
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 180

SURVEY OF STREAMING DATA WAREHOUSE UPDATE

SCHEDULING

Madhuri A. Pandit
1
, Rashmi Deshpande

2

1
M.E. 2

nd
 Year, Department of Information Technology, Siddhant College of Engineering, Pune, Maharashtra, India

2
Asst. Professor, Department of Information Technology, Siddhant College of Engineering, Pune, Maharashtra, India

Abstract
In this paper, we study scheduling problem of updates for the streaming data warehouses. The streaming data warehouses are the

combination of traditional data warehouses and data stream systems. In this, jobs are nothing but the processes which are

responsible for loading new data in the tables. Its purpose is to decrease the data staleness. In addition, it handles well, the

challenges faced by the streaming warehouses like, data consistency, view hierarchies, heterogeneity found in update jobs

because of dissimilar arrival times as well as size of data, preempt updates etc. The staleness of data is the scheduling metric
considered here. In this, jobs are nothing but the processes which are responsible for loading new data in the tables. Its purpose

is to decrease the data staleness. In addition, it handles well, the challenges faced by the streaming warehouses like, data

consistency, view hierarchies, heterogeneity found in update jobs because of dissimilar arrival times as well as size of data,

preempt updates etc. The staleness of data is the scheduling metric considered here.

Keywords: partitioning strategy, scalable scheduling, data stream management system.

--***--

1. INTRODUCTION

The main purpose of streaming data warehouses is to
distribute new data through all related tables and views as

quickly as possible. When new arriving data are loaded in

the data warehouse, the triggers and applications defined

over that will be able to take immediate actions. This helps

to take real time decisions to increase profit in business. It

also avoids any serious problem and improves customer

satisfaction. Recent work on streaming data warehouses is

mostly related to ETL (Extraction, Transformation, Load)

process. But there has been less work on selection of all the

obsolete tables, which have become obsolete because of

appearance of up-to-the-minute data. The new data may

emerge on several streams, but there is no way for limiting
the number of tables that can be updated at the same time.

Hence there is a need of scheduler which limits the number

of simultaneous updates and schedules the next job. Real

time scheduling problem is well studied by means of lengthy

literature. The challenges generally found with scheduling

like non-preemptibility, hierarchies, scheduling metrics, data

consistency, priorities, transient load, and heterogeneity and

are concurrently handled by the streaming data warehouses

[1].

We study the paper, which demonstrates how to schedule
updates for views in the form of streams and the transactions

in the real time database system. In this, two definitions for

staleness are given. First is MA (Maximum Age) and second

is UU (Unapplied Update). Four algorithms are used for the

scheduling transactions and installing the updates in the soft

real time database systems. We study the paper in which the

scheduling strategy affects the performance metrics like,

tuple latency, throughput, and memory necessities for the

systems in which query processing is continuous. Another

paper gives focus on the problem of scheduling the updates,

when there are materialized views. Then it finds the best

order to update them to exploit the quality of data (QoD) in

presence of continual updates. The group-EDF (gEDF)

algorithm uses the dynamic grouping of tasks by deadlines.

Deadlines of tasks are very close to each other. SJF

(Shortest Job First) algorithm is used to schedule the tasks

inside a group. Thus total execution time is minimized.

Scheduler is the key component of real time systems which

assigns inadequate resources to serve request in due course.

The further constituent of real time database systems is
organization of input streams and applying update for the

corresponding table in the database. Example of such input

streams are data from sensors in engineering control

systems, service request for telecommunication systems, call

request or return the state of supplementary databases in

system. The main intend is to maintain the external data

consistency. If the size of materialized views is restricted,

the number of updates per second is so short that the

resource requirements for views are definitely trivial [2].

In DSDM, scheduling problem is very complex. It has
substantial effect on the performance metrics like tuple

latency, system throughput. The resources like CPU, I/O and

main memory are fixed, but the scheduling jobs can be

extremely dynamic. Predefined QoS requirements for query

put many constraints. The efficient strategy for scheduling

in DSDM must be able to: (1) achieve the maximum

performance with the fixed amount of resources, (2)

guarantee the specified QoS for the query if required, (3)

take suitable actions under unanticipated conditions, (4)

strategy must be implemented easily and run effectively

when there is small overhead. The actual strategy possibly

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 181

will not be able to accomplish all the above properties, since

there are tradeoffs amongst all the performance metrics and

usage of the offered resources. The path capacity strategy

gains best tuple latency. The segment scheduling strategy

gives the least memory requirement. The threshold strategy

provides sound overall performance, despite the fact that
they do not meet all the properties [3].

To maximize the overall QoD (quality of data), a set of

materialized views are set to the best order to update the

views. FIFO schedule for the web views updates can have

catastrophic effect on QoD. QoD-aware update scheduling

algorithm (QoDA) combines the scheduling of tables and

view updates in single framework. QoDA scheduling can

keep a high level of QoD. Still the update processing

capacity is not sufficient and there are surges in the arriving

rate. QoD utilizes temporal locality in arriving update
stream, moreover considers the database schema and also

supports all types of views and view hierarchies. In testing,

QoDA update schedules always outperforms FIFO schedule

by up to two orders of magnitudes. Also FIFO never restores

QoD or it may restore it gradually. Whereas QoDA quickly

restores the QoD [4].

The complexity of scheduling of the data-loading jobs is
considered in order to minimize the staleness of the real

time streaming data warehouses. The weighted staleness and
the stretch can be restricted under some conditions on the

process speed and arrival time of emerging data. In the
applications like IP network monitoring, online financial

trading, credit card fraud detection, the data warehouse
collects the great number of streams of data feeds which are

generated by the external sources. For the different tables,
data are generated at different rates, but for each table, it is

generated at constant rate. When the new data arrives, the

triggers defined over it release an update job that appends
the new data to the associated table. When the processors

are adequately fast, the constant-stretch algorithm for the
quasiperiodic model is used, in which the tables can be

clustered in a small number of groups. The update
frequencies within each group change at the most a constant

factor [5].

Earliest Deadline First (EDF) scheduling algorithm is the
first dynamic priority-driven scheduling algorithm. It uses

priority for scheduling real time jobs. These priorities are
given statically or dynamically by the system. EDF suffers

considerably if the system is overloaded. EDF can be online
or offline, based upon the selection of the types of jobs

involved. Generally, offline scheduling has great
performance than online scheduling. But it may lead to

poorer utilization of resources. The metric of the real-time
systems is the success ratio of the system deadlines. Success

ratio is the percentage of jobs finished before their
deadlines. Another metric like the minimized total SJF

scheduling is optimal, but it requires expected execution
time to be completely applied. SJF algorithm can be applied

either non-preemptively or preemptively. SJF has short
average waiting time. It is optimal regarding average

waiting time. This approach is superior compared to other
algorithms [8].

2. STREAMING DATA WAREHOUSE

2.1 Streaming Data Warehouse Architecture

The architecture of the streaming data warehouse is shown

in Figure 1. It has two types of tables, base tables and

derived tables. Initially, the base tables are loaded from the

data streams. Then the derived tables are defined as an SQL

query over those base tables as the materialized view. Each

table has user defined priority Pn as well as time-dependent

staleness function Sn(t). A dependency graph is maintained
which indicates the relationship between the source and

derived tables. This graph can be acyclic and directed. For

each table Tn, we have, (1) the set of ancestors, and (2) the

set of dependent tables. Ancestors directly or indirectly

serve as its sources, whereas dependent tables are directly or

indirectly sourced from it. On the arrival of new data in the

form of stream, an update job Jn is released. This job

executes the ETL process and loads the new data into

related table Tn. Also updates its indices. After execution of

update job for base table Tn, update jobs for all dependent

tables are created. As soon as those jobs are finished, update
jobs for other remaining tables are released in the BFS order

given in the view dependency graph. Which job is going to

be executed next is decided by the scheduler. Each update

job is the atomic task.

Fig - 1 : Architecture of Streaming Data Warehouse

2.2 Data Staleness

Staleness of the table Sn(t) at time t , is the difference

between t and the freshness of Tn. Staleness starts

increasing as soon as update is done. Priority given to the

table Tn is Pn. Its objective is to minimize the total priority-

weighted staleness(S) over time.

S = Σ Pn ∫ Sn(t) dt

Main aim is to minimize priority-weighted data staleness

[1].

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 182

2.3 Scheduling Model

Let Ji be the new update job for the table Ti. For base table,

Ji is the period of its source stream and for derived table; Ji

is the maximum period of any of the Ti’s ancestors. Δ Fi,

i.e., freshness of Ti is defined as an increase in freshness

after Ji is finished. Let n is time interval of the data which is

to be loaded. Then the execution time Ei is given as,

Ei(n)=αi +βi*n

Where,

αi = Time to initialize the ETL process

βi = Data Arrival Rate

When set of new data emerges, a new update job is released.

Multiple update jobs may be pending for the same table, if

the warehouse is busy executing another job. All such

instances of pending update jobs are combined together into

the single update job. This job loads all the available data
into corresponding tables. This approach is more efficient

than executing each such job independently. Because in this

approach, we need to pay the fixed cost αi only once.

3. SCHEDULING OF UPDATES

In update scheduling problem, the schedule of updates is

found which maximizes the quality of data. Consider the

database which contains n relations and m views. Let r1, r2,

r3..., rn are the relations and v1, v2, v3, v4....., vm are their

views.

DAG (Directed Acyclic Graph) and View Dependency

Graph is used to represent derivative paths of views. The
nodes of view dependency graphs indicate either relations or

views. If node b is derived from node a, then there is an

edge between node a and node b. Suppose we know the cost

to update each relation and the cost to refresh each

materialized view. The actual update cost is not required.

But their relative update cost is required. Figure 2 shows the

view dependency graph. For the simplicity, consider that all

update and refresh operations require one time unit

excluding views v2 and v3. Finally there are only two

updates, for relations r1 and r2. Update for r1 arrives at time

0, while update for r2 arrives at time 3.

Fig -2 : View Dependency Graph

In case of FIFO update propagation schedule, the refresh of

all the affected views is performed after the update to the

parent relation is finished. If there are multiple paths for the

single view, unnecessary refreshes must be avoided while

scheduling. In figure 2, as soon as an update job for r2 has

arrived, we would use schedule r2-v3-v4-v5 instead of r2-
v3-v5-v4-v5 for avoiding refresh of view v5 twice. Using

BFS (Breadth First Search) technique on view dependency

graph, FIFO update scheduling avoids unnecessary

refreshes.

3.1 Scheduling Algorithm

Basic algorithm prioritizes jobs so that that jobs can be

executed on separate tracks, EDF(Earliest deadline First)

algorithm orders jobs by proximity to their deadlines, since

jobs are having priority EDF is not best solution because it's

performance is poor. Instead EDF One of the Basic

algorithm such as Prioritized EDF, Max benefit, Max

benefit with lookahead can be choosen[1].Four scheduling
algorithms are there for addressing the two closely related

components:Do Update First(UF), DoTransaction first(TF),

Split Updates(SU), Apply update On Demand (OD) [2].

FIFO strategy and Chain strategy are used to show impact of

strategy on tuple latency, throughput of query processing

system and queue size[3] QoD-Aware update scheduling

Algorithm unifies scheduling of relation updates amd view

refreshes under single framework. QoDA algorithm

maintains a set of stale database objects, and at each step it

selects the object with maximum impact value. QoDA

algorithm can be very fast also it adds very little overhead to
the system, as it has no time-dependent computation. QoDA

schedule quickly recovers and maintains high quality of data

[4].

3.2 Job Partitioning

If a set of jobs is heterogeneous with regard to execution

time and period, scheduler performance is probably

beneficial, if it is guaranteed that some part of the

processing devices will be allocated to small jobs. Global

scheduling is the best way to achieve better results in a soft

real time setting. There are two methods for ensuring that

resources will be allocated to small jobs: (1) EDF-

Partitioning, (2) Proportional partitioning. EDF partitioning
algorithm assigns jobs to the tracks. The deadline of an

update job is equal to the release time of the job plus its

period. EDF strategy is compatible with any local

scheduling algorithm for scheduling on the individual track.

This strategy promotes short jobs to an idle track which

already contains some long jobs. There is negligible

computational overhead in case of EDF algorithm.

Proportional partitioning strategy forms the clusters of

similar jobs. It can assign job cluster to any number of

tracks. The overhead of the proportional algorithm is small.

In worst case, it varies with the availability of tracks.

3.3 Hierarchy of Views

Since views are dependent on other views, the prioritization

of the jobs becomes hard. It is necessary that, source view

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 183

inherits the priority of its child view. There are three ways

of inheriting the priority. Those are Sum, Max and Max-

plus.

3.4 EDF Scheduling with Priorities

EDF scheduling algorithm is implemented as dynamic and

priority driven algorithm. In the real time systems, the
priority levels should not exceed 32. EDF works on the

principle of scheduling of the jobs based on the deadlines.

Therefore maintaining one base priority others can be made

dynamic priorities. The deadline of any job finds its priority

between all the jobs having the same level of base priority.

4. COMPARATIVE ANALYSIS

The update scheduling in streaming data warehouses is

discussed in large extent. Various metrics are used

consistently to illustrate the best schedule. The notion of

collaborating algorithm presented in paper 1 and 8 can

improve the performance of update scheduling in the

streaming data warehouses. This idea can escort us to the
new area of research. We can choose the best order for

refreshing the materialized views to improve the quality of

data.

There are numerous basic algorithms for the scheduling of

the updates in streaming data warehouses. Global

partitioning is used to scale the database. There are two

types partitioning algorithms, EDF partitioning and

proportional partitioning. EDF partitioning algorithm with

priorities is used for scheduling the jobs. Proportional

partitioning identifies the clusters of similar jobs. Then it

allocates these clusters to any number of tracks. Previous
approaches have used only either EDF partitioning strategy

or proportional partitioning strategy.

5. RESEARCH DIRECTIONS

In future a framework can be designed to handle complex

environment of a streaming data warehouse. Previous

strategies have used a single strategy, either EDF

partitioning or proportional strategy. We can try to combine

best features of both strategies to make scheduling of

updates even faster than previous approaches. Also we can

use different scheduling algorithms at different stages of

scheduling.

In current systems, streaming fetches information only from

one table at a time. With further research can be solved in

order to fetch data from multiple tables at a time. The new

data possibly will emerge on multiple streams. There is no

way for limiting the number of tables that can be

concurrently updated. Hence the need for a component

occurs which will be able to limit the number of concurrent

update jobs and will decide which job to schedule next.

6. CONCLUSION

The problem of scheduling updates in streaming data

warehouse is studied. Updating streaming data warehouse is

a problem in which jobs correspond to the processes.

Purpose of these processes is to refresh the tables in the data

warehouse. And target is to improve data freshness. The

decision about which job to schedule next depends on effect

of that updating on data staleness. Average staleness was

measured as scheduling metric. And the algorithms were

built to deal with the environment of the streaming data
warehouse. The update jobs are non-preemptive. The idea of

average staleness as a scheduling metric is used. It helps to

take real time decisions for business critical applications. It

is used in many applications like stock exchanges, online

analysis of stock prices, network analysis, monitoring

applications etc.

ACKNOWLEDGEMENTS

The authors would like to thank M.E. co-coordinator Prof.

Mrs. Rangdale and other staff of I.T. department of Siddhant

College of Engineering, Pune for their helpful discussions.

REFERENCES

[1]. Lukasz Golab, Theodore Johnson, and Vladislav
Shkapenyuk,”“Scalable Scheduling of Updates in Streaming

Data Warehouses”,”IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 24,

NO. 6, JUNE 2012”

[2]. B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying

Update Streams in a Soft Real-Time Database System,”

Proc. ACM SIGMOD Int’l Conf. Management of Data, pp.

245-256, 1995.

[3]. Qingchun Jiang, Sharma Chakravarthy,” Scheduling

Strategies for a Data Stream Management System”.

[4]. Alexandros Labrinidis, Nick Roussopoulos,” Update

Propogation Strategies for Improving the Quality of Data on
the Web”,proceeding of the 27th VLDB Conference , Roma,

Italy, 2001.

[5]. M.H. Bateni, L. Golab, M.T. Hajiaghayi, and H.

Karloff,

“Scheduling to Minimize Staleness and Stretch in Real-time

Data Warehouses,” Proc. 21st Ann. Symp. Parallelism in

Algorithms and Architectures (SPAA), pp. 29-38, 2009.

[6]. L. Golab, T. Johnson, J.S. Seidel, and V. Shkapenyuk,

“Stream Warehousing with Datadepot,” Proc. 35th ACM

SIGMOD Int’l Conf. Management of Data, pp. 847-854,

2009.
[7]. B. Babcock, S. Babu, M. Datar, and R. Motwani,

“Chain:Operator Scheduling for Memory Minimization in

Data Stream Systems,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 253-264, 2003.

[8]. Li, Wenming, “Group-EDF - a new approach and an

efficient non-preemptive algorithm for soft real-time

systems”. Doctor of Philosophy (Computer Science),

August 2006, 123 pp., 6 tables, 49 illustrations, references,

48 titles.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 04 Issue: 03 | Mar-2015, Available @ http://www.ijret.org 184

BIOGRAPHIES

Madhuri Pandit is completing Master’s

degree in Engineering in Information

Technology from Siddhant College of

Engineering, affiliated to Savitribai Phule

Pune University. She received Bachelor’s

degree in Engineering in Computer Science
from Gharda Institute of Technology,

affiliated to Mumbai University.

Rashmi Deshpande is assistant lecturer at

Siddhant College of Engineering, affiliated

to Savitribai Phule Pune University. She

completed her Master’s degree in

Engineering in Electronics from Rajarshi

Shahu College of Engineering, affiliated to

Savitribai Phule Pune University. She

received Bachelor’s degree in Engineering in Electronics

and Telecommunication from Usmanabad College of
Engineering, affiliated to Dr. Babasaheb Ambedkar

University, Aurangabad.

