
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 501

ELEMENTS OF LEGACY PROGRAM COMPLEXITY

Harmeet Kaur
1
, Shahanawaj Ahamad

2
, Gurvinder N. Verma

3

1
Ph.D. (Computer Applications) Research Scholar, Punjab Technical University, Jalandhar, Punjab, India

2
Assistant Professor, Dept. of CS & SWE, College of Computer Sc. & Engg., University of Ha’il, Ha’il, Saudi Arabia

3
Professor and Principal, Shri Sukhmani Institute of Engineering & Technology Derabassi, Punjab, India

Abstract
Researchers in the field of software engineering, business process improvement and information engineering all want to

drastically modernize software life-cycle processes and technologies to correct the problems and to improve the quality of
software. Research goals have included ancillary issues, such as improving user services through conversion to new platforms

and facilitating software processes by adopting automated tools. Automated tools for software development, understanding,

maintenance, and documentation add to process maturity, leading to better quality and reliability of computer services and

greater customer satisfaction. This paper focuses on critical issues of legacy program improvement. The program improvement

needs the estimation of program from various perspectives. The paper highlights various elements of legacy program complexity

which further can be taken in account for further program development.

Keywords: Legacy, Program, Software complexity, Code, Integration.

--***--

1. PREFACE

This section will explain the contribution and motivation of

research.

1.1 Motivation

As indicated by research study conducted earlier, the best

future test for organizations is in managing complexity. As

per the present scenario the markets are more volatile, more

uncertain and complex, constraining organizations to

respond to market changes quickly. The heads of the

companies come up against these dangers by empowering

their organizations to rapidly respond to these changes.

Moreover, the organization's software systems must be
empowered to catch up to the fast changes also.

1.2 Contribution of the Paper

This paper introduces an approach to identify elements of

legacy program complexity for effective reengineering of

the legacy program. The literature has been explored for

mapping the elements responsible for enhancing the

complexity of the software and also carried a research to

know the elements responsible for increasing the complexity

of legacy program. The paper is divided into four sections.

Section-I entails introduction and literature survey. Section-

II describes how to map elements enhancing the complexity

of legacy program. Section-III introduces various elements
and provides the description of each element. Section-IV

summarizes the paper and provides an Outlook on open

research issues.

2. INTRODUCTION

The legacy program is an essential component of legacy

systems. The legacy systems are those systems which were

developed before the invention of advanced software

engineering techniques. These legacy systems are still

workable and usable but need improvement to accommodate

the changes according to current computing needs. The

work considers that legacy programs were developed in

earlier languages, but even now the program developed in

VB and Java in early 90s are also legacy. Legacy software

may be characterized as software we don't recognize what to

do with however it is performing a valuable job. The

inference is that the ideal solution is to abandon the software

totally and begin again with new software. This may not be
suitable in all cases for instance

A. The software shows years of cumulative experience

which is unrepresented somewhere else so

discarding the software will likewise abandon this

knowledge however clumsily it is shown.

B. The manual system which was replaced by the

software no more exists so system analysis must be

embraced on the software itself.

C. The software may truly function admirably and its

behavior may be well comprehended. A new

system may perform significantly poorly in the
beginning. Consequently it might be worth

recovering a portion of the features of the legacy

system.

D. A normal legacy software system has numerous

users who normally have misused undocumented

features and negative effects in the software. It may

not be adequate to request that clients attempt a

significant rework for no discernable benefit.

Therefore it might be critical to hold the interfaces

and definite usefulness of the legacy code both

unequivocal and implied.

E. Users may favor an evolutionary instead of a
progressive methodology.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 502

Notwithstanding, moving from present software practice

dominated by extensive, complex legacy applications with

advancement and support accumulations to a future focused

around software reuse and automatic project generation has

proven to be exceptionally troublesome. One issue is that

the advocated transition techniques require dedicated
professionals with extensive knowledge of both the

application domain and the software technology.

These professionals are charged with continuously making

computerized knowledge base of potential application

requirements. Such a knowledge base would be supported

by a library of versatile, reusable software components and a

set of decision rules and computerized methods for selecting

and collecting the segments into the desired software

application. This methodology, which creates a domain and

software reuse environment from the very beginning, has so
far demonstrated expensive and unsafe, with long-delayed

payback periods for recuperating the initial investments.

3. METHODOLOGY

To study the elements which are responsible for legacy

program complexity we have gone through the plethora of

literature which is available online as well as in the libraries

also. We have consulted the books on this aspect. Through

the in-depth study of the literature as well as books we were

able to find the elements which are responsible in enhancing

the complexity of the legacy program. It took us few months

to find and explore the elements of legacy program

complexity.

4. ELEMENTS OF LEGACY PROGRAM

COMPLEXITY

Following are the elements which are responsible for legacy
program complexity.

4.1 Difficulty in Understanding the Code

Difficulty in understanding the code of the legacy systems

makes the legacy system complex. Sneed [6] stated that

legacy code is difficult to understand and maintain. It will

lead to low quality of the software. The difficulty in

understanding the code leads to complexity enhancement

and thus lowers the quality of the software or system.

Bernard [8] showed that the legacy code is written in

assembly language or using any of the third generation

languages although the system might be doing beneficial job

for the organization what it is hard to understand the code.
However, in many cases, constant changes cause the code to

become convoluted, without organization or structure,

adhering to no standards [6], [36], [10]. The resulting code

is often called spaghetti code and is virtually impossible to

unravel.

4.2 Cost

As the legacy system is large and complex so redesigning or

replacing, upgrading the system is very costly. If legacy runs

on obsolete hardware, the expense of maintaining the system

might inevitably exceed the expense of replacing both the

software and hardware unless some type of imitating or

regressive similarity permits the software to run on new

hardware [38].As matter of fact, the elevated amount of

entropy joined with uncertain documentation about the

design and architecture make their maintenance more
complicated, time consuming, and expensive. Besides, these

systems have significant economical value and many are

vital to their owners [3]. For the high cost of lost previous

investment and business knowledge implanted in those

systems, in some cases replacing the legacy systems are

replace with new systems which are developed by using new

technology is not right decisions as these systems are

important assets of the organization.

4.3 Size

The size of the system is also one of the elements that affect

the complexity of the legacy system. As the size of the

software increases, the complexity of the system also
increases. As far as size is concerned there are two factors

which are to be considered while dealing with the

complexity of the software.

4.4 No of Control Structures

The number of control structures also impacts the

complexity of the system. If the program is large in size but

no of control structures its complexity will be less on the

other hand if the size is small but the number of control

structures is large it will increase the complexity.

4.5 Recursive Functions

The size of new projects will basically rely upon the

quantity of inputs, outputs and the interfaces, the system

has. As their number increases so is the complexity of the
legacy program or vice-versa. The attributes of the data

structure and procedures in the software makes the software

complex and hard to understand.(Curtis et.al,1979).

4.6 Design

The poor design of the system makes it more complex and

hence it is hard to change and expensive to support the

program. The objective behind every system, including data

information system, is to bring about required data

information based on input data and its processing. A long

time of experience in creating information systems brought

about understanding that the amount of documents and the

complexity of a given document inside a business system by
one means or another establish the complexity of designing,

as well as creating a information system. By and large, to

completely comprehend them, more time and effort is

required for systems with various documents, than for those

with fewer documents. Relatively, the project development

is more intricate and tedious.

4.7 Integration

Since the legacy systems are based on old platforms that is

legacy platforms these platforms are difficult to understand

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 503

and hence increases complexity and it is very difficult to

integrate these systems with the new platforms is very

complex. Incorporation crosswise technique is truly

common in computing, yet integration between new

technologies and substantially older ones is not normal.

There may basically not be sufficient interest for integration
technology to be created. Some of this "glue" code is seldom

created by sellers and enthusiasts of specific legacy

technologies.

4.8 Security

As the legacy systems have older operating system it may be

susceptible to attacks due to lack of security patches which

are being applied the security issues may be caused by

production setups. These issues can put the legacy systems

at danger of being traded off by attackers or knowledgeable

insiders [4].As legacy systems are based on obsolete

technology they are complex and are liable to be less secure

that is complexity hinders the security of the legacy
programs. The code which is complex ought to be larger

than the simple code that means there are more chances for

accidents, omissions and manifestation of code errors. As

complexity increases, it is common to just affirm that a

system or product is secure as it becomes less and less

conceivable to really make it secure despite complexity.

Regardless of an abundance of testing tools that assert to

grab bugs, the complexity of software makes security

imperfections and errors unavoidable and progressively

normal.

4.9 Performance

Performance is either a moderate degradation of software
performance about whether or its decreasing responsiveness

that will in the long run lead to software getting to be

flawed, unusable, or overall called "legacy" and in need of

updating. This is not a physical phenomenon: the software

does not really rot, yet rather experiences an absence of

being responsive and redesigned as for the changing

environment in which it operates. software can fall apart in

"performance" over the time and becomes "legacy" as it

runs and becomes error prone; this is not for the most part

considered software decay, however it may have a portion

of the same outcomes. Generally, such a state can be
overcome by totally reinitializing its state (as by a complete

reinstallation of all applicable programming segments,

perhaps including working framework programming). The

another element which is responsible for making software or

program legacy is the performance as the software

deteriorates slowly over the period of time its

responsiveness diminishes and makes the software error

prone, useless or legacy which needs up-gradation to meet

the current technological requirements. As the time passes

the software detoriates and its performance decreases and is

not able to meet the expectations of the user so it is required

that the software must be upgraded rather than discarding it
totally. To enhance the performance of the software install

the new software’s or modifies the code.

4.10 Lack of Documentation

These systems are difficult to maintain, enhance, and extend

due to absence of understanding of the system; the staffs

who were professionals on it have resigned or forgotten

what they knew about it, and staff who entered the field

after it became "legacy" never learned it in any case. This

can be exacerbated by need or loss of documentation.
Comair Airline Company blamed its CEO in 2004 because

of the failure of an obsolete legacy team scheduling system

that ran into a restriction not known to anybody in the

company.

4.11 Flexibility

As the legacy systems are working on old or outdated

technology thus are not able to compete with the changing

technology and are not flexible. It was observed by [10]

notes that legacy systems use old technology, are lacking in

flexibility, are highly complex and possibly diverge with

corporate strategy.

4.12 Time

As less time for processing and more processing speed is the
aim for making optimized use of resources. Time is also

important element in complexity of the legacy program the

programs which takes more time for processing are more

complex as compare to the programs which takes less time

for processing or completion of the execution. The time of

computation in legacy program is high and thus it

contributes in enhancing the complexity of the program.

4.13 Lack of Staff

As legacy programs are built using outdated techniques and

thus it is not easy to understand this program so the un

availability of the staff increases the complexity. The staff

either has left the job and they are not interested in teaching
the other persons or the staff has retired from the job.

4.14 Reliability

Reliability means ability of the program to perform its

intended functions and operations without failure. As the

legacy programs are complex so these systems tend not to

entirely understand. if the system is difficult to understand

than it is difficult to find the ways by which the system can

be compromised by the attackers or intruders. It is not easy

to prevent insecure operating modes in the legacy systems

and that too in cheaply. Generally it has been observed that

complex systems are considered to less prone to attacks or

they are secure but the fact is although numbers of tools are
available to test the legacy programs but the complexity of

the legacy programs makes a security flaws and errors

nearly unavoidable and normal.

4.15 Bugs or Errors

A software bug is an error, failure, or fault in a computer

program or system that makes it to create a wrong or

unexpected result, or to behave in unexpected ways. Most

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 504

bugs emerge from mistakes and errors made by individuals

in either a program's source code or its design, or in systems

and operating systems utilized by such programs, and a

couple of them are created by compilers creating wrong

code. A program that contains number of bugs or the bugs

that genuinely intervene with its functionality is said to be
buggy. Reports specifying bugs in a system are generally

known as bug reports, defect reports, fault reports, problem

reports, trouble reports so on and so forth. The outcomes of

bugs may be amazingly genuine. In 1996, the European

Space Agency's Us$1 billion model Ariane 5 rocket must be

crushed short of what a moment after dispatch, in view of a

bug in the ready for machine program. In June 1994, a

Royal Air Force Chinook impacted the Mull of Kintyre,

slaughtering 29. This was from the get go discharged as

pilot slip, however an examination by Computer Weekly

uncovered sufficient affirmation to induce a House of Lords
request that it may have been brought about by a product

bug in the airplane's motor control computer. In 2002, a

study commissioned by the US Department of Commerce'

National Institute of Standards and Technology concluded

that "software bugs, or errors, are so prevalent and so

detrimental that they cost the US economy an estimated

$59 billion annually, or about 0.6 percent of the gross

domestic product"[37].

4.16 Unpredictability

It is the inability to know what will happen. As legacy

programs are obsolete and are hard to understand.

4.17 Interdependent Parts/Interfaces

The interdependence between various modules of the
program makes the program complex. According to

Webster’s Encyclopedic Unabridged Dictionary, 2001

complexity is characterized by complicated arrangement of

interconnected parts. More the number of interconnected

parts more will be the complexity of the program and it is

difficult to understand the program. Most of legacy

programs are complex involving lots of interrelationships or

interdependence and changing requirements.

5. CONCLUSION

From the study it was observed that difficulty in

understanding the code, size of the legacy program and cost

are the factors which are responsible for the complexity of
the legacy program. The lack of documentations and

interdependence of the paths or interfaces also contributes in

enhancing the complexity of the program. Last but not the

least the errors or the bugs in the legacy program increases

the complexity of the program as it is very difficult to find

the errors or bugs in the legacy program as they are very

complex. As far as the lack of staff and unpredictability is

concerned these also have an impact on increasing the

complexity of the legacy program. This study will help the

research scholars in predicting the complexity of the

program. The study will be further enhanced using
mathematical tools in the future using these aspects as per

the demand of our research.

REFERENCES

[1] The RENAISSANCE Framework, RENAISSANCE

project deliverable, 1997.

[2] Lamb, John (June 2008). "Legacy systems continue

to have a place in the enterprise". Computer Weekly.

Retrieved 27 October 2014.

[3] Stephanie Overby (2005-05-01). "Comair's
Christmas Disaster: Bound To Fail - CIO.com -

Business Technology Leadership". CIO.com.

Retrieved 2012-04-29.

[4] Razermouse (2011-05-03). "The Danger of Legacy

Systems". Mousesecurity.com. Retrieved 2012-04-

29.

[5] [9].(B. Foote, J. Yoder, “Big Ball of Mud”, Pattern

Languages of Program Design, Vol. 4, N. Harrison,

B. Foote, H. Rohnert, (Eds.), Addison-Wesley,

2000.)

[6] Sneed, H., 1995 “Planning the reengineering of

legacy systems” January IEEE Software.
[7] Brooks,F. 1975 The Mythical Man-Month. Addison-

Wesley.

[8] Bernard, V.L. 1995. “The Feltham-Ohlson

Framework: Implications for Empiricists.”

[9] Contemporary Accounting Research 11: 733-747.

[10] Bancroft,N.,H.Seip,A.Sprengel , 1997 Implementing

SAP/R3. Manning publications. Also available:

http://www.browsebooks.com/Bancroft/Contents.htm

l.

[11] Elliot Chikofski and James H. Cross II "Reverse

Engineering and Design Recovery: A Taxonomy"
IEEE Software January 1990 7(1):13-17.

[12] V. R. Basili and H. D. Mills "Understanding and

Documenting Program" IEEE Transactions on

Software Engineering May 1982. SE-8(3):270-283.

[13] Ward, M., “Abstracting a Specification from Code”,

Joumal of Software Maintenance, 5(2), 1993.

[14] J. Cordy, I. Carmichael, and R. Halliday. The txl

programming language (version 8). Technical report,

Legasys Corp., Kingston, Apr. 1995.

[15] R. S. Arnold, editor. Software Reengineering. IEEE

Computer Society Press, 1992.

[16] Cremer, K., “A Tool Supporting the Re-Design of
Legacy Applications”, in Proceedings of 2”d

Euromicro Conference on Software Maintenance and

Reengineering - CSMR’98, IEEE. Florence, Italy,

1998, pp. 142-49.

[17] Sneed, H. M., Planning the Reengineering of Legacy

Systems, IEEE Software, January 1995, pp. 24-34.

[18] Perspectives on Legacy System Reengineering,

Software Engineering Institute, Carnegie Mellon

University, 1995.

[19] Assessing the Evolveability of a Legacy System,

Software Engineering Institute, Carnegie Mellon
University, 1996.

[20] Parnas, D.L. Software Aging. in 16th International

Conference on Software Engineering. May 1994.

Sorrento, Italy.

[21] Simon, H.A., The Architecture of Complexity. The

American Philosophical Society, December 1962.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 505

[22] Henderson, R.M. and K.B. Clark, Architectural

Innovation: The Reconfiguration of Existing Product

Technologies and the Failure of Established Firms.

Administrative Science Quarterly, 1990. 35: p. pp. 9-

30.

[23] Hughes, T.P., The Evolution of Large Technological
Systems, in The Social Construction of

Technological Systems, W.E. Bijker, T.P. Hughes,

and T.J. Pinch, Editors. 1987, MIT Press: Cambridge,

MA.

[24] Simon, H.A., The Architecture of Complexity. The

American Philosophical Society, December 1962.

[25] S Comella-Dorda. K Wallnau, R. Seacord, and J

Robert. “A Survey of Legacy System Modernization

Approaches”. SEI Technical Note CMU/SEI-00-TN-

003. Software Engineering Institute, Carnegie Mellon

University, Apr. 2000.
[26] S. Tilley, and D Smith, “Legacy System

Reengineering, Software Engineering Institute”,

Carnegie Mellon University, Presented at the

International Conference on Software Maintenance,

Nov. 4-8, 1996.

[27] L. Raccoon., “The Complexity Gap”. SIGSOFT

Software Engineering Notes, 20(3), Jul. 1995, pp. 37-

44.

[28] N Weiderman, J Bergey, D. Smith, B. Dennis and S

Tilley, “Approaches to Legacy System Evolution”

[29] (CMU/SEI-97-TR-014). Software Engineering

Institute, Carnegie Mellon University, 1997.
[30] R. Pressman. Software Engineering: A Practitioner's

Approach, 4th Edition. New York, NY: McGraw-

Hill, 1997.

[31] J. Ransom and I. Warren. “A Method for Assessing

Legacy Systems for Evolution,” Proceedings, Second

Euromicro Conference on Software Maintenance and

Reengineering (CSMR98), 1998.

[32] Arnold,R.1989“Software Restructuring” Proceedings

of the IEEE, April Vol. 77, No. 4, pp 607 – 617.

[33] "Software bugs cost US economy dear".

Web.archive.org. June 10, 2009. Retrieved
September 24, 2012.

[34] Bisbal, J.; Lawless, D.; Bing Wu; Grimson, J.,

“Legacy information systems: issues and directions”,

Software, IEEE , vol.16, no.5, pp.103-111, Sep/Oct

1999.

[35] http://en.wikipedia.org/wiki/Legacy_system

