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Abstract 
The unsteady magnetohydrodynamic Couette-type flow of an electrically conducting, viscous and incompressible fluid bounded by 

two parallel non- conducting porous plates under the influence of a constant pressure gradient and a transversely applied uniform 

magnetic field is studied with heat transfer. A uniform suction on the upper plate and an injection on the lower plate are applied 

perpendicularly to the plates keeping the rates of suction and injection the same. The two plates are maintained at different but 

constant temperatures. The governing nonlinear partial differential equations are solved by both analytical as well as numerical 

methods. An exact solution for the velocity of the fluid has been obtained by Laplace transform method. The Crank-Nicholson 

implicit method is used to obtain the unsteady fluid velocity profile. The transient part of the fluid velocity tends to zero as the time 

t tends to infinity. The energy equation is solved by the finite difference method .The effect of the magnetic field coupled with 

suction and injection on the velocity and temperature distributions is examined graphically and discussed in the present work. 
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--------------------------------------------------------------------***------------------------------------------------------------------ 

1. INTRODUCTION 

MHD is the study of interaction of conducting fluids with 

electromagnetic phenomena. The flow of an electrically 

conducting fluid in the presence of magnetic field is of 

importance in various areas of technology and engineering. 

It has wide applications in many devices like 

magnetohydrodynamic (MHD) power generation, 

magnetohydrodynamic pumps, generators, accelerators, 

aerodynamic heating, and petroleum industry and so on. 

 

The great interest and most physical relevance that can be 

received by such problem of fluid flow with constant 

pressure gradient are found through the study of Couette- 

flow between parallel plates for a viscous, incompressible 

and electrically conducting fluid under the influence of a 

transversely applied magnetic field. 

 

A lot of research work regarding the flow between two 

parallel porous plates has received the attention under 

different conditions and situations.[2,3,4,6,7,8,9,13,14,16] 

either in the form of research paper or in the form of book 

on porous media. 

 

In the present work, we focus on the unsteady viscous, 

incompressible, electrically conducting fluid flow between 

the two parallel porous non-conducting flat plates in the 

presence of constant uniform transverse magnetic field and 

under constant pressure gradient yielding the solution to be 

of the form of a sum of steady- state and transient -state 

fluid flow. 

 

Further it studies to find the solution for steady-state 

temperature distribution at various wall temperatures 

equalizing the rate of injection at the lower plate and the rate 

of suction at the upper plate. 

 

2. FORMULATION OF THE PROBLEM 

Let us consider a non-steady two dimensional viscous 

incompressible Couette- type flow under constant pressure 

gradient between two parallel porous plates and non-

conducting flat plates and assume that a constant, uniformly 

distributed suction or injection   𝑣𝑤  is applied to the fixed 

plate. Let the upper plate move with a constant velocity U0 

at a fixed distance d from the fixed plate. A uniform 

constant transverse magnetic field 𝐻   0   is applied 

perpendicularly to the fixed surface. Let the lower plate is at 

rest be with constant temperature T0 and the upper plate be 

with constant temperature 𝑇1. 

 

The Reynolds number is assumed to be small so that the 

induced magnetic field due to the flow is negligible and the 

velocity components (u, v) are both functions of y and time t 

where the temperature T is a function of y only, the 

simplified differential equations of motion [11-12], the 

equation of continuity, and the equation of energy [15] 

governing the fluid flow are respectively given in the 

manner; 

 
𝜕𝑢

𝜕𝑡
+ 𝜈

𝜕𝑢

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑥
 −

𝜇2𝐻0
2𝜍

𝜌
𝑢 + 𝜈

𝜕2𝑢

𝜕𝑦2                            (1) 
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𝜕𝑣

𝜕𝑡
+ 𝜈

𝜕𝑣

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑥
 + 𝜈

𝜕2𝑣

𝜕𝑦2                                             (2) 

 
𝜕𝑣

𝜕𝑦
= 0                                                                                 (3) 

 

and 

 

𝜌𝐶𝑝𝜈
𝜕𝑇

𝜕𝑦
= 𝑘

𝜕2𝑇

𝜕𝑦2 + 𝜇Φ                                                         (4) 

 

where 

 

Φ = 2  
𝜕𝑣

𝜕𝑦
 

2

+  
𝜕𝑢

𝜕𝑦
 

2

−
2

3
 
𝜕𝑣

𝜕𝑦
 

2

 

 

is known as the dissipation function and 𝜌, 𝜇, 𝜈, 𝑝 and 𝜍 are 

respectively the density, permeability, kinematic viscosity, 

pressure and electrical conductivity of the fluid. 𝐶𝑝  and k are 

the specific heat due to pressure and the thermal 

conductivity respectively. 

 

The initial and boundary conditions are: 

 

u (y, 0) = 0, 0≤ y ≤ d, 

 

u =0(t>0); 𝑣 = 𝑐𝑜𝑛𝑠𝑡. = 𝑣𝑤  (t ≥0), T= at y=0,                (5) 

 

and 

 

u = 𝑈0 (t >0); T = 𝑇1 at y = d 

 

The equation (3) indicates v = 𝑣𝑤  at y = 0 resulting 

 

v =  𝑣𝑤  everywhere and the equation (2) clears that 
𝜕𝑝

𝜕𝑦
= 0 

implying that p is a function of x only. It is also obvious 

from the equation (1) that the term 
𝜕𝑝

𝜕𝑥
  must be a constant 

because of the remaining terms in it are all independent of x 

and consequently the equation(1) and (4) reduce in the 

following manner; 

 
𝜕𝑢

𝜕𝑡
+ 𝑣𝑤

𝜕𝑢

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑥
 −

𝜇2𝐻0
2𝜍

𝜌
𝑢 + 𝜈

𝜕2𝑢

𝜕𝑦2                         (6) 

 

and 

 

𝜌𝐶𝑝𝑣𝑤
𝜕𝑇

𝜕𝑦
= 𝑘

𝜕2𝑇

𝜕𝑦2 + 𝜇  
𝜕𝑢

𝜕𝑦
 

2

                                               (7) 

 

On substitution of the following non-dimensional variables 

and parameters: 

 

                𝑢∗ =
𝑢

𝑈∗
 , 𝜆 =

𝑣𝑤

𝑣
𝑑 , 

 

where 

 

𝜆 > 0: 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛, 𝜆 < 0: 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 

 

𝛼 =
𝑥

𝑑
;  𝛽 =

𝑑

ℎ
  ;𝑝∗ =

𝑝𝑑

𝜇𝑈0
 ;  𝐾 = −

𝑑𝑝∗

𝑑𝛼
; 

𝑀2 = 
𝜇2𝐻0

2𝑑2𝜍

𝜌𝑣
;    𝐸𝑐 =

𝑈0
2

𝐶𝑝 (𝑇1−𝑇0)
; 

 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
 ;   𝑇∗ =

𝑇−𝑇0

𝑇1−𝑇0
 

 

into the equations (6) and (7) and then omitting the stars for 

convenience, these equations can be replaced by the 

following manner; 

 
𝑑2𝑢

𝑑𝛽2 − 𝜆
𝑑𝑢

𝑑𝛽
−  

𝑑2

𝑣
  

𝑑𝑢

𝑑𝛽
 − 𝑀2𝑢 + 𝐾 = 0                            (8) 

 

and 

 
𝑑2𝑇

𝑑𝛽2 − 𝑃𝑟𝜆
𝑑𝑇

𝑑𝛽
+ 𝑃𝑟𝐸𝑐  

𝑑𝑢

𝑑𝛽
 

2

= 0                                          (9) 

 

subject to the initial and boundary conditions: 

 

𝑢 𝛽, 0 = 0 , 0 ≤ 𝛽 ≤ 1 

 

𝑢 = 0  , (𝑡 > 0), 𝑇 = 0 𝑎𝑡 𝛽 = 0 

 

and                                                                                     (10) 

 

𝑢 = 1 ,  𝑡 > 0 ; 𝑇 = 1 𝑎𝑡 𝛽 = 1  , 
 

where 𝜆, 𝐾,𝑀, 𝑃𝑟  and 𝐸𝑐  denote respectively the suction 

parameter, pressure gradient, Hartmann number, Prandtl 

number and Eckert number. 

 

3. SOLUTION OF THE PROBLEM 

For unsteady viscous, incompressible Couette –Type flow 

under a constant pressure gradient and a constant uniform 

transverse  magnetic field when the lower plate is stationary 

and the upper plate moves with a uniform velocity U0 , it 

needs to solve the equation(8) subject to the initial and 

boundary conditions: 

 

𝑢 𝛽, 0 = 0 , 0 ≤ 𝛽 ≤ 1                                                   (11) 

 

𝑢 = 0   (𝑡 > 0)  𝑎𝑡 𝛽 = 0 

 

and 

 

𝑢 = 1    𝑡 > 0   𝑎𝑡 𝛽 = 1                                                 (12) 

 

Employing the Laplace transform [13] defined by 

 

u  = 𝑒−𝑠𝑡
∝

0
𝑢 𝛽, 𝑡 𝑑𝑡 

 

into the equation (8) and using (11), it yields in the form: 

 
𝑑2𝑢 

𝑑𝛽2 − 𝜆
𝑑𝑢 

𝑑𝛽
−  

𝑑2

𝑣
 𝑠𝑢 −𝑀2𝑢 +

𝐾

𝑠
= 0                              (13) 

 

with the initial and boundary conditions 

 

 𝑢  0, 𝑠 = 0   𝑎𝑡 𝛽 = 0 
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and                                                                                     (14) 

𝑢 (1, 𝑠) =
1

𝑠
   𝑎𝑡 𝛽 = 1 

 

Consequently the solution to the equation (13) subject to the 

conditions (14) is given in the form: 

 

𝑢 = 
1

𝑠
 
𝑒𝛽𝑚1−𝑒𝛽𝑚2

𝑒𝑚1−𝑒𝑚2
  

+ 
𝐾

𝑠 
𝑠𝑑2

𝜈
+𝑀2 

 
𝑒𝛽𝑚2 1−𝑒𝑚1  −𝑒𝛽𝑚1 (𝑒𝑚2−1)

𝑒𝑚1−𝑒𝑚2
+ 1                      (15) 

where m1 and 𝑚2 are the roots of the auxiliary equation 

(13). 

 

Inverting the equation (15) by the inversion theorem [13-14] 

defined by 

 

𝑢 =
1

2𝜋𝑖
lim
𝜃→∞

 𝑒𝑠𝑡
𝜂+𝑖𝜃

𝜂−𝑖𝜃

𝑢 𝑑𝑠  , 

 

it yields the unsteady state fluid flow in the manner below: 

 

𝑢 = 𝑇𝑠 + 𝑇𝑟                                                                        (16) 

 

𝑇𝑆  is the steady state fluid flow  and 𝑇𝑟  is the transient state 

fluid flow. 

Where 

 

 𝑇𝑆 =
𝑒

𝜆(𝛽−1)
2

 𝑆𝑖𝑛 ℎ 
 𝜆2+4𝑀2

2
 𝛽 

𝑆𝑖𝑛ℎ 
 𝜆2+4𝑀2

2
 

 +
𝐾

𝑀2  
 𝑒

𝜆 𝛽+1 
2 𝑆𝑖𝑛ℎ 

 𝜆2+4𝑀2

2
   𝛽−1 −𝑒

𝜆𝛽
2  𝑆𝑖𝑛ℎ 

 𝜆2+4𝑀2

2
 𝛽 +𝑒

𝜆
2 𝑆𝑖𝑛ℎ 

 𝜆2+4𝑀2

2
  

𝑒
𝜆
2 𝑆𝑖𝑛ℎ 

 𝜆2+4𝑀2

2
  

  

 

and 

 

𝑇𝑟  𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜   
 8𝑛𝜋 𝑒𝑥𝑝.  

−𝑣𝑡
4𝑑2  4𝑛

2𝜋2 + 𝜆2 + 4𝑀2  

4𝑛2𝜋2 + 𝜆2 + 4𝑀2
 
sin⁡(𝑛𝜋𝛽)

sin⁡(𝑛𝜋)
 𝑒

 
𝜆(𝛽−1)

2
 
 

𝑛=∞

𝑛=0

+   
32𝑛𝜋𝐾

𝑒
𝜆
2

  
𝑒𝑥𝑝.  

−𝑣𝑡
4𝑑2  4𝑛

2𝜋2 + 𝜆2 + 4𝑀2  

 4𝑛2𝜋2 + 𝜆2  4𝑛2𝜋2 + 𝜆2 + 4𝑀2 
  𝑒

𝜆𝛽
2  

sin 𝑛𝜋𝛽 − 𝑒
𝜆
2𝑠𝑖𝑛 𝑛𝜋(𝛽 − 1) 

𝑐𝑜𝑠𝑛𝜋
  

 

 

Now the energy equation (9) with the conditions; 

 

T= 0 at 𝛽 = 0 

 

and                                                                                     (17) 

 

T = 1 at 𝛽 = 1 

 

is solved by finite difference method [1] for the steady state 

temperature distribution between the two parallel  porous 

flat plates of which the lower plate having constant 

temperature 𝑇0 is at rest while the upper plate having the 

constant temperature 𝑇1 is moving with uniform velocity 𝑈0. 
The equation (8) has been solved by two different methods 

.The Laplace Transform method has been applied to obtain 

the solution in terms of the sum of two expressions (16) out 

of which the second term 𝑇𝑟  vanishes as the time t→ ∞. In 

this case the solution for  steady state flow  is obtained 

.Again the equation(8) is solved numerically by employing 

the Crank-Nicholson implicit method[10] .The numerical 

data so obtained is used to show the velocity profile in the 

unsteady case through the figure -1. The data given in the 

table -1 for fluid flow velocity 𝑢 and the ordinate 𝛽 at the 

two successive time levels with step sizes ∆𝑡 =0.5,1,1.5and 

2 for the time and the space sizes ∆𝛽=0.2 and accordingly 

the table is given after computing for various values of 𝛽 =0 

,0.2 ,0.4 ,0.6 ,0.8and 1 for each case of values of ∆𝑡. The 

application of this method provides the pivotal values of the 

velocity 𝑢 at 𝛽 =0, 0.2, 0.4, 0.6, 0.8, and 1.This data is used 

to obtain the velocity profiles for the unsteady case. The 

velocity increases with the increase of time. 

 

The energy equation (9) subject to the conditions (17) has 

been solved by using the finite difference method [10] to get 

the temperature distributions between the two parallel 

plates. 

 

The graphs of the temperatures profiles for conduction and 

convection have been depicted with respect to the 

dimensionless perpendicular distance 𝛽 from the stationary 

plate as  shown in the figure-2 through5.Again the 

temperature profiles with respect to the dimensionless 

perpendicular distance 𝛽 for different values of K= 0,-1,-3,-

5 have been displayed graphically in the figure -6. 

 

4. CONCLUSION 

The fluid flow profiles are shown in the figure -1.   It is 

observed that for unsteady state case of fluid flow, the 

velocity increases for the increasing ∆𝑡 and for fixed values 

of Hartmann number M, pressure gradient K and suction 

parameter 𝜆. 

 

From the figure-1, it is obvious that as 𝑡 → ∞ 𝑡ℎ𝑒𝑛 𝑇𝑟 → 0 

and on account of the viscous diffusion of momentum, the 

effect of the upper plate is felt more and more by the interior 

fluid and as a result the steady state flow velocity is attained 

i.e. 𝑢 = 𝑇𝑠  
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Further if the values of 𝜈 and M increase, from the equation 

(16) it is observed that the transient state fluid flow 𝑇𝑟  

decays rapidly. Again time taken to reach the steady state 𝑇𝑠  
depends upon the suction or injection parameter 𝜆  which is 

clear from the figure -1. 

 

The conduction profiles are shown through the figure-2 to 

3.it makes clear that the effect of magnetic field M is 

prominent in the case of conduction. Increasing M , we 

observe that the flow of heat through conduction decreases 

and increasing M retards the flow of heat. 

The convection profiles are exhibited through the figures-4 

and 5.It is observed that the heat flow through convection is 

comparatively higher. Increasing M retards the heat flow in 

this case also. 

 

The figure-6 shows that the flow of heat depends upon 

pressure gradient K and this heat flow increases rapidly as 

we go on decreasing the pressure gradient K. 

 

 

 

 
Fig-1 velocity profile 

 

 
Fig-2: conduction profile for M=1 
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Fig-3: conduction profile for M=2 

 

 
Fig-4: convection profile for M=1 

 

 
Fig-5: convection profile for M=2 
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Fig-6: Temperature profile with respect to dimensionless perpendicular distance for different values of K 

 

Table-1   Unsteady velocity profile 

 ∆𝑡 = 0.5 ∆𝑡=1 ∆𝑡=1.5 ∆𝑡=2 

𝛽 u u u u 

0 0 0 0 0 

0.2 0.162335 0.228783 0.262048 0.281905 

0.4 0.296617 0.414172 0.472049 0.506362 

0.6 0.445817 0.585828 0.652400 0.691328 

0.8 0.657679 0.771213 0.822342 0.851600 

1 1 1 1 1 

 

Table-2 Conduction profile for M=1 

𝛽 PrEc=0 PrEc=1 PrEc=2 PrEc=3 PrEc=4 

0 0 0 0 0 0 

0.25 0.16529 0.20938 0.25386 0.29834 0.34282 

0.5 0.377541 0.433909 0.490895 0.547881 0.60486 

0.75 0.650068 0.68998 0.730441 0.770901 0.81136 

1 1 1 1 1 1 

 

Table-3 Conduction profile for M=2 

𝛽  PrEc=1 

 

PrEc=2 

 

PrEc=3 

 

PrEc=4 

 

0 0 0 0 0 

0.25 0.184991 0.205077 0.225164 0.245249 

0.5 0.422334 0.467744 0.513154 0.558563 

0.75 0.712669 0.775817 0.838966 0.902114 

1 1 1 1 1 

 

Table-4 Convection profile for M=1 

𝛽  PrEc=0 

 

PrEc=1 

 

PrEc=2 

 

PrEc=3 

 

0 0 0 0 0 

0.25 0.165297 0.651139 1.137364 1.623595 

0.5 0.377541 1.172118 1.967313 2.762508 

0.75 0.650068 1.398902 2.140285 2.897669 

1 1 1 1 1 



IJRET: International Journal of Research in Engineering and Technology         eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 04 Issue: 04 | Apr-2015, Available @ http://www.ijret.org                                                                                730 

Table-5 Convection profile for M=2 

𝛽  PrEc=0 

 

PrEc=1 

 

PrEc=2 

 

PrEc=3 

 

PrEc=4 

 

0 0 0 0 0 0 

0.25 0.165297 0.26578 0.366656 0.467533 0.568408 

0.5 0.377541 0.556545 0.736167 0.915789 1.09541 

0.75 0.650068 0.843412 1.037305 1.231197 1.425089 

1 1 1 1 1 1 

 

Table-6 Temperature profile for different values of pressure gradient K 

 K=0 K=-1 K=-2 K=-3 

𝛽  T T T T 

0 0 0 0 0 

0.25 0.226795 0.209385 1.394652 4.206697 

0.5 0.487659 0.433909 2.218013 6.524251 

0.75 0.764235 0.685939 2.222412 5.996099 

1 1 1 1 1 
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