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Abstract 
Low Density Parity Check (LDPC) codes, is a linear block code having the decoding performance closer to Shannon’s limit. Non-

binary LDPC is the class of binary LDPC, which works on the higher order Galois field. The decoding performance of non-binary 

(NB) LDPC is better than binary LDPC for moderate code lengths. The increased computation with the increased order of field is 

the major challenge in hardware realization of NB-LDPC. The extension of conventional sum-product algorithm, known as 

extended Min-Sum (EMS) algorithm, with reduced computational complexity is used in this paper. However, a tradeoff exists 

between computational complexity and decoding performance. 

 

This paper aims at reducing the computational complexity by focusing on the Parity Check Matrix (PCM) modifications. The 

bottleneck of the design is large memory requirement and more computation intensive. The modification in the EMS algorithm 

can be incorporated to design low complexity hardware architecture of NB-LDPC decoder. 
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1. INTRODUCTION 

LDPC codes have attracted much attention because of their 

excellent error correcting performance and near to Shannon 

limit. Due to the powerful error-correcting capability, LDPC 

codes have been used in wireless communications, optical 

and magnetic recording and digital television broad casting. 

The standards such as DVB-S2, WiMAX, WLAN, storage 

devices and so on. Binary low-density parity-check (LDPC) 

codes, revealed by Gallager in 1962[1, 2] were rediscovered 

and shown to approach Shannon capacity in the late 

1990‟s.Non-binary LDPC (NB-LDPC), viewed as an 

extension of the binary codes. It was first investigated by 

Davey and Mackay [3].NB-LDPC codes have performance 

advantage over binary codes. A simplified decoding 

algorithm for low-density parity-check (LDPC) codes over 

high order Galois field is proposed to reduce the complexity 

of tradition sum-product algorithm (SPA) [4]. The min-sum 

algorithm is extended to any finite field of order q, only 

additions are performed and no channel information is 

necessary [5] 

 

Based on simplified min-sum algorithm decoder architecture 

is built, in which the design technique employed increases 

the parallelism and throughput by three or four times [6]. 

The decoding complexity is reduced by Extended Min-sum 

algorithm.  It also works on Log likely hood ratios (LLR); 

log domain is advantageous because it requires only sum 

operation. It also reduces the computational burden in the 

check node update. Our paper aims to reduce the hardware 

complexity and also reducing the memory requirement 

through parity check matrix modification. The Bit-Error-

Rate (BER) performance for NB parity check matrix used in 

IEEE 802.11n with code length of 648 is used in this paper 

.Section I review the basics of LDPC codes and section II 

provides the representation of Non-binary LDPC codes. In 

section III explanation of Min-sum algorithm is presented. 

Section IV presents the Parity Check Matrix modification 

and section V gives the performance analysis of modified 

parity check matrices in terms of BER for the code length of 

IEEE 802.11n standard and 504.In section VI, it describes 

the computational analysis of modified parity check 

matrices. 

 

2. NON-BINARY LDPC CODES 

REPRESENTATION 

2.1 Matrix Representation 

LDPC codes are represented by parity check matrix. Number 

of non-zero elements present in each row parity check matrix 

is rw  and cw is the number of non-zero elements present in 

each column. For a matrix to be called low density it should 

satisfy the conditions like cw << n and rw << m. (m, n) are 

the number of rows and columns present in the parity check 

matrix (PCM). Fig. 1. shows the matrix representation of 

NB-LDPC, the computational burden in the check node 

mainly depends on the number of non-zero elements present 

in the parity check matrix. 

 

H =  

2 0 3
0 3 0
0 0 1

0 0 2 0 3
0 1 0 1 0
1 0 0 1 2

0 0 0 2 3 1 0 0

  

Fig. 1 Example of parity check matrix. 
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2.2 Graphical Representation 

Tanner graph is an effective graphical representation for 

LDPC codes. Tanner graphs are bipartite graphs. The nodes 

of the graph are separated into two distinctive sets and edges 

are only connecting nodes of two different types. The two 

types of nodes in a Tanner graph are called variable nodes 

(v-nodes) and check nodes (c-nodes) as shown in Fig.  2. 

Check node and variable node represents the number of 

rows and columns in a parity check matrix respectively. 

Whenever, a nonzero element is present in a PCM, it 

indicates an edge formation between a check node and a 

variable node. The Computational complexity of the tanner 

graph depends on the check node. 

 

 
Fig. 2 Tanner graph representation 

 

3. MIN-SUM ALGORITHM 

Min-sum algorithm with proper modifications has given 

negligible performance degradation. It works on log 

likelihood ratio. It requires only sum and comparison 

operation, it also reduces the computational burden in the 

check node update. 

 

3.1 Step1: Initialization 

All messages passing from a variable node to a check node 

are initialized to nL (a), the log likelihood ratio concerning 

symbol a. This value depends on the type of channel under 

investigation. 

 

𝐿𝑛 𝑎 = ln(𝑃𝑟  𝑐𝑛 = 𝑠𝑛  
𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑃𝑟 𝑐𝑛 =𝑎 𝑐ℎ𝑎𝑛𝑛𝑒𝑙  
                  (1)

  

𝑄𝑚𝑛  𝑎 = 𝐿𝑛 𝑎                                                       (2)

  

where Sn denotes the most likely symbol for „a‟. 

 

3.2 Step2: Variable Node Update. 

All messages from the check nodes are updated using, 

 

𝑅 𝑎 = 𝑚𝑖𝑛
 𝑎

𝑛 ′ 
𝑛∈𝑁 𝑚  {𝑛 }

∈𝐴𝑚𝑛  𝑎 
  𝑄𝑚𝑛𝑛∈𝑁 𝑚 {𝑛}  𝑎           (3)

  

   𝐴𝑚𝑛  𝑎 ≔ {𝑎𝑛 ′−|ℎ𝑚𝑛 𝑎 +  ℎ𝑚𝑛𝑛∈𝑁 𝑚 {𝑛} 𝑎𝑛 ′               (4) 

 

Where )(, aA nm  is the set of vectors that consists of Galois 

field symbols. Each vector consists of  N(m)-1 Galois feld 

symbols that satisfy the check equation.N(m) denotes the set 

of neighboring variable nodes connected to a check node m. 

 

3.3 Step3: Check Node Update 

All messages from the variable nodes are updated using 

equation 

 

𝑄′
𝑚𝑛

 𝑎 = 𝐿𝑛 𝑎 +  𝑅𝑚𝑛 ′𝑚 ′∈𝑀 𝑛 {𝑚}  𝑎           (5) 

 

         𝑄′
𝑚𝑛 = 𝑚𝑖𝑛𝑎∈𝐺𝐹(𝑞)𝑄

′
𝑚𝑛

 𝑎                          (6) 

 

            𝑄𝑚𝑛  𝑎 = 𝑄′
𝑚𝑛

 𝑎 − 𝑄′
𝑚𝑛                        (7) 

 

M(n) denotes the set of neighboring check nodes connected 

to a variable node n. 

 

3.4 Step4: Tentative Decoding 

An estimation of the variable node is made using equation 

 

𝑄𝑛 𝑎 = 𝐿𝑛 𝑎 +  𝑅𝑚𝑛  𝑎 𝑛∈𝑀(𝑛)                     (8)

 

 

𝐶𝑛
   = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑄𝑛   𝑎                                        (9) 

 

𝑐 = [𝐶 
0𝐶 

1 … … 𝐶 
𝑁−1]                                        (10) 

 

The “min”functions return the minimum and the maximum 

values among their inputs,respectively . If C is verified to be 

a valid codeword or maximum iteratiion number L is 

reached ,then the decoding process will be terminated. 

Otherwise another decoding iteration will be initiated. But if 

valid codeword is not obtained until maximum iteration then 

decoding failure is declared. 

 

4. PARITY CHECK MATRIX MODIFICATION 

The strength of the LDPC are defined by number of non zero 

elements present in the parity check matrix. Computational 

complexity increases with number of non-zero elements. 

Increasing the sparcity of parity check matrix in turn reduces 

the computational complexity. The PCM has the following 

structural properties. 

 Each row has weight, rw  

 Each column has weight, cw  

 No two rows (or two columns) have more than one 

place where they both have non zero elements. 

 

Modifications 

With the randomly generated parity check matrix, we 

propose two modifications to reduce the computational 

complexity, retaining the structural properties of PCM.Two 

modifications are namely, 

 Lower Diagonal Parity Check Matrix 

 Doubly Diagonal Parity Check Matrix 
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4.1 Lower Diagonal Parity Check Matrix (LDM) 

This focuses on the diagonal elements of the matrix. Here in 

first kind, we propose the modified PCM structure where the 

diagonal elements of lower part of the PCM matrix are 

modified. Lower diagonal parity check matrix in the size of 

(12, 24) is shown in Fig. 3. 

 

The matrix structure is in the form of 

 

H= [H QC |I]                          (11) 

 

H QC -Quasy cyclic matrix 

I-Identity matrix 

 

The mathematical model for the first proposal can be given 

as follows: 

 

The formation of the matrix is defined with the model of 

identifying the position of identity matrix (IM) and random 

matrix (RM). Let ζ be the element in the parity check matrix 

defined. Mentioning the placement of the IM as 

 

ζ = IM for {r/2 to r, s/2 to s}      (12) 

 

ζ = RM for {1 to r/2}                  (13) 

 

 
Fig 3 Lower diagonal parity check matrix 

 

4.2 Doubly Diagonal Based Parity Check Matrix 

(DDM) 

In the second proposal, the PCM is framed using the double 

diagonal identity matrix. In this frame work also, the 

properties of the matrix for non-binary code over GF (q) are 

retained. The formation of the matrix is defined with the 

model of identifying the identity matrix (IM) and redundant 

identity matrix (RIM).The DDM matrix structure in the size 

(12, 24) is shown in Fig. 4. 

 

ζ = IM for {r, s/2 to s}                                                (14) 

 

ζ =RIM for{r, 1 to s/2}                                               (15) 

 
Fig 4 Doubly Diagonal Parity Check Matrix 

 

5. PERFORMANCE ANALYSIS 

Min-sum decoding for non-binary LDPC codes are coded 

using MATLAB and the decoding performance of two 

different parity check matrices are obtained for the 

specification of IEEE 802.11n under AWGN channel. 

Performance curves like Bit Error Rate (BER) for a range of 

Signal to Noise Ratio are plotted. The Code length of 648 

with code rate of ½ is taken for analysis. The code length of 

504 is also selected to investigate for under water 

communication. 

 

 
Fig 5 BER performance comparison of Code length 504 for 

GF (4) 

 

By increasing the order of Galois field decoding performance 

also increases.BER performance is plotted for both GF (4) 

and GF (8) under the code length of 648 and 504. BER 

performance of code length 504 for GF(4) and GF(8) are 

shown  in Fig. 5. & Fig. 6.From these figures it is inferred 

that the BER rate of DDM is very less compared to Standard 

and LDM. The decoding performance of the NB-LDPC 

codes improves with the increase in the code length. It is 

proven that with the modified parity check matrices, 

improved performance is attained at higher code length. The 

decoding performance of DDM is less compared with other 

matrices .It gives a better decoding performance. 
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Fig 6 BER performance comparison of code length 504 for 

GF (8) 

 

 
Fig 7 BER performance comparison of code length 648 for 

GF (4) 

 

 
Fig 8 BER performance comparison of code length 648 for 

GF (8) 

BER Performance of code length 648 for GF (4) and GF (8) 

is shown in Fig. 7 & Fig. 8. LDM based PCM structures are 

suitable for the moderate decoding performance with lesser 

computational complexity.DDM based PCM structures are 

applicable for the best decoding performance with the 

compromise on the computational complexity. 

 

5. COMPUTATIONAL ANALYSIS 

The significance of the proposed matrix structures are 

analyzed with the computation complexity involved in it. 

The analysis of the strength of each proposed modified PCM 

structures are done for the matrix size of (12x24). 

 

Table 1 Computational complexity of min-sum decoding 

with modified parity check matrices 

Computations Standard 

Parity 

Check 

Matrix 

Lower 

Diagonal 

Parity 

Check 

Matrix 

Doubly 

Diagonal 

Parity 

Check 

Matrix 

Number of 

Addition 

operation in 

CNU 

 

𝑚(𝑞𝑛𝑟

− 1) 

 

𝑚(𝑞𝑛𝑟
′

− 1) 

 

𝑚(𝑞𝑛𝑟
′′

− 1) 

Number of 

Comparison 

operation in 

VNU 

 

𝑛(𝑞𝑛𝑐

− 1) 

 

𝑛(𝑞𝑛𝑐
′ − 1) 

 

𝑛(𝑞𝑛𝑐
′′ − 1) 

 

Where, q- Order of Galois field 

m - Number of rows in PCM. 

n - Number of columns in PCM. 

𝑛𝑟  - Row weight in PCM. 

𝑛𝑐  -Column weight in PCM. 

𝑛𝑟
′  -Row weight in LDM 

𝑛𝑐
′  -Column weight in LDM 

𝑛𝑟
′′ - Row weight in DDM 

𝑛𝑐
′′ - Column weight in DDM 

 

Table 1 shows that the computational complexity for Parity 

Check Matrix (PCM), Doubly Diagonal based PCM (DDM) 

and Lower Diagonal based PCM (LDM). This shows that 

the number of addition and comparison operation in Check 

Node Unit (CNU) and Variable Node Unit (VNU) for LDM 

is lesser since number of non-zero elements in it is less 

when compared with Standard PCM and DDM. 

 

Table 2 shows that the number of addition and the number 

of comparison in CNU and VNU for standard PCM, DDM 

and LDM for the matrix size of 12X24. When compared to 

standard PCM the number of addition and comparison 

operations is less for lower diagonal PCM, for Doubly 

diagonal PCM the number computations are high when 

compared to standard PCM.But the performance of DDM is 

better than other matrices. 
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Table 2 Number of computations in modified parity check 

matrices 

Compu

tation 

Standard 

Parity Check 

Matrix 

Lower 

Diagonal 

Parity Check 

Matrix 

Doubly 

Diagonal 

Parity Check 

Matrix 

Addi

tion 

Comp

arison 

Addi

tion 

Comp

arison 

Addi

tion 

Comp

arison 

In 

CNU 

276 276 180 180 304 304 

In 

VNU 

264 264 168 168 292 292 

 

7. CONCLUSION 

This paper proposes two modifications to the PCM structure 

there by the decoding performance will be improved with 

reduced computational complexity. The performance 

analysis of the proposed LDM and DDM based PCM 

structures are analyzed with the BER graphs and 

computational complexities are also evaluated. Number of 

computations is very less to LDM when compared with 

other matrices.It is inferred that LDM based PCM structures 

are suitable for the moderate decoding performance with 

lesser computational complexity and DDM based PCM 

structures are applicable for the best decoding performance 

with the compromise on the computational complexity. 
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