BOUNDARY LAYER FLOW AND HEAT TRANSFER OF A DUSTY FLUID OVER A VERTICAL PERMEABLE STRETCHING SURFACE

Runu Sahu¹, S.K.Mishra²
Sr. Lecturer, Vivekananda institute of technology, Chhatabara, Bhubaneswar
Adjunct Professor, Center for fluid dynamics Research, CUTM, ParalaKhemundi

Abstract
The steady boundary layer free convective flow of a dusty fluid past a vertical permeable stretching surface is studied. The governing equations are converted into first order ordinary differential equations using similarity transformations. These equations are solved numerically by using Runge kutta forth order method. The effects of physical parameters like fluid-particle interaction parameter, local Grashof number, suction parameters, Prandtl number, radiation parameter and Eckert number on the flow and heat transfer characteristics are computed and presented graphically. Also the rate of heat transfer at the surface is discussed. The present results are compared with the previous study and there is a good agreement.

AMS classification 76T10, 76T15

Keywords: Volume fraction, Interaction parameter, Dusty fluid, Thermal radiation, suction parameter, steady flow and heat transfer, Boundary layer flow, Numerical solution.

NOMENCLATURE

- \(E_c \): Eckert number
- \(q_r \): radiation heat flux
- \(q_{rp} \): radiation heat flux of particle phase
- \(F_r \): Froud number
- \(G_r \): Grashof number
- \(P_r \): Prandtl number
- \(T_s \): temperature at large distance from the wall.
- \(T_p \): temperature of particle phase.
- \(T_w \): wall temperature
- \(u_s(x) \): stretching sheet velocity
- \(c_p \): specific heat of fluid
- \(c_s \): specific heat of particles
- \(k_s \): thermal conductivity of particle
- \(u_p \), \(v_p \): velocity component of the particle along x-axis and y-axis
- \(A \): constant
- \(R_a \): Thermal radiation
- \(c \): stretching rate
- \(f_0 \): suction parameter
- \(g \): acceleration due to gravity
- \(k \): thermal conductivity of fluid
- \(l \): caracteristic length
- \(T \): temperature of fluid phase.
- \(u,v \): velocity component of fluid along x-axis and y-axis
- \(x,y \): cartesian coordinate
- \(K^* \): Mean absorption co-efficient

GREEK SYMBOLS

- \(\beta \): fluid particle interaction parameter
- \(\beta^* \): volumetric coefficient of thermal expansion
- \(\sigma^* \): the Stefan Bolzman constant
- \(\rho \): density of the fluid
- \(\rho_p \): density of the particle phase
- \(\rho_s \): material density
- \(\eta \): similarity variable
- \(\theta \): fluid phase temperature
- \(\theta_d \): dust phase temperature
- \(\mu \): dynamic viscosity of fluid
- \(\nu \): kinematic viscosity of fluid
- \(\gamma \): ratio of specific heat
- \(\tau \): relaxation time of particle phase
- \(\tau_p \): thermal relaxation time i.e. the time required by the dust particle to adjust its temperature relative to the fluid.
- \(\tau_v \): velocity relaxation time i.e. the time required by the dust particle to adjust its velocity relative to the fluid.
- \(\varepsilon \): diffusion parameter
- \(\omega \): density ratio

1. INTRODUCTION
The study of laminar flow and heat transfer over a stretching sheet has a considerable interest because of its ever increasing industrial applications and important bearing on several technological processes. Such applications are in chemical industry, power and cooling industry for drying, chemical vapour deposition on surface s and cooling of nuclear reactors etc. Such processes occur when the effect of buoyancy forces in free convection becomes significant. The problem of free convection under the influence of magnetic field has attracted numerous researchers in view of its applications in geophysics and astrophysics.

G.K.Ramesh et.al.[7] have studied on the radiation effects on a steady free convective boundary layer flow of a dusty fluid past a vertical permeable stretching surface. Robert et.al.[19] have studied “Convective heat transfer in a conducting fluid over a permeable stretching surface with suction and internal heat generation/absorption.

In the present paper, the behavior of incompressible, laminar boundary-layer flows of a dusty fluid and heat transfer over a vertical permeable surface of stretching sheet with thermal radiation is studied. By using similarity transformation we convert partial differential equations into first order ordinary differential equations and solved numerically Runge-Kutta fourth order method. In this case the thermal radiation effect plays a significant role in controlling heat transfer processes in polymer industry. The momentum equation for particulate phase in normal direction, heat due to conduction and viscous dissipation in the energy equation of the particle phase have been considered for better understanding of the boundary layer characteristics. The effects of volume fraction on skin friction, heat transfer and other boundary layer characteristics also have been studied.

2. FLOW ANALYSIS OF THE PROBLEM

Consider an steady two dimensional laminar boundary layer of an incompressible viscous dusty fluid over a vertical stretching sheet. The flow is generated by the action of two equal and opposite forces along the x-axis and y-axis being normal to the flow. The sheet being stretched with the velocity \(U_w(x) \) along the x-axis, keeping the origin fixed in the fluid of ambient temperature \(T \). Both the fluid and the dust particle clouds are suppose to be static at the beginning. The dust particles are assumed to be spherical in shape and uniform in size and number density of the dust particle s taken as a constant throughout the flow. Unlike previous studies, we have included particle-particle interaction terms in momentum and every equation.
The governing equations of steady two dimensional boundary layer incompressible flows of dusty fluids are given by

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(1)

\[
\rho_p \frac{\partial u_p}{\partial x} + \rho \frac{\partial v_p}{\partial y} = \frac{1}{\rho} \mu \frac{\partial^2 u}{\partial y^2} - \frac{1}{(1-\varphi)\tau_p} \varphi \rho_s (u - u_p) + g \beta^* (T - T_0)
\]

(2)

\[
\varphi \rho_s (u_p \frac{\partial u_p}{\partial x} + v_p \frac{\partial u_p}{\partial y}) = \frac{\partial}{\partial y} \left(\varphi \mu_s \frac{\partial u_p}{\partial y} \right) + \frac{1}{\tau_p} \varphi \rho_s (u - u_p) + \varphi (\rho_s - \rho) g
\]

(3)

\[
\varphi \rho_s (u_p \frac{\partial v_p}{\partial x} + v_p \frac{\partial v_p}{\partial y}) = \frac{\partial}{\partial y} \left(\varphi \mu_s \frac{\partial v_p}{\partial y} \right) + \frac{1}{\tau_p} \varphi \rho_s (v - v_p)
\]

(4)

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k_t}{\rho_c} \frac{\partial^2 T}{\partial y^2} + \frac{\varphi \rho_s c_s \tau_p}{(1-\varphi)\tau_p} \frac{1}{(1-\varphi)\tau_p} (T_p - T) + \frac{\varphi \rho_s}{(1-\varphi)\tau_p} - \frac{1}{(1-\varphi)\tau_p} (u_p - u)^2 + \frac{\mu}{\rho_c} \frac{\partial u}{\partial y} - \frac{1}{(1-\varphi)\tau_p} \frac{\partial v}{\partial y}
\]

(5)

\[
\frac{u}{\nu} \frac{\partial^2 T}{\partial x^2} + \frac{v}{\nu} \frac{\partial^2 T}{\partial y^2} = -\frac{1}{\tau_p} (T_p - T) + \frac{1}{\tau_p} \frac{\partial}{\partial y} \left(\varphi k_s \frac{\partial T}{\partial y} \right) - \frac{1}{\tau_p} \frac{\partial}{\partial y} \left(u - u_p \right)^2 + \frac{\mu}{\rho_c} \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial y^2}
\]

(6)

Where \(u, v\) and \(u_p, v_p\) are the velocity components of the fluid and dust particle phases along \(x\) and \(y\) directions respectively. \(\mu, \rho, \rho_p\) are the co-efficient of viscosity of the fluid, density of the fluid and particle phase, of the particle phase respectively.

With boundary conditions

\[
T = T_w = T_\infty + A \left(\frac{y}{l} \right)^2 \quad \text{at} \quad y = 0
\]

and \(T \to T_\infty, T_p \to T_\infty\) as \(y \to \infty\)

(8)

Where \(\omega\) is the density ratio in the main stream.

In order to solve (6) and (7), we consider non-dimensional temperature boundary conditions as follows

\[
T = T_w = T_\infty + A \left(\frac{x}{l} \right)^2 \quad \text{at} \quad y = 0
\]

and \(T \to T_\infty, T_p \to T_\infty\) as \(y \to \infty\)

(9)

Where \(A\) is a positive constant, \(l = \frac{c_s}{\sqrt{\varepsilon}}\) is a characteristic length.

Using the Rosseland approximation for radiation heat flux is simplified as

\[
q_r = -\frac{4\sigma^*}{3k^*} \frac{\partial T^4}{\partial y}
\]

(10)

Where \(\sigma^*\) and \(K^*\) are the Stefan Boltzman constant and the mean absorption co-efficient respectively.

Assuming that the temperature differences within the flow such that term \(T^4\) may be expressed as a linear function of the temperature. We expand \(T^4\) in a Taylor series about \(T_\infty\) and neglecting the higher order terms beyond the first degree in \((T - T_\infty)\) we get

\[
T^4 \equiv 4T_\infty^4(T - T_\infty)^4
\]

(11)

For most of the gases \(\tau_p \approx \tau_F, k_s = \frac{c_s \rho_s}{c_p \mu}\) if \(\frac{c_s}{c_p} = \frac{2}{3\tau_p}\)

Introducing the following non dimensional variables in equation (1) to (7)

\[
u = c_x f(\eta), v = -\sqrt{c_v} f(\eta), \eta = \sqrt{\frac{T}{T_\infty}}, u_p = c_x f(\eta), v_p = \sqrt{c_v} G(\eta), \varphi \rho_p = H(\eta)
\]

\[
\theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \theta_p(\eta) = \frac{T_p - T_\infty}{T_w - T_\infty}, \beta = \frac{1}{c_x^2}, \gamma = \frac{c_s}{c_p}, P_r = \frac{\mu c_p}{k}, E_c = \frac{c_s^2}{A c_p}, R_a = \frac{16 \rho_s^2}{3k^* h}
\]

Where \(T - T_\infty = A \left(\frac{x}{l} \right)^2 \theta, P_r - T_\infty = A \left(\frac{x}{l} \right)^2 \theta_p \frac{\partial T}{\partial y} - \frac{16 \rho_s^2 \sigma^*}{3k^* h^2} \frac{\partial^2 T}{\partial y^2}\)

\(c\) is the stretching rate and being a positive constant. \(c_p\) is the specific heat of fluid phase.
\(k\) is the thermal conductivity. \(\beta\) is the fluid particle interaction parameter. \(\beta^*\) is the volumetric coefficient of thermal expansion.

We get the following non dimensional form.
3. SOLUTION OF THE PROBLEM

Here in this problem the value of \(f' (0), F(0), G(0), H(0), \theta(0), \theta_p(0) \) are not known but \(f'(\infty) = 0, F(\infty) = 0, G(\infty) = -f(\infty), H(\infty) = \omega, \theta(\infty) = 0, \theta_p(\infty) = 0 \) are given. We use Shooting method to determine the value of \(f'(0), F(0), G(0), H(0), \theta(0), \theta_p(0) \). We have supplied \(f'(0) = \alpha_0^g \) and \(f'(0) = \alpha_1 \). The improved value of \(f'(0) = \alpha_2 \) is determined by utilizing linear interpolation formula. Then the value of \(f'(\alpha_2, \infty) \) is determined by using Runge-Kutta method. If \(f'(\alpha_2, \infty) \) is equal to \(f'(\infty) \) up to a certain decimal accuracy, then \(\alpha_2 \) i.e \(f'(0) \) is determined, otherwise the above procedure is repeated with \(\alpha_0 = \alpha_1 \) and \(\alpha_1 = \alpha_2 \) until a correct \(\alpha_2 \) is obtained. The same procedure described above is adopted to determine the correct values of \(F(0), G(0), H(0), \theta(0), \theta_p(0) \).

The essence of Shooting technique to solve a boundary value problem is to convert the boundary value problem into initial value problem. In this problem the missing value of \(\theta(0) \) and \(f'(0) \) for different set of values of parameter are chosen on hit and trial basis such that the boundary condition at other end i.e. the boundary condition at infinity \((\eta_\infty) \) are satisfied. A study was conducting to examine the effect of step size as the appropriate values of step size \(\Delta \eta \) was not known to compare the initial values of \(\theta(0) \) and \(f'(0) \). If they agreed to about 6 significant digits, the last value of \(\eta \) used was considered the appropriate value; otherwise the procedure was repeated until further change in \(\eta \) did not lead to any more change in the value of \(\theta(0) \) and \(f'(0) \). The step size \(\Delta \eta = 0.1 \) has been found to ensure to be the satisfactory convergence criterion of \(1 \times 10^{-6} \). The solution of the present problem is obtained by numerical computation after finding the infinite value for \(\eta \). It has been observed from the numerical result that the approximation to \(\theta(0) \) and \(f'(0) \) are improved by increasing the infinite value of \(\eta \) which is finally determined as \(\eta = 10.0 \) with a step length of 0.1 beginning from \(\eta = 0 \). Depending upon the initial guess and number of steps \(N \), the values of \(\theta(0) \) and \(f'(0) \) are obtained from numerical computations which are given in table – 2 for different parameters.

Table 1: Comparison results for the wall temperature gradient \(-\theta'(0) \) in case of \(\beta=0, Gr=0, Ra=0, f_0=0, \) and \(Ec=0 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>1.0823306</td>
<td>1.0886</td>
<td>1.0868</td>
<td>1.08885</td>
</tr>
<tr>
<td>1.0</td>
<td>1.333400</td>
<td>1.3333</td>
<td>1.3333</td>
<td>1.3333</td>
</tr>
</tbody>
</table>
4. RESULTS AND DISCUSSION
The equations (12) to (17) subjected to boundary conditions (18) have been solved numerically using Runge-Kutta method coupled with a shooting technique for some values of the parameters $\beta, \varphi, \varepsilon, \gamma, F_r, E_c, P_r, G_r, R_a$ and f_0. In order to check the accuracy of our present numerical solution procedure used a comparison of wall temperature gradient $\theta'(0)$ is made with those reported by with G.K. Ramesh, B.J.Gireesha & C.S.Bagewadi[7], MS Able[13] and Chen [5] for various values of Pradtl number in absence of other parameters which are given in table-1. Our present result are in a good agreement with the previous results.

![Fig-2: Variation of u w.r.t β](image)

$\Phi=0.01, E_c=1.0, P_r=0.71, G_r=0.01, R_a=3.0, \varepsilon=5.0, F_r=10.0, \gamma=1.0, f_0=1.0$

![Fig-3: Variation of U_p w.r.t β](image)

$\Phi=0.01, E_c=1.0, P_r=0.71, G_r=0.01, R_a=3.0, \varepsilon=5.0, F_r=10.0, \gamma=1.0, f_0=1.0$
Fig-4: Variation of θ w.r.t Pr

Φ=0.01, Ec=1.0, Pr=0.71, Gr=0.01, Ra=3.0, ε=5.0, Fr=10.0, γ=1.0, f0=1.0

Fig-5: Variation of θ w.r.t Gr

Φ=0.01, Ec=1.0, β=0.01, Pr=0.71, Ra=3.0, ε=2.0, Fr=10.0, γ=1.0, f0=1.0

Fig-6: Variation of θp w.r.t Gr

Φ=0.01, Ec=1.0, β=0.01, Pr=0.71, Ra=3.0, ε=2.0, Fr=10.0, γ=1.0, f0=1.0
Fig-7 Variation of θ w.r.t Ra
$\Phi=0.01, Ec=1.0, \beta=0.01, Pr=0.71, Gr=0.01 \quad \rho=2.0 \quad Fr=10.0, \quad \gamma=1.0, f_0=1.0$

Fig-8 Variation of θ_p w.r.t Ra
$\Phi=0.01, Ec=1.0, \beta=0.01, Pr=0.71, Gr=0.01 \quad \rho=2.0 \quad Fr=10.0, \quad \gamma=1.0, f_0=1.0$

Fig-9 Variation of u w.r.t f_0
$\Phi=0.01, Ec=1.0, Pr=0.71, Gr=0.01, Ra=3.0 \quad \rho=2.0 \quad Fr=10.0, \quad \gamma=1.0, \quad \beta=0.01$
Fig-10 Variation of Up w.r.t f_0
$\Phi=0.01, Ec=1.0, Pr=0.71, Gr=0.01, Ra=3.0, \varepsilon=2.0, Fr=10.0, \gamma=1.0, \beta=0.01$

![Figure 10](chart_url)

Fig-11 Variation of Up w.r.t f_0
$\Phi=0.01, Ec=1.0, Pr=0.71, Gr=0.01, Ra=3.0, \varepsilon=2.0, Fr=10.0, \gamma=1.0, \beta=0.01$

![Figure 11](chart_url)

Fig-12 Variation of θ_p w.r.t f_0
$\Phi=0.01, Ec=1.0, Pr=0.71, Gr=0.01, Ra=3.0, \varepsilon=2.0, Fr=10.0, \gamma=1.0, \beta=0.01$

![Figure 12](chart_url)
The variation of non-dimensional velocity of fluid and particle phase is depicted in Figs. (2) & (3) for different values of β, where other values of parameters remain fixed. It is observed that there is no significant change in the fluid phase velocity \(u \) but the particle phase velocity \(u_p \) increases with the increase of β.

Fig-4 shows the variation of non-dimensional temperature profile \(\theta(\eta) \) for various values of Prandtl number \(Pr \). It is observed that an increase in the value of \(Pr \) leads to a decrease of temperature profiles in the fluid phase. A higher Prandtl number fluid has a thinner thermal boundary layer and this increases the gradient of the temperature and also the surface heat transfer.

Figs-(5) & (6) display the temperature profiles for some values of Grashof number \(Gr \) for the fluid and particle phase flow. It is observed that there is no significant change in the fluid phase temperature \(\theta \) but the particle phase temperature \(\theta_p \) increases for the increasing values of \(Gr \).

Figs.(7) & (8) represent the non-dimensional temperature profile of both the fluid phase \(\theta \) and the particle phase \(\theta_p \) for different values of \(Ra \). It is observed that a slight increase in temperature profile \(\theta \) but a slight decrease in particle phase temperature \(\theta_p \).

The velocity and temperature profiles for both the phases are depicted in Figs.(9) to (12) for the various values of suction parameter \(f_0 \). It is observed that the fluid velocity \(u \) decreases asymptotically but a significant increase in the particle phase velocity up with the increase of \(f_0 \). The temperature \(\theta \) and \(\theta_p \) of fluid and particle phase respectively decrease with the increasing value of \(f_0 \).

The effect of Eckert number \(Ec \), which signifies the viscous dissipation of the fluid, on the heat transfer, is exhibited in Figs-(13) & (14). It is observed that an increase in viscous dissipation of the fluid tends to increase in fluid temperature with increase of \(Ec \). The reason for this effect is that the viscosity of the fluid takes energy from motion of the fluid.
and transforms it into the internal energy of the fluid, which results in the heating of the fluid. The temperature \(\theta \) of particle phase decreases with increasing value of Ec.

5. CONCLUSION

In this study, numerical analysis is presented to investigate the free convective heat transfer of a dusty fluid over a vertical permeable stretching sheet. Thermal radiation terms have been included in the energy equations. Velocity and temperature profiles are presented graphically and analyzed. Influence of physical parameters found to effect the problem under consideration are the fluid particle interaction parameter, local Grashof number, suction parameter, radiation parameter, Prandtl number and Eckert number. Numerical components shows that the present values of wall temperature gradient is close agreement with those obtained by previous investigators in the absent of \(\beta, f_0, \text{Gr}, Ra \) and temperature gradient is close agreement with those obtained by previous investigators in the absent of \(\beta, f_0, \text{Gr}, Ra \) and Ec. On this basis of the above study we have the following observations:

Table 2: Values of wall velocity gradient \(-f'(0)\), temperature gradient \(-\theta'(0)\), \(-F(0), -G(0), H(0)\), and \(\theta_p(0)\) different values of \(\beta, Ec, Gr, Pr, Ra, f_0\) and Ec.

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(Ec)</th>
<th>(Gr)</th>
<th>(Pr)</th>
<th>Ra</th>
<th>(f_0)</th>
<th>(-f'(0))</th>
<th>(-\theta'(0))</th>
<th>(-F(0))</th>
<th>(-G(0))</th>
<th>(-H(0))</th>
<th>(\theta_p(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.0</td>
<td>0.01</td>
<td>0.71</td>
<td>3.0</td>
<td>1.0</td>
<td>1.615392</td>
<td>0.381561</td>
<td>0.009527</td>
<td>1.04982</td>
<td>0.195286</td>
<td>-0.0033</td>
</tr>
<tr>
<td>0.02</td>
<td>1.608373</td>
<td>0.385960</td>
<td>0.018501</td>
<td>1.029722</td>
<td>0.191971</td>
<td>0.008587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>1.609931</td>
<td>0.385334</td>
<td>0.026646</td>
<td>1.04398</td>
<td>0.188436</td>
<td>0.009811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.71</td>
<td>3.0</td>
<td>1.0</td>
<td>1.607616</td>
<td>0.382520</td>
<td>0.039853</td>
<td>1.054090</td>
<td>0.180973</td>
<td>0.005272</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.612574</td>
<td>0.248861</td>
<td>0.039456</td>
<td>1.051767</td>
<td>0.175412</td>
<td>0.003565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.608629</td>
<td>0.124040</td>
<td>0.039853</td>
<td>1.054128</td>
<td>0.180439</td>
<td>0.003155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.71</td>
<td>3.0</td>
<td>1.0</td>
<td>1.607616</td>
<td>0.382520</td>
<td>0.039853</td>
<td>1.054090</td>
<td>0.180973</td>
<td>0.005272</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>1.596194</td>
<td>0.389850</td>
<td>0.040228</td>
<td>1.054307</td>
<td>0.184358</td>
<td>0.005469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>1.584169</td>
<td>0.394311</td>
<td>0.04062</td>
<td>1.055280</td>
<td>0.180883</td>
<td>0.005771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
<td>0.01</td>
<td>3.0</td>
<td>1.0</td>
<td>1.604693</td>
<td>0.226606</td>
<td>0.010168</td>
<td>1.016868</td>
<td>0.200407</td>
<td>0.001346</td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>1.615392</td>
<td>0.381561</td>
<td>0.009527</td>
<td>1.04982</td>
<td>0.195286</td>
<td>-0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.605886</td>
<td>0.468703</td>
<td>0.009678</td>
<td>1.014235</td>
<td>0.198811</td>
<td>-7.5E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
<td>0.01</td>
<td>3.0</td>
<td>1.0</td>
<td>1.607616</td>
<td>0.382520</td>
<td>0.039853</td>
<td>1.054090</td>
<td>0.180973</td>
<td>0.005272</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>1.607094</td>
<td>0.364308</td>
<td>0.039894</td>
<td>1.054010</td>
<td>0.176383</td>
<td>0.005004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1.607113</td>
<td>0.347578</td>
<td>0.039966</td>
<td>1.054562</td>
<td>0.171996</td>
<td>0.004934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
<td>0.01</td>
<td>3.0</td>
<td>1.0</td>
<td>1.607616</td>
<td>0.382520</td>
<td>0.039853</td>
<td>1.054090</td>
<td>0.180973</td>
<td>0.005272</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.986815</td>
<td>0.382112</td>
<td>0.054184</td>
<td>1.04508</td>
<td>0.17906</td>
<td>0.003587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.272791</td>
<td>0.392985</td>
<td>0.34963</td>
<td>1.022308</td>
<td>0.190083</td>
<td>0.004996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Volume: 04 Issue: 01 | Jan-2015, Available @ http://www.ijret.org

BIographies

Runu Sahu was born in Gangapur of district Ganjam, Odisha, India in 1976.He obtained the M.Sc. from K. K. College (Autonomous) Berhampur and M.Phil. degree in Mathematics from Berhampur university, Berhampur , Odisha, India. She is working as Sr. Lecturer in Mathmetics department in Vivekananda Institute of Technology BBSR under BPUT university and she is continuing her research work since 2009 till now. Her field of interest covers the areas of application of boundary layer, heat/mass transfer and dusty fluid flows.

Dr.Saroj Kumar Mishra was born in Narsinghpur of Cuttuck district,Odisha,India on 30th June 1952.He received his M.Sc. degree in Mathematics (1976) and Ph.D in Mathematics in 1982 in the research topic “Dynamics of two phase flow” from IIT Kharagpur, India . Currently he is working as Adjunct Professor of Mathematics at Centre for Fluid Dynamics Research, CUTM, Paralakhemundi, Odisha, India. He has authored and coauthored 50 research papers published in national and international journal of repute. He has completed one Major Research project and one Minor Research project sponsored by UGC, New Delhi, India. He has attended/presented the papers in national, international conferences. He is a member of several bodies like Indian Science Congress Association, Indian Mathematical Society, ISTAM, OMS, and BHUMS etc. His research interest includes the area of fluid dynamics, dynamics of dusty fluid particularly, in boundary layer flows, heat transfer, MHD, FHD and flow through porous media. His research interest also covers the nano fluid problems, existence and stability of problems and other related matters. Eight students have already awarded Ph.D degree under his guidance and another six students are working under his supervision.