their

turn. This typically works fine when there are only a few

processors. However, when there are many, the time

required to obtain access can become a serious performance

limitation. Perhaps the biggest issue with performance in

parallel systems is with data locality [12, 13]. Anytime a

program accesses data there is a cost associated with that

access. The further the physical location of the data is from

the processor, the larger the cost is for accessing it. Caches
and memory hierarchies help to combat this problem.

However, as systems scale more aggressively the hardware

that controls these hierarchies becomes more complex,

power hungry, and expensive. Therefore, the programmer

must have some control over locality. Through the tool

chain, instruction set, or operating system the programmer

should be able to specify the location of data structures and

the location of the processor that will run the code that uses

these data structures.

Each of these challenges is addressed in this work. Limited
parallelism is addressed by designing a highly efficient

communication system, thus making a program with

frequent synchronization points more capable of performing

well. Data locality is also dealt with. Lightweight message

passing provides a programmer with the ability to copy data

to where it needs to be for efficient use. To avoid inefficient

use of memory, certain modifications provide the ability to

statically allocate memory to only the core that uses it.

Likewise, ISA (instruction set architecture) modifications

provide the programmer with the ability to specify which

core runs which code.

3. SYSTEM ARCHITECTURE

The 8-core processor proposed [14] has 3x3 2D Mesh NoC

that links eight processor cores (PCore) based on MIPS III

instruction set architecture [16] and a memory cores

(MCore). A hybrid inter-core communication scheme is

employed supporting both shared-memory and message-

passing communications. Shared memory in MCore enables

shared-memory communications within the cluster, and the

NoC enables message-passing among all PCores. The

cluster comprises eight Pcores and one MCore, shared

memory in MCore can be accessed by PCores in the same

cluster. Data enters the processor through the input First in

First out (FIFO), and exits through the output FIFO. An on-

chip oscillator generates the system clock, necessary for
circuit functioning. Fig. 1 depicts the architecture overview

and key features of the proposed processor [15].

Fig -1: Architecture Overview of project

The PCore includes a typical Reduced Instruction Set

Computer (RISC) style processor core with six-stage

pipeline, a 256-word instruction memory, a 256-word

private data memory, a router and interfaces for inter-core

communications. The MCore includes an 1k-word shared

memory with four banks. Detailed design and

implementation of 32 bit MIPS processor of Pcore is

discussed in the following section.

3.1 Processor Overview

The processor core uses a 6-stage in-order pipeline [15] as

shown in Fig. 3.3. Initially, a program counter is

incremented in stage 1 to provide an address for the

instruction fetch in stage 2. It is reasonable to assume that
all instruction fetches will complete in one clock cycle.

Stage 3 decodes the 32-bit instruction by extracting it’s

various fields and setting the appropriate control signals

based on those fields. The register file is also accessed in

this stage. Note that a register can be read in the same clock

cycle that it is written to without conflict. Next, the

functional units perform the computation for the bulk of the

instruction set. The router at each node handles all

communication oriented instructions that have been added to

the MIPS ISA in this design. Accesses to data memory are

handled in stage 5. Operations in this stage may stall the
pipeline. Finally, results of memory or functional unit

operations are written to their destination registers in stage

6. Much of the basic design follows from the MIPS[16]

processor architecture presented in [7]. This includes the

logic used for data forwarding, hazard detection, and

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 379

pipeline organization. Though it has been heavily modified

in this implementation, the design in [7] is a fundamental

starting point for any student of this work.

Fig -2: Six-stage pipeline of implemented processor

4. OVERVIEW OF DESIGNED ROUTER

The 2D-NoC system is based upon Mesh topology, where x-

addr and y-addr are attributed to each router and define its

X and Y coordinates respectively and its position along the

network. Many topologies exist for the implementation of

NoCs, some are regular (Torus, tree-based) and other

irregular topologies are customized for some special
application. We choose the Mesh topology for this design

thanks to its several properties like regularity, concurrent

data transmission, and controlled electrical parameters [9].

Figure.3 shows a configuration example of the router

designed for implementing 3x3 2D- NoC design.

Fig -3: Router Architecture

We can see in this figure that router is having five ports: Out

of which four are for four directions’ routing and one is

local to particular processing element node connected

through network interface. Each port is equipped with
buffering modules to handle multiple traffic loads.

4.1 Routing Algorithm

The designed system router is based upon the Dimension

Order Routing (DOR) XY algorithm [17]. XY routes flits

first along the X dimension and then along the Y and to

reach its destination. This process is done by comparing the

address of the processing node with the destination node’s

address to determine the Output-Port: The routing algorithm
implemented in the designed router is summarized in the

table -1.

Table -1: Routing Algorithm

X

Y

xdest >

xaddr

xdest =

xaddr

xdest <

xaddr

ydest >

yaddr

East North West

ydest =

yaddr

East Local West

ydest <

yaddr

East South West

 If xdest is larger than xaddr then Output-Port will

be EAST. In the opposite case Output-Port will be

WEST.

 If ydest is larger than yaddr then Output-Port will

be NORTH, else Output-Port will be SOUTH.

 If xdest is equal to xaddr, ydest is equal to yaddr

then Output-Port will be SELF

4.2 Pipeline

The pipeline for this designed router comprises of the

general four stages. Taking a closer look at Fig. 4, we can

see that conventional XY-based router pipeline design

contains 4 main pipeline stages: Buffer Writing (BW) where

the incoming flit is stored in the input buffer, then in

Routing Calculation stage (RC) destination address is

fetched and decoded to determine the Output-Port direction.

Information about the selected Output-Port is sent to the

next stage, Switch Arbitration (SA), to resolve any

competition between different requests from different input-

ports. Finally the Crossbar traversal stage (CT) handles the

transfer of the flit to the next neighboring node. This 4
pipelines router design increases the flit latency and its

associated power consumption, since any flit should go

through all these stages at each hop while traveling from

source to destination.

Fig -4: Router pipeline stages

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 380

4.3 Switch Arbitration

When two or more packets need to use the same link they

must go through an arbitration process to determine which

packet should get exclusive access to the link. The arbiter

must be fair, but must be capable of granting access very

quickly. The arbitration process used in both network types

is governed by the finite state machine (FSM) [9, 23] given
in Fig. 5. For simplicity, only 3 input channels (north, south,

and east) are used and state transitions to and from the initial

state have been omitted. This arbitration FSM is instantiated

for each output port.

Fig -5: Arbitration FSM

The directions (abbreviated by N, S, and E) in the diagram

represent requests and grants to each input channel for use

of the output channel associated with the FSM instantiation.

The request signals are generated by the routing function

and the direction that a packet needs to go. This signal only

returns to zero when a tail flit is seen. Notice that each state

gives priority to the channel that currently has the grant

token. If that request returns to zero (from a tail flit), priority

goes to the next channel in a round robin sequence. If there

are no pending requests then the FSM returns to the initial

state.

5. EVALUATION METHODOLOGY

Our system was designed in Verilog HDL, synthesized and

prototyped on commercial CAD tools and FPGA

respectively [8]. We evaluate the hardware complexity of

this octa-core MPSoC, when implemented Virtex 5 LX110T

FPGA, in terms of area utilization, power consumption and

clock frequency.

When implementing an application in parallel, the

application must be broken down so that separate portions

may be executed at the same time. This may be done via

task parallelism in which the separate tasks undertaken by

the application are executed concurrently, or it may be done
via data parallelism in which the data to be operated on is

broken into separate sections and each section of data is

operated on at the same time. The data parallelism style of

programming is ―the most common strategy for scientific

programs on parallel machines‖[13]. To evaluate the

performance of this octa-core processor, we selected a well

known benchmark: Matrix multiplication, which is a well

known application frequently used by many researchers. We

chose the Matrix-multiplication since it is widely used in

scientific applications. This choice is also made thanks to its
potential to achieve its best performance in a parallel

architecture [13].

5.1 Matrix-Multiplication

𝑨𝟏𝟏 ⋯ 𝑨𝒌
⋮ ⋱ ⋮
𝑨𝒊𝟏 ⋯ 𝑨𝒊𝒌

 ×
𝑩𝟏𝟏 ⋯ 𝑩𝟏𝒋
⋮ ⋱ ⋮
𝑩𝒌𝟏 ⋯ 𝑩𝒌𝒋

=
𝑹𝟏𝟏 ⋯ 𝑹𝟏𝒋
⋮ ⋱ ⋮
𝑹𝒊𝟏 ⋯ 𝑹𝒊𝒋

Fig -6: Matrix multiplication example

First we assume that an ixk matrix A has i rows and k

columns, where Aik is an element of A at the i-th row and k-
th column. As it demonstrated in Fig.6, an ixk matrix A can

be multiplied by a kxj matrix B to obtain an ixj matrix R.

Figure. 6 present how the matrix R can be obtained

according to following formula.

𝑹𝒊,𝒋 = 𝑨𝒊,𝒏 ∙ 𝑩𝒏,𝒌

𝒌−𝟏

𝒏=𝟎

When implemented onto octa-core processor, and for sake

of convenience or without loss in generality, we can assume

that all the matrices are square and having nxn size. In this

project, each element of the two matrices is assigned to a
processor core module which is connected to one router. As

a result the number of routers connected to the network is

Fig -7: Simple example demonstrating the Matrix

multiplication calculation.

the sum of all the elements of three matrices which is equal

to 2n2. Each element of the matrix B receives n flits from n

different elements of the matrix A in order to make the

multiplication. Then, each element of the matrix B sends n

flits to n different elements of the matrix R where all the

received values are summed then the final resulted value is

outputted.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 381

Fig -8: Working summary of Mapped Program

At present, this procedure is purely manual. Figure 8

manifests the overall idea of tasks distribution done among

eight cores. The clocking numbers shown are just for

explanation and not the exact ones from simulation timings.

The figure 8 is just explaining the program flow steps in

brief. Firstly, program addresses are loaded into each cores’

PC, then data is loaded and finally step by step execution

goes on.

5.2 Synthesis Results

After the HDL synthesis phase of the synthesis process, the
RTL Viewer is used to view a schematic representation of

the pre-optimized design in terms of generic symbols that

are independent of the targeted Xilinx device, for example,

in terms of adders, multipliers, counters, AND gates, and

OR gates.

Figure 9 is the top block automatically generated by RTL

Viewer when real_cores_mesh.ngr file [18] is opened and

run. Further opening means elaborating this top block gives

all the basic components utilized and their inter-connections

in detail to realize the proposed designed octa-core system

can be visualized and analyzed from figure 9.

Fig -9: RTL Schematic of Top block real_cores_mesh

(a) router

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 382

(b) MIPS_core

Fig -10: RTL schematic of other blocks

Figure 10 shows the RTL schematic of other vital sub-

blocks of the Octa-core project top module

real_cores_mesh. Each of the individual MIPS 32-bit

processor module’s MIPS_core .ngr file gives details of

RTL logic as shown in figure 10 (b). The router module

designed for interconnecting each of cores is synthesized
using file router.ngr. Its system generated RTL schematic

can be seen in figure 10 (a). Technology Viewer can be used

to view a schematic representation of the design in terms of

logic elements optimized to the target Xilinx device or

"technology," for example, in terms of LUTs, carry logic,

I/O buffers, and other technology-specific components.

5.3 Device Utilization

The key architectural characteristics of the octa-core were

summarized in earlier section 5.2. The actual resources

utilization of the selected target device by the designed

modules is now presented here. They are being synthesized

by Xilinx’s ISE design Suite 14.5 EDA tool [18] and create
a web file of Design Summary in the related project file.

Table 2 summarizes the FPGA resource utilization by the

different systems in terms of registers; lookup tables, and

block RAMs. The real_cores_mesh module uses 99% of

block RAM resources at 256 words of local memory per

core.

Table -2: Device utilization summary of real_cores_mesh

TARGET DEVICE: Xc5vls110t-1ff1136

Logic Utilization Used Available Utilization

Number of Slice Registers 51397 69120 74%

Number of Slice LUTs 60916 69120 88%

Number of fully used LUT-FF pairs 25088 87225 28%

Number of bonded IOBs 499 640 78%

Number of Block RAM/FIFO 148 148 100%

Number of BUFG/BUFGCTRL 17 32 54%

Clock Rate (MHz) : 100

Critical Path (ns) : 14.253

Table -3: Device utilization summary of MIPS_core

TARGET DEVICE: Xc5vls110t-1ff1136

Logic Utilization Used Available Utilization

Number of Slice Registers 11278 69120 17%

Number of Slice LUTs 15792 69120 23%

Number of fully used LUT-FF pairs 9861 87225 11%

Number of bonded IOBs 499 640 78%

Number of Block RAM/FIFO 34 148 23%

Number of BUFG/BUFGCTRL 17 32 54%

Clock Rate (MHz) : 100

Critical Path (ns) : 4.053

Table -4: Device utilization summary of router

TARGET DEVICE: Xc5vls110t-1ff1136

Logic Utilization Used Available Utilization

Number of Slice Registers 2640 69120 4%

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 383

Number of Slice LUTs 11622 69120 17%

Number of fully used LUT-FF pairs 2199 87225 3%

Number of bonded IOBs 37 640 6%

Number of BUFG/BUFGCTRL 1 32 0%

Clock Rate (MHz) : 33.33

Critical Path (ns) : 23.697

The real_cores_mesh system is running at 100 MHz, which

is the clock frequency of the top module, regardless of the

size of the mesh. The router module runs slower at 33 MHz

speed and introduces some latency. This causes delay in the
outcome of desired result. The worst case timing is said to

have critical path. Its timing is also quoted in the tables.

5.4 Simulation Results

Here, we have taken an example showing the matrix

multiplication of two 2x2 matrices. The program for this

was loaded into the memory.mem [21] file of instruction

memory. The data for two input 2x2 matrices is stored in

array in the shared memory from where each P core

accesses it as per the described partition of data in the code

and runs their instruction following strict scheduling

constraints given by programmer. Manually, calculated

results and those obtained from the simulation were verified

and found to be correct. All the data is in Hexadecimal
system.

The simulation waveform generated for the written and

loaded test code is shown in figure 11. The simulation for

data memory block is summarized here. The console data is

printed by test bench for easy verification of results. It

shows the results of program run in previous simulation

waveform, being written back to memory addresses

specified by program code. A snapshot of data in the

console window of ISim is shown in figure 12.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 384

Fig -11: Simulation Waveform for each processor and the memory contents

Fig -12: Snapshot of console window of ISim showing

results of program run

A brief description of simulation is explained here: During

first clock cycle after reset and as soon as PROG pin is high,

it allows the address of program instructions to be loaded

into the PC (program counter) of each core correspondingly
at the same time. Due to this a small multiplication program

is loaded into instruction memory of each core. As per

partitioned data, each core accesses its data elements and

starts performing multiplication of each row and

corresponding column element. Some of the clock cycles are

invested in these computations. Then respective cores

request for the partial result data which it needs to add with

its result for resultant matrix element. Thus, we get the fast

execution of matrix multiplication with less latency by

exploiting the parallelism of data manipulation.

5.5 Implementation Results

A large number of cores can be implemented on a modern
FPGA. Moreover, having a simple RISC core, MIPS in our

case, for the processing element (PE) allows for a good size

multicore system. The board being used to verify the multi

core processor was a Xilinx University Program (XUP)

board that contains Xilinx Virtex 5 XUP VLX110T FPGA,

package 1ff1136 [20]. The processor was instantiated into

an FPGA module to connect internal signals of the processor

to the I/O of the board (push buttons, dip switch, and LEDs)

shown in figure 13.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 385

Fig -13: Hardware Implementation of designed Octa- core

processor on Virtex 5 FPGA

The FPGA module supports two modes of operation: the

onboard 33 MHz [18] clock or a step clock triggered by

pressing a push button. The clock mode is set by dip switch
1. An onboard 100 MHz clock is used here. Other available

clocking options could be implemented by modifying the

user constraint file (UCF) [21]. iMPact tool targets the

FPGA device by initializing the chain and then programs the

selected device by loading the generated .bit file through

JTAG programming cable.

6. CONCLUSION

We have presented a complete, realistic, fully

parameterized, synthesizable, modular, multicore

architecture. The system, an octa-core processor, uses a

component-based design approach, where the processing

element or core, the router and the network-on-chip, and the
memory subsystem are independent building blocks, and

can be used in other designs. The baseline system has a 6-

stage integer-based MIPS core, a virtual-channel wormhole

router, with support for both shared memory and message-

passing inter core communication techniques. It has been

successfully implemented on the Xilinx Virtex-5 LX110T

FPGA board. We have introduced a small matrix

multiplication program, now presently being written and

dumped in the system memory manually. Also the workload

distribution amongst multiple cores according to application

being run is still a manual process.

6.1 Opportunities

 Good attempt being made to combine the best of both

inter-core communication technique viz. Shared

memory and Message passing.

 Efficient memory distribution by separating instruction

and data memory amongst each core. Thus, memory

accesses provide low latency.

 Low power consumption of the system as it is running

on slower clock speed viz.100MHz. But, at the same

time performance is not sacrificed because of multiple

cores.

6.2 Limitations

 Mostly known, parallel programming is quite different
and complex than traditional sequential style of

programming. So stringent, excellent and careful

programming skills are required.

 At present, due to absence of software tool chain

program loading into instruction memory and the

workload distribution among cores is manual. Thus, it

is quite tedious job and requires cautious efforts to

avoid any discrepancies.

 During the specific parallel program execution, some

of the cores remain idle. Thus, some dynamic task

distribution technique need to be revised for efficient
exploitation of work capabilities of multiple core

system.

 Instruction set implemented for the project has

excluded the floating point instruction and some other

advanced version of load and store instruction. So, for

real time applications instruction set need to be

extended

7. FUTURE WORK

As mentioned above, the processing element designed above

was simple supporting only basic instructions dealing with

integer type only. For future, optimizing this multicore

processor by involving all the UART, interrupt handler and
real time related peripherals for some specific application is

the goal. Designing software toolchain in Linux

environment for mapping multi-threaded parallel running

programs on multicore platform and exploring appropriate

technique for managing dynamic runtime workload among

the cores are some of the future goals.

ACKNOWLEDGEMENTS

I would like to extend my sincere gratitude to my guide

Prof. A E Bhande who have constantly encouraged me and

showed right directions to accomplish and realize this

project concept to reality. Also I am grateful to our HoD Dr.

U A. Belorkar and the whole staff of EXTC Dept. of
HVPM’s CoET for providing the essential resources and

environment.

REFERENCES

[1]. A. G. AB. Leon3 processor. Available at:

http://www.gaisler.com.

[2]. J. Andersson, J. Gaisler, and R. Weigand. Next

generation multipurpose microprocessor. Available at:

http://microelectronics.esa.int/ngmp/NGMP-DASIA10-

Paper.pdf, 2010.

[3]. N. Banerjee, P. Vellanki, and K. Chatha. A power and

performance model for network-on-chip architectures.

volume 2, pages 1250 – 1255 Vol.2, feb. 2004.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 386

[4]. C. R. Clack, R. Nathuji, and H.-H. S. Lee. Using an

fpga as a prototyping platform for multi-core processor

applications. In WARFP-2005: Workshop on Architecture

Research using FPGA Platforms, Cambridge, MA, USA,

feb. 2005.

[5]. P. James-Roxby, P. Schumacher, and C. Ross. A single
program multiple data parallel processing platform for

fpgas. In FCCM ’04: Proceedings of the 12th Annual IEEE

Symposium on Field-Programmable Custom Computing

Machines, pages 302–303, Washington, DC, USA, 2004.

[6]. Xilinx UG347 ML505/ML506/ML507 evaluation

platform, User guide

[7]. David A. Patterson and John L. Hennessy. Computer

Organization and Design: The Hardware/Software Interface.

Elsevier Inc., 3rd edition, 2005

[8]. http://www.xilinx.com

[9]. M. Ali, M. Welzl, and M. Zwicknagl. Networks on
chips: Scalable interconnects for future systems on chips.

ECCSC, 2008.

[10]. W. Dally and B. Towles. Route packets, not wires: On-

chip interconnection networks. DAC, 2001.

[11]. Xilinx UG348 ML505/ML506/ML507 Getting started

tutorial with Evaluation platform, User guide

[12]. Zhiyi Yu, Member, IEEE, Ruijin Xiao, Student

Member, IEEE, Kaidi You, Heng Quan, Peng Ou, Zheng

Yu, Maofei He, Jiajie Zhang, Yan Ying, Haofan Yang, Jun

Han, Xu Cheng, Zhang Zhang, Ming’e Jing, and Xiaoyang

Zeng, Member, IEEE ―A 16-Core Processor With Shared-

Memory and Message-Passing Communications‖, IEEE
transactions on circuits and systems—i: regular papers, vol.

61, no. 4, april 2014

[13]. C. Lin and L. Snyder. Principles of Parallel

Programming. AddisonWesley, 2008.

[14]. Jinal Tapar., PG student, Prof. A E. Bhande, Asst.

Prof, ―A Multi-Core Processor with Efficient Memory‖,

IJAFRC, volume 2, issue 2,February 2015,ISSN 2348 4853

[15]. Jinal Tapar, Shrushti Tapar, Prof. A E. Bhande, Design

of 16-bit MIPS Processor for Multi-Core SoC. IETE 46th

Mid Term Symposium 11th & 12th April, 2015.

[16]. MIPS ® 32 Architecture Volume II: The MIPS ® 32
The Instruction set

[17]. R. D. Mullins, A. F. West, and S. W. Moore. Low-

latency virtual-channel routers for on-chip networks. In

Proc. of the 31st Annual Intl. Symp. On Computer

Architecture (ISCA), pages 188–197, 2004

[18]. Xilinx UG347 ML505/ML506/ML507 evaluation

platform, User guide

[19]. http://www.xilinx.com

[20]. Xilinx UG348 ML505/ML506/ML507 Getting started

tutorial with Evaluation platform, User guide

[21]. Data2MEM User Guide UG658 (v 11.2) June 24, 2009

www.xilinx.com
[22]. http://www.wikipedia.com

[23]. Michal D. Cilleti, ―Advanced Digital Design with the

Verilog HDL‖, Prentice hall of India Pvt. Limited, New

Delhi. ISBN-81-203-2756-X

