
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 441

AN ADAPTIVE ALGORITHM FOR TASK SCHEDULING FOR

COMPUTATIONAL GRID

P.Keerthika
1
, P.Suresh

2

1
Assistant Professor (Senior Grade), Department of CSE, Kongu Engineering College, Tamilnadu, India
2
Assistant Professor (Senior Grade), Department of IT, Kongu Engineering College, Tamilnadu, India

Abstract
Grid Computing is a collection of computing and storage resources that are collected from multiple administrative domains. Grid

resources can be applied to reach a common goal. Since computational grids enable the sharing and aggregation of a wide

variety of geographically distributed computational resources, an effective task scheduling is vital for managing the tasks.

Efficient scheduling algorithms are the need of the hour to achieve efficient utilization of the unused CPU cycles distributed

geographically in various locations. The existing job scheduling algorithms in grid computing are mainly concentrated on the
system’s performance rather than the user satisfaction. This research work presents a new algorithm that mainly focuses on better

meeting the deadlines of the statically available jobs as expected by the users. This algorithm also concentrates on the better

utilization of the available heterogeneous resources.

Keywords: Task Scheduling, Computational Grid, Adaptive Scheduling and User Deadline.

--***--

1. INTRODUCTION

Even with the emergence of many superfast computers and

the high speed networks, the utilization of the
geographically distributed resources has gained huge

importance. This recognition is mainly because of the low

cost services and the best outcome offered by them. There

are many computing fields that offer high utilization of the

widely available underutilized resources such as grid

computing, distributed computing, parallel computing, etc.

Grid computing has gained more popularity because of it

loosely coupled nature when compared to distributed

computing and parallel computing that mainly deals with

tightly coupled systems. The basic idea of grid Computing is

to utilize the ideal CPU cycles and storage of millions of

computer systems across a worldwide network function as a
flexible, pervasive, and inexpensive accessible pool that

could be harnessed by anyone who needs it, similar to the

way power companies and their users share the electrical

grid [1].

When considering the scheduling of the resources many

factors such as CPU utilization rate, throughput, turnaround

time, waiting time, response time should be focused for all

the processors when assigned with the jobs. Thus the jobs

are assigned to the resources considering the system’s

performance. Thus the scheduling plays an important role in
achieving the best utilization of resources and the better

completion of the submitted jobs. Many scheduling

algorithms have been designed for this purpose. Even then

scheduling is a main focus. There are many algorithms that

are mainly system centric i.e. consider the effective

utilization of resources such as MCT, MET, OLB, Min-min,

Max-min, First Come First Serve (FCFS) Algorithm,

Shortest Job Fastest Resource (SJFR), Longest Job Fastest

Resource (LJFR), etc... But these traditional algorithms

mainly focus on the system performance of the user
expected time for each job. In this paper we have proposed a

new idea that considers the time expected to complete the

job by the user and schedules the job by concentrating on

both the system performance and the user satisfaction.

Then, after scheduling the jobs through our algorithm, we

can guarantee that each job will be assigned to their most

suitable resources, and most of the jobs are completed

within their respective requisition times, thus the satisfaction

of the users is demonstrated. Then in the algorithm of this

paper, we take into consideration as how to satisfy the

demands of the users as much as possible without
decreasing system performance much are just the main

focus. And we compare the efficiency of our algorithm with

the conventional algorithms.

2. RELATED WORKS

Grid scheduling is the process of scheduling jobs over

widely distributed grid resources. This is achieved by using

a grid scheduler. A grid scheduler is different from local

scheduler in that a local scheduler only manages a single site

or cluster and usually owns the resource [2]. There are three

generalized stages in the scheduling procedure of the Grid

computing. They are resource discovering and filtering,

resource allocation and scheduling according to certain
strategies and job submission and job execution

management over multiple administrative domains. As this

paper mainly concentrates on the job scheduling we need to

concentrate on the second stage. Scheduling algorithms can

be divided into two major modes one is static scheduling

and the other one is dynamic scheduling, with each having

their own advantages and disadvantages.

http://www.gridbus.org/~raj/papers/gridtech.pdf

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 442

In the case of dynamic mode, we don’t do the advanced
estimate of jobs before assigning the jobs to the resource.
Then we monitor the resources available from time to time
and reschedule and reassign the jobs to the best resource
available to improve the system’s performance. We also
have to make some necessary adjustments for reassigning
the jobs to the best resource such as rescheduling and
transferring jobs to most suitable resources. In this paper, we
only take static mode into consideration.

In static mode, a prior estimate of jobs with the available
resources are done and assigned to the suitable resource
based on some strategy. After the submission of the job to a
resource no change will happen to this allocation
dynamically. One of the major advantage of this mode is
this is easy and simple to carry out.

First Come First Serve (FCFS) algorithm schedules the job
to the available resources linearly without considering any
parameters of the job and resource. Shortest Job Fastest
Resource (SJFR) scheduling algorithm mainly aims to
reduce the makespan of all the submitted jobs. The
makespan is the total time taken by all the statically
available jobs to get executed on their scheduled resources.
The shortest job is first scheduled and allocates the jobs to
the fastest resource available [2].

Longest Job Fastest Resource (LJFR) is a scheduling
algorithm, which also tries to reduce the makespan of the
scheduled jobs. The longest job is scheduled to the fastest
resource. Since the longest job is submitted to the fastest
resource the execution time of the longest job is drastically
reduced when compared to its execution time on any other
resource in the grid. As far as execution time is considered it
gives the best results [3].

Opportunistic Load Balancing (OLB) assigns each task, in
arbitrary order, to the next machine that is expected to be
available, regardless of the task's expected execution time
on that machine. The intuition behind OLB is to keep all
machines as busy as possible. The advantage of OLB is its
simplicity. The major drawback of it is, it does not consider
the characteristics of job and resource which results in very
poor makespan [4].

In contrast to OLB, Minimum Execution Time (MET)
assigns each task, in arbitrary order, to the machine with the
best expected execution time for that task, regardless of that
machine's availability. The motivation behind MET is to
give each task to its best machine. It causes severe load
imbalance across machines [4].

Minimum Completion Time (MCT) assigns each task, in
arbitrary order, to the machine with the minimum expected
completion time for that task. This causes some tasks to be
assigned to machines that do not have the minimum
execution time for them. The intuition behind MCT is to
combine the benefits of OLB and MET and hence to
improve the makespan. But all the above mentioned
algorithms deals with only one job at each mapping time
and hence it is not more suitable for the heterogeneous
environment [4].

The Min-min scheduling algorithm deals with the set of all
unscheduled independent tasks. Then the ETC (Expected
Time to Compute) matrix will be computed. ETC matrix
contains the estimated completion time for all the jobs in
every available resources. Then for each job the minimum
completion time will be selected from the ETC matrix. Then
the overall minimum value will be chosen from the
minimum completion time of all unmapped jobs and is
assigned with its best resource. Then the ETC matrix is
recalculated for the remaining unmapped jobs and the above
process is repeated until all the jobs are assigned with the
resources. Min-min maps the tasks in the order that changes
the machine availability status by the least amount that any
assignment could. When compared to the above mentioned
algorithms Min-min has the best makespan. Here, mapping
the task with the shorter execution time to its best machine
allows the tasks to be completed very soon [4].

The Max-min scheduling algorithm is very similar to Min-
min. The Max-min scheduling algorithm also deals with the
set of all unscheduled independent tasks. Then the ETC
(Expected Time to Compute) matrix will be computed for
all the unmapped jobs in every available resource. Then for
each job the minimum completion time will be selected
from the ETC matrix. Then the overall maximum value will
be chosen from the minimum completion time of all
unmapped jobs and is assigned with its best resource. Then
the ETC matrix is recalculated for the remaining unmapped
jobs and the above process is repeated until all the jobs are
assigned with the resources. Here, mapping the task with the
longer execution time to its best machine first allows this
task to be executed concurrently with the remaining tasks.
And hence makespan is improved [5].

As mentioned above, Min-min algorithm is more
advantageous in grid scheduling when compared with other
algorithms. Even though it concentrates on the system
performance the user satisfaction is not taken into
consideration. So we need to modify this aspect and provide
an algorithm that takes both the user satisfaction and system
performance into account. Here we are going to discuss a
new scheduling strategy that guarantees user’s deadline to
be satisfied through our new scheduling strategy without
sacrificing the system’s performance [6].

3. PROPOSED SCHEDULING MODEL

Grid scheduling is the process of scheduling application

tasks over grid resources. There are two main concepts in

this scheduling process namely system’s performance and

user satisfaction. Essentially, all the conventional

algorithms mainly concentrate on the system’s performance.

As these algorithms focus on the proper utilization of the

computational power of the grid resources, these are referred

to us as the system-centric algorithms.

The application-centric algorithms chiefly focus on the

contentment of the demands i.e. deadlines of the

independent tasks provided by the corresponding users.

Here the satisfaction of the users is mainly concentrated

rather than focusing on the performance characteristics of

the grid resources.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 443

This proposed algorithm mainly deals with the statically

available jobs and hence it is of static scheduling mode. In

particular this algorithm deals with a list of jobs at a time

and has two phases in scheduling such as task prioritizing

and resource selection. In the task prioritizing phase sets the

priority of each task with the user deadline as the parameter
and generates a scheduling list by sorting the tasks

according to their rank values. The resource selection phase

selects tasks in the order of their priorities and maps each

selected task on its optimal resource. So our algorithm falls

into list scheduling algorithms. This list scheduling is further

classified into batch mode, dependency mode and

dependency-batch mode.

Notation Definition

CTi,j
Completion time of the job or task

Ji in the resource rj

RTj Ready time of the resource rj

ETi,j
Execution time of the job or task Ji

in the resource rj

DCTi,j

Difference in time between the

deadline given by the user and the

calculated completion time for the

job in available resources

MinDCTi,j

The minimum value from the

difference values DCTi,j for the

given job

UTi

User requisition time or the

deadline given by the user for the
jobs in U

Batch mode scheduling algorithms are initially designed for

scheduling parallel independent tasks, such as bag of tasks

and parameter tasks, on a pool of resources. Since the

number of resources is much less than the number of tasks,

the tasks need to be scheduled on the resources in a certain

order. A batch mode algorithm intends to provide a strategy

to order and map these parallel tasks on the resources, in

order to complete the execution of these parallel tasks at

earliest time [7]. Even though batch mode scheduling

algorithms aim at the scheduling problem of independent

tasks; they can also be applied to optimize the execution
time of the submitted jobs which consists of a lot of

independent parallel tasks with a limited number of

resources.

Dependency mode scheduling algorithms are derived from

the algorithms for scheduling a task graph with

interdependent tasks on distributed computing environments

[8]. It intends to provide a strategy to order and map the

submitted tasks on heterogeneous resources based on

analyzing the dependencies of the entire task graph, in order

to complete these interdependent tasks at earliest time.
Unlike batch mode algorithms, it ranks the priorities of all

tasks in the submitted jobs at one time.

Dependency-batch mode scheduling algorithms combine

dependency mode and batch mode. It first assigns the rank

to the jobs like that of the Batch mode scheduling algorithm

and then it adapts dependency mode scheduling algorithm to

schedule the independent tasks within the submitted jobs. As

this algorithm deals with the independent tasks, the first step

involved in it is the assignment of rank to the tasks on

considering the deadline of the user as the parameter. The

next step involved in it is the resource selection and hence
our algorithm falls into the batch mode scheduling

algorithm.

Let us consider the mathematical representations to denote

the relationships between the resources and jobs. And also

to introduce the parameters the parameters involved in our

algorithm such as execution time, completion time, ready

time, etc. that have been used in our algorithm. The resource

set is represented as P= { r1, r2, r3,………., rm}. As the

grid environment deals with the heterogeneously distributed

grid resources the number of resources available may be
huge. As we consider the static environment both the jobs

submitted and the resource available are taken as fixed and

they do not change over time.

The jobs submitted can be enclosed within the job set which

is represented as U= {J1, J2, J3,…………,, J4}. The jobs

submitted are considered as the independent tasks that can

be executed in parallel with other available tasks. Also the

jobs are considered as static i.e. they number of tasks

submitted are fixed and they do not change with time. The

users submitting their jobs for execution are represented as

C= {C1, C2, C3, ……………., Cp}. The users submit the
jobs with the requisition time i.e. within which the job needs

to be completed which can also be called the demanded

deadline of the user for the submitted jobs.

4. PROPOSED ALGORITHM

ETC matrix is constructed for all the jobs with every

available resource. Secondly, the job with the minimum

deadline is considered. The deadline of the selected job

given by the user is compared with different ETC values.

The job is allocated to the resource that has the minimum

difference value. Then, the job is removed from the job set.

Next, the waiting time of the resource is changed and the

ETC matrix is recalculated for the remaining unmapped
jobs. Above steps are repeated until all the jobs are

scheduled.

4.1 Calculation of ETC Matrix

ETC matrix is basically the execution time matrix. A prior

estimation of the execution time of the submitted jobs in

every available resource is computed by considering the

characteristics of the tasks and resources. In the proposed

system, 512 tasks and 16 resources are considered. Based on

the characteristics, the tasks can be classified into High Task

and Low Task. Similarly the resources can be classified into

High Machine and Low Machine

By considering the various characteristics of the job and

resource into account, ETC matrix can be designed and it

can be classified into Consistent, Inconsistent and Partially-

consistent. An ETC matrix is said to be consistent, if a

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 444

resource Ri executes a task Ti faster than the resource Rk

and Ri executes all other jobs faster than Rk. For a matrix to

be inconsistent, a resource Ri executes some jobs faster than

Rj and some jobs are slower than Rj. Partially-consistent

ETC matrices are also called as semi-consistent matrices. A

semi consistent matrix is a sub matrix of inconsistent matrix
with predefined size.

The proposed algorithm is mainly based on user satisfaction

and system performance. It takes user’s deadlines into

account and makes the job to be executed within the

expected deadline by assigning it to the suitable resource. It

also concentrates on the system performance by reducing

the idle time of the resources and assigning the tasks equally

among the available resources. It considers the ETC matrix

and concentrates on the completion time and hence the

system’s performance is also the major consideration in
addition to user’s satisfaction. The proposed scheduling

process is performed as two major steps. In the first step, we

concentrate on the user satisfaction and in the second step

we consider system performance. Firstly the ETC matrix is

constructed for the available resources with every available

resource. Secondly we consider the job with the minimum

deadline i.e. the job that needs to be completed quickly.

Then the deadline of the selected job given by the user is

compared with that of different ETC values. Then allocate

the job to the resource that has the minimum difference

value. Then remove the job from the job set. Then the

waiting time of the resource is changed and the ETC matrix
is recalculated for the remaining unmapped jobs. Then

continue the above steps until all the jobs are scheduled.

Thus both the user satisfaction and system performance can

be taken into consideration effectively with this algorithm.

In this algorithm, ETC matrix is constructed. Completion

matrix is calculated by adding the ETC values with the

ready time of the resources. With every job submitted the

deadline is acquired as input within which the user expects

the job to be completed. Priority is assigned to the jobs

based on the deadline provided by the user. Initially, the job
with the highest priority is chosen for scheduling.

The difference matrix is computed for the job that has been

chosen. The minimum value is found from the difference

matrix calculated. The job is allocated to the corresponding

resource. Next step is the computation of the ready time and

the execution time of that resource. The completion matrix

is re-computed by adding the ready time of the resource.

The steps from prioritizing the jobs are repeated until all the

submitted jobs are scheduled to their most suitable

resources.

5. RESULTS AND DISCUSSION

Adaptive job scheduling algorithm is compared with Min-

min algorithm and application demand aware scheduling

algorithm. The parameters considered for the comparison

are

 Makespan- the total time taken to complete all the

submitted jobs

 Hit - a task is said to be a hit if it is completed

within the user requisition time.

 Miss - a task is said to be a miss if it is not

completed within the user deadline.

Adaptive job scheduling algorithm has a better makespan
when compared with the application demand aware

scheduling algorithm. Also, the hit is high when compared

with the Min-min algorithm. Even though the application

demand aware scheduling algorithm has a high hit when

compared to the Min-min algorithm, the makespan is high

for the application demand aware scheduling algorithm. The

adaptive job scheduling algorithm has an improved hit when

compared to Min-min and better makespan when compared

to application demand aware scheduling algorithm.

The various characteristics of ETC matrices (i.e. Consistent,
Inconsistent, Partial), diverse tasks (such as high and low

tasks) and variety of machines (such as high and low

machine) are considered for the construction of twelve

different ETC matrices. The application demand aware

algorithm and the adaptive job scheduling algorithm are

compared in terms of makespan, hit and miss.

The Application demand aware algorithm and the proposed

algorithm is compared based on makespan and the values

are given in table 1. The performance analysis is given in

figure 1.

Table 1. Makespan Values

Tasks and Resources

Application

Demand

Aware

Adaptive

Job

Scheduling

High-High Partial (p-hh) 5774893 4504474

High-Low Partial (p-hl) 1470189 546691

Low-High Partial (p-lh) 106230 60084

Low-Low Partial (p-ll) 15524 13854

High-High Inconsistent (i-hh) 6804441 5403760

High-Low Inconsistent (i-hl) 1061204 855583

Low-High Inconsistent (i-lh) 145245 122041

Low-Low Inconsistent (i-ll) 10591 5429

High-High Consistent (c-hh) 9618108 7308179

High-Low Consistent (c-hl) 735913 469402

Low-High Consistent (c-lh) 84511 58645

Low-Low Consistent (c-ll) 11583 4947

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 445

The comparison based on number of hit is given in table 2

and figure 2. The performance of the proposed algorithm is

better when compared to the application demand aware

algorithm.

Fig.1 Comparison based on Makespan

Table 2. Hit Count Values

Tasks and

Resources

Application

Demand

Aware

Adaptive

Job

Scheduling

High-High Partial 316 490

High-Low Partial 145 226

Low-High Partial 174 251

Low-Low Partial 208 330

High-High

Inconsistent
230 481

High-Low

Inconsistent
120 220

Low-High

Inconsistent
160 242

Low-Low

Inconsistent

214 311

High-High

Consistent
360 480

High-Low

Consistent
116 217

Low-High
Consistent

176 209

Low-Low

Consistent
211 350

Fig.2 Performance based on Hit Count

6. CONCLUSION

Even though many scheduling algorithms have emerged to

effectively utilize the globally available grid resources, they

mainly concentrate on resource performance. They failed to
contribute to the user’s satisfaction. So, we focused to

overcome the existing drawback with the help of our newly

proposed algorithm. For each job, the user gives user

requisition time and with the help of this we make sure that

most jobs are completed within the deadline requested by

the user. The user satisfaction is the major consideration of

our idea, still the system performance is also preserved to a

greater extent. This algorithm is more beneficial with

respect to the user satisfaction when compared with Min-

min algorithm and has good system performance when

compared with the application demand aware scheduling

algorithm. In the proposed system, only the independent
tasks are considered. So this work can be extended to suite

for dependent tasks. The next task is to study the function

and feasibility of dynamic scheduling, to make some

possible improvements on the current scheduling algorithm,

hoping to make it more flexible and efficient in actual

application.

REFERENCES

[1]. Aysan Rasooli, Mohammad Mirza-Aghatabar and

Siavash Khorsandi (2008) ‘Introduction of Novel Rule

Based Algorithms for Scheduling in Grid Computing

Systems’, Second Asia International Conference on

Modelling & Simulation, pp.138-143.
[2]. G.Sumathi and N.P. Gopalan, “Priority based

scheduling for heterogeneous grid environments”,1-4244-

0411-8/06/$20.00 C 2006 IEEE.

[3]. Zhan Gao, Siwei Luo and Ding Ding, “A Scheduling

Mechanism Considering Simultaneous Running of Grid

Tasks and Local Tasks in the Computational Grid”, 2007

International Conference on Multimedia and Ubiquitous

Engineering(MUE'07) 0-7695-2777-9/07 $20.00 © 2007.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 446

[4]. Tracy D. Braun, Howard Jay Siegel,2 and Noah Beck,”

A Comparison of Eleven Static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous Distributed

Computing Systems”, 2007 International Conference on

Multimedia and Ubiquitous Engineering (MUE'07) 0-7695-

2777-9/07 $20.00 © 2007.
[5]. Y. Zhu, "A Survey on Grid Scheduling Systems",

Department of Computer Science, Hong Kong University of

science and Technology, 2003.

[6]. Sumathi. G., Gopalan. N.P, "Grid Scheduling

Algorithms for Heterogeneous Environment", Proceedings

of the IEEE Int. Conf. on Signal & Image Technology and

Internet Based Systems (SITIS 2005), Cameroon, West

Africa.

[7]. Hao Y, Liu G. and Wenc N, An enhanced load

balancing mechanism based on deadline control on

GridSim, Future Generation Computer Systems, Vol.28,
2012, pp. 657-665.

[8]. Homer Wu, Chong-Yen Lee , Wuu-Yee Chen, Tsang-

Yean Lee, "A Job Schedule Model Based on Grid

Environment ", Proceedings of the First International

Conference on Complex, Intelligent and Software Intensive

Systems (CISIS'7695-2823-6/07 $20.00 © 2007

