
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 569

TEST CASE OPTIMIZATION IN CONFIGURATION TESTING USING

RIPPER ALGORITHM

Dheepigaa V S
1

Master in Engineering, Software Engineering, University College of Engineering (BIT campus), Trichirappalli, India

Abstract
Software systems are highly configurable. Although there are lots of advantages in improving the configuration, it is difficult to

test unique errors hiding in configurations. To overcome this problem, combinatorial interaction testing (CIT) is used to selects

strength and computes a covering array which includes all configuration option combinations. It poorly identifies the effective

configuration space. So the cost required for testing get increased. In this work, techniques includes hierarchical clustering

algorithm and ripper algorithm. It gives high strength interaction which it can be missed by CIT approach and it identifies

effective configuration space. We evaluated and comparecoverage achieves by CIT and RIPPER classification with hierarchical

clustering. Using this approach we validate loop as well as statement based configurations. Our results strongly suggest that

Proto-interaction formed by RIPPER classificationwith hierarchical clusteringcan effectively covers sets of configurations than

traditional CIT.

Keywords: Configuration options, Hierarchical Clustering, RIPPER Algorithm

---***---

1. INTRODUCTION

A software system is a system of inter-communicating

components based on software forming part of a computer

system (a combination of hardware and software). It

"consists of a number of separate programs, configuration

files, which are used to set up these programs, system,
which describes the structure of the system, and user

documentation, which explains how to use the system”.

While a computer program is a set of instructions (source, or

object code) a software system has many more components

such as specification, test results, end-user documentation,

maintenance records, etc.To alleviate this problem,

researchers have proposed combinatorial interaction testing

(CIT), whichidentifies a small but systematic set of

configurations underwhich to test. For example, with one

CIT approach, developers choose an interaction strength t

and compute a covering array, which is a set of
configurations such that all possiblet-way combinations of

option settings appear at least once.The assumption

underlying CIT is that configuration setsconstructed in this

way are small in size while providing good coverage of the

program’s behavior. Thus the approach cost-effectively

increases the likelihood of finding faults. However, our prior

work challenges this assumption in several ways. The

minimum set of configuration which is required for

achieving particular goal is referred as Effective

Configuration space. It typically comprises only a tiny

subset of the full configuration space, and that subset of
configurations is not well approximated by t-way covering

arrays. To test this hypothesis, generally symbolic

execution to discover a subject program’s interactions,

which are conjunctions of option settings needed to achieve

specific testing goals, given a particular test suite is

needed.But the cost complexity get increased. To achieve

this concept hierarchical clustering and Ripper classification

is used. From this technique,the proto-interaction get

extracted. This proto-interaction is given by the conjunction

of Configuration Options with their corresponding values.

2. RELATED WORK

In this section discuss various configuration testing
approaches. Elnatan Reisner[1] implements symbolic

evaluation for identifying how the settings of run-time

configuration options will affect the line, basic block, edge,

and condition coverage for the subjects under a given test

suite.James C.King[13] introduced EFFIGY which provides

symbolic execution for program testing .David Leon [2]

evaluates test case filtering involves selecting a manageable

number of tests to use from a large, existing test suite that

contains redundant tests or is too large to use in its entirety.

D. Richard Kuhn [11]developed tools for generating all

pairs or higher degree combinations of input values. Patrick
Francis [4] The tree-based techniques which are presented

for refining an initial classification of failures takes place

.These techniques is based on dendograms usage. They are

all rooted trees used for representing the solutions for the

hierarchical cluster analysis. The second technique which is

used called a classification tree. This classification tree is

used to constructed and recognize the failed executions.

Using these two techniques, the tree representation is used

for guiding the refinement process. This is experimentally

evaluated on several subject programs.William

Dickinson[3] proposed filtering procedures based on the
concept that clustering are more effective than simple

random sampling for identifying failures.Andy

Podgurski[12] proposed automated support for classifying

the reported software failures in order to facilitate

prioritizing them and analysis their causes. Supervised and

unsupervised pattern classification and multivariate

visualization techniques are used. Similarity and

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_system
http://en.wikipedia.org/wiki/Computer_system
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/User_documentation
http://en.wikipedia.org/wiki/User_documentation
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Object_code

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 570

dissimilarity are calculated using Euclidian distance and

Manhattan distance. Christopher Henard [13] proposed the

method of bypassing the combinatorial explosion using

similarity for Generating and Prioritizing T-Wise Test

Configurations for Software Product Lines. In this t-wise

combination was used to the production of configurations
for testing was proposed. Current t-wise approaches will

applicable for small values of t in SPL. The fine control of

the configuration process gets failed. So that the automatic

generation and prioritization the configurations product for a

large SPLs are required. A search-based approach is

proposed for which is capable for generating product

configurations in larger system. Sandro Fouche, Myra B.

Cohen, Adam Porter[14] A new approach that incrementally

builds covering the array schedules was proposed. In this

approach at beginning starts at a low strength, and then as

resource allows the strength get increased gradually. In
every step previously tested configurations are reused, thus

work duplication will be managed. The incremental

approach developers need to cover the specific covering

array strength progressively. Stronger covering array

schedules were used, few of the configuration dependencies

failures can be found and classified is cheaply and quick in

time possible. It will remove the risks of performing to

overly strong test schedules.

3. PROPOSED WORK

In this work the configuration files of the software system is

taken as the input, then the configuration options which is

present in statement as well as loop get collected. The
collected configuration options are get combined using

combinatorial method and test suite will cover all the

configuration options obtained. Then clustering and

classification algorithm are used for extracting proto-

interaction.

Clustering of the test suite will be done by Hierarchical

clustering algorithm for grouping the similar

configuration.Then finally RIPPER classification algorithm

will be used to determine which class the configuration

belongs .This algorithm will be used for discovering high

coverage configuration.

4. PROPOSED FRAMEWORK

Fig1, represent the proposed framework will consists of

Fig 1: Proposed Framework

4.1 Configuration Acquisition

In this system software configuration file will be taken as

the input file. The configuration options from the
configuration file will get gathered.

4.2 Configuration Set Generation

The configuration options which are collected get combined

using combinatorial method. Through this proto-interaction

will be obtained.Proto-interaction is the combination of two

or more configuration options. Let us consider the example

of ngircd config.ngircd is Internet Relay chat daemon.

ngircd is a free portable and light weight Internet relay Chat

server for smaller private networks, developed under

General public license. There are so many configuration

options will be presented in this config file but for example

we consider four configuration options which we call it as
attributes

AllowRemoteOper,CloakUserToNick,ConnectIpv4,DNS.

AllowRemoteOper^ CloakUserToNick be the one of the

interaction. ConnectIpv4^DNS be another interaction. The

combination of two or more interaction is referred as proto-

interaction that is

AllowRemoteOper^CloakUserToNick^ConnectIpv4^DNS.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 571

4.3 Hierarchical Clustering

In data mining, hierarchical clustering (also called

hierarchical cluster analysis or HCA) is a method of cluster

analysis which seeks to build a hierarchy of clusters.

In general, there are two types of hierarchical clustering

methods

 Agglomerative hierarchical clustering: This
bottom-up strategy starts by localizing each object

in its own cluster and then coalesce there atomic

cluster into larger cluster, until all of the object are

in a single cluster or certain term are fulfilled.

 Divisive hierarchical clustering: This top-down

strategy does the reverse of agglomerative

hierarchical clustering by starting with all objects in

one cluster. Algorithms that are illustration of the

agglomerative hierarchical clustering admit:

(1) highly in similarity

(2) modular in similarity

(3) less in similarity

Algorithm:

1. Collect the configuration options from the

configuration file

2. Place all the configuration as a single Cluster

3. Based on the Dissimilarity between configurations split

the cluster in to sub clusters.

Dissim(Ci.Cj)=
ji

ji

CC

CC





4. Repeat the step2 until the condition satisfied

Thus this Hierarchical Divisive approach provide accurate

clustering of the configuration. It provide classes to the

configuration present in the system software.

4.4 Ripper Classification Algorithm:

Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) is rule learner, which was proposed by William
W. Cohen.It is an optimized version of IREP. It is based in

association rules with reduced error pruning (REP), a very

common and effective technique found in decision tree

algorithms. In REP for rules algorithms, the training data is

split into a growing set and a pruning set. First, an initial

rule set is formed that over the growing set, using some

heuristic method. This overlarge rule set is then repeatedly

simplified by applying one of a set of pruning operators

typical pruning operators would be to delete any single

condition or any single rule. At each stage of simplification,

the pruning operator chosen is the one that yields the

greatest reduction of error on the pruning set. Simplification
ends when applying any pruning operator would increase

error on the pruning set.

Algorithm as follows as:

 Start from empty test sets

 Add the test suits to check the configuration.

 Stop when rule no longer covers negative examples

 Prune the rule immediately using incremental

reduced error pruning .Measure for pruning: v =

(posconfig - negconfig) / (posconfig

+negconfig).posconfig: number of positive
examples covered by the rule in the validation set,

negconfig: number of negative examples covered

by the rule in the validation set Pruning method.

Fig.2.Proto-interaction generation from vsftpd, a widely used secure FTP daemon

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Hierarchy

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 572

Fig.3.Proto-interaction generation from ngIRCd, next generation IRC daemon

5. DISCUSSION

We can evaluate the proposed approach using cumulative

coverage metric. Our proposed approach provides high

coverage in both statement and loop coverage. When

number of configurations are high, cumulative coverage also

high in proposed approach other than existing sampling and

clustering approaches.In this 16 Configuration options are
taken.Then test case generated using CIT and RIPPER

algorithm are compared.

Fig.4.Cumulative Coverage

6. CONCLUSION

We conclude that proposed a new novel technique is to

support configurable systems. It can be select small set

configurations with test suite and achieve high coverage.

This technique is based upon insights gained from our

previous empirical studies in which we precisely quantified

the relationships between software configuration and
program execution behaviors. These insights led us to create

a heuristic process that effectively searches out

configurations in which high coverage is likely. To evaluate

performance metrics using cumulative coverage metric. The

first set of studies evaluated the basic approach and its

parameters. The second set of studies compared this

technique with t-way covering arrays existing techniques.

The studies suggested that RIPPER Algorithm produced

higher coverage than the other techniques while testing

fewer configurations. The results strongly suggested that

this new technique achieved higher coverage at lower cost
than existing techniques.

ACKNOWLEDGMENTS

We would like to express our gratitude to Anna University

Tiruchirappalli, India for supporting this research.

REFERENCES

[1]. E. Reisner, C. Song, K.-K. Ma, J.S. Foster, and A.

Porter, “UsingSymbolic Evaluation to Understand Behavior

in ConfigurableSoftware Systems,” Proc. ACM/IEEE 32nd

Int’l Conf. Software Eng.(ICSE), pp. 445-454, 2010.

[2]. D. Leon and A. Podgurski, “A Comparison of

Coverage-Basedand Distribution-Based Techniques for

Filtering and PrioritizingTest Cases,” Proc. 14th Int’l Symp.

Software Reliability Eng. (ISSRE),pp. 442-453, 2003.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 573

[3]. W. Dickinson, D. Leon, and A. Podgurski, “Finding

Failures byCluster Analysis of Execution Profiles,” Proc.

23rd Int’l Conf. SoftwareEng. (ICSE), pp. 339-348, 2001.

[4]. P. Francis, D. Leon, M. Minch, and A. Podgurski,

“Tree-BasedMethods for Classifying Software Failures,”

Proc. 15th Int’l Symp.Software Reliability Eng. (ISSRE),
pp. 451-462, 2004.

[5]. K. Burr and W. Young, “Combinatorial Test

Techniques: Table-Based Automation, Test Generation and

Code Coverage,” Proc.Int’l Conf. Software (ICSE) Analysis

& Rev., 1998.

[6]. C. Cadar, D. Dunbar, and D.R. Engler, “KLEE:

Unassisted andAutomatic Generation of High-Coverage

Tests for Complex SystemsPrograms,” Proc. Eighth

USENIX Conf. Operating SystemsDesign and

Implementation (OSDI), pp. 209-224, 2008.

[7]. D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C.
Patton, “TheAETG System: An Approach to Testing Based

on CombinatorialDesign,” IEEE Trans. Software Eng., vol.

23, no. 7, pp. 437-444, July1997.

[8]. M.B. Cohen, Combinatorial Interaction Testing Portal:

Casa, 2009.

[9]. S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M.

Lott, G.C.Patton, and B.M. Horowitz, “Model-Based

Testing in Practice,”Proc. 21st Int’l Conf. Software Eng.

(ICSE), pp. 285-294, 1999.

[10]. W. Dickinson, D. Leon, and A. Podgurski, “Finding

Failures byCluster Analysis of Execution Profiles,” Proc.

23rd Int’l Conf. SoftwareEng. (ICSE), pp. 339-348, 2001.
[11]. D. Kuhn and M. Reilly, “An Investigation of the

Applicability of Design of Experiments to Software

Testing,” Proc. NASA Goddard/IEEE Software Eng.

Workshop, pp. 91-95, 2002.

[12]. A. Podgurski, D. Leon, P. Francis, W. Masri, M.

Minch, J. Sun,and B. Wang, “Automated Support for

Classifying Software Failure Reports,” Proc. 25th Int’l

Conf. Software Eng. (ISSRE), pp. 465-475, 2003.

[13]. Christopher Henard, Mike Papadakis,Gilles Perrouin,

Jacques Klein, Patrick Heymans,And Yves Le Traon,”

Bypassing The Combinatorial Explosion: Using Similarity
To Generate And Prioritize T-Wise Test Configurations For

Software Product Lines,” IEEE Transactions On Software

Engineering, Vol. 40, No. 7, July 2014.

[14]. S. Fouch_e, M.B. Cohen, and A. Porter, “Incremental

Covering Array Failure Characterization in Large

Configuration Spaces,”Proc. Int’l Symp. Software Testing

and Analysis (ISSTA), pp. 177-188,2009.

[15]. C. Song, A. Porter, and J.S. Foster, “Itree: Efficiently

Discovering High-Coverage Configurations Using

Interaction Trees,” Proc.Int’l Conf. Software Eng. (ICSE),

pp. 903-913, 2012.

