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Abstract 
Operators are a fundamental tool in programming languages, allowing computations to be expressed in a natural and convenient 

manner. Custom operators are supported by many programming languages, however their underlying mechanisms typically suffer 
from various limitations. This paper describes a method of defining and customizing operators at the library level in the Sparrow 

programming language. We argue that our system is more flexible than what other languages have to offer, and that it allows 

operators to be defined and used in a straightforward and natural way. 
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1. INTRODUCTION 

Operators originated in mathematical notations, where they 
are used to conveniently represent various laws of 
composition, functions, or relations. Unsurprisingly, these 
concepts are just as necessary in programming languages. 
Most languages provide the typical set of arithmetic 
operators, along with relational, logical, and bitwise 
operators. 
 
As the range of applications for computer programs grew, so 
did the need for other kinds of operators, many of which 
applied to non-mathematical objects. Examples include 
string concatenation using the + operator, and iteration using 
++ and --. Eventually, it became more convenient for some 
languages to offer programmers the ability to define their 
own custom operators for user-defined types, instead of 
hardcoding a fixed set of operators into the language itself. 
Consequently, from a semantic standpoint, operators 
became more similar to functions. 
 
An operator has various properties, which are especially 
relevant in a programming language context. From a 
syntactic standpoint, an operator can be prefix, infix, or 
postfix. Arity refers to the number of operands on which an 
operator is applied. Precedence and associativity determine 
the order of evaluation in compound expressions. 
 
In this paper we propose a flexible and natural mechanism 
for user-defined operators in a language called Sparrow [1], 
[2]. This is a general-purpose, imperative programming 
language, influenced by C++. Sparrow itself is designed to 
be flexible, natural, and efficient, and therefore having a 
powerful operator system is of significant importance. 
 
Our approach is library-based, and supports binary infix, as 
well as unary prefix and postfix operators. Furthermore, 
precedence and associativity are fully customizable for each 
operator, also at the library level. We argue that our solution 
is more versatile than those used in other languages, and can 
be employed with minimal effort from the programmer’s 
part. 

2. RELATED WORK 

Although not all programming languages support operators 

in the traditional sense, the vast majority of programming 
languages have support for unary and binary operators. 

However, support for operator customization varies greatly 

across the spectrum of languages. 

 

In Lisp there is no distinction between functions and 

operators; they are all written as the first token in a list 

expression. Haskell [3] is more flexible, allowing the use of 

arbitrary symbol tokens as operators, infix and postfix (there 

is only one prefix operator: -), and the use of prefix 

functions with infix notation. In addition, the user can 

customize the precedence and the associativity of these 
operators. 

 

For our purposes, we are interested in languages that use C-

like syntax for expressions. Languages like C and Java [4] 

have a fixed set of operators, their precedence and 

associativity rules are defined by the language, and they do 

not allow the user to overload these operators; they are the 

less flexible from this point of view. In C++ [5], even 

though the operators and the precedence rules are fixed, the 

user can overload operators for custom types. Scala [6] is 

even more flexible, allowing the user to create operators 

from arbitrary symbol tokens; identifiers can be used as 
infix and postfix operators, however the set of prefix 

operators is fixed (-, +, ! and ~). On the downside, Scala’s 

rules for computing the precedence and associativity are 

fixed; they are based on the first and last characters of the 

token, except for assignment operators (=, +=, /=, etc.) 

which are handled differently. 

 

Defining custom operators in C++ is done via a special 

operator construct, similar to a function declaration. To 

distinguish between prefix and postfix operator calls, C++ 

requires a dummy int parameter to be added when defining 
a postfix operator. Overloading infix operators in C++ can 

be performed both in the namespace of the operand type 
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(recommended) or inside the class of the left operand. In 

Scala an infix expression A op B is syntactic sugar for 

A.op(B), and the symbol operators are just regular 

identifiers. Similarly a postfix expression A op is equivalent 

to A.op(). On the other hand, a prefix expression op A 

(where op can only be -, +, ! and ~) is treated as 
A.unary_op(). 

 

3. FLEXIBLE OPERATORS IN SPARROW 

3.1 Design 

Operators in Sparrow are designed to meet several 

requirements: 

 operators should be defined in the library, not by 

fixed grammar rules 

 the user must be able to create custom operators 

(infix, prefix, and postfix) 

 the names of operators can be (almost) any 

combination of symbols 

 the user must be able to use identifiers as operators 

(infix, prefix and postfix) 

 definitions of custom operators are identical to 

definitions of regular functions 

 the user must be allowed to set the precedence of 

the operators and change their associativity rules 

 

These requirements ensure that programmers will have a 

large range of possibilities at their disposal when defining 

operators. Additionally, the operators will be easy to create 

and use. 

 

3.2 Grammar Rules 

The implementation for Sparrow operators begins with a set 

of lexical rules [7]: 
 

Letter       ::= [‘a’-’z’ | ‘A’-’Z’ | ‘_’] 

OpChar       ::= [‘~’|‘!’|‘@’|‘#’|‘$’|‘%’|‘^’|‘&’|‘-

’|‘+’|‘=’|‘|’|‘\’|‘:’|‘<’|‘>’|‘?’|‘/’|‘*’] 

OpCharDot    ::= OpChar | ‘.’ 

Operator     ::= OpChar* 

               | OpCharDot+ ‘.’ OpCharDot* 

IdLetters    ::= Letter (Letter | Digit )* 

IdLettersOp  ::= IdLetters ‘_’ Operator 

Identifier   ::= IdLetters | IdLettersOp 

IdOrOperator ::= Identifier | Operator 
 

Identifiers from languages like C++, containing only letters 

and digits, will be accommodated easily by this scheme. 

 

In addition, the user can construct identifiers by appending 

symbols after a regular identifier ending in ‘_’. This allows 

the construction of names such as pre_++ and post_++. 

 

Almost any combination of symbols that are typically 

available on an ASCII US keyboard can form a lexical token 

corresponding to an operator, with minor exceptions which 

are presented below. In theory, the list of characters 
accepted as part of operators can be extended as much as 

needed (e.g., with Unicode symbols), but for simplicity we 

listed only the ones that are commonly used in programming 

languages. 

 

The following symbols cannot be used as part of an 

operator: {, }, [, ], (, ), ; (semicolon), , (comma), ` 

(backquote) because they act as special separators in the 
Sparrow syntax. Also, a closer look at the way the operators 

are defined reveals that we cannot use the dot symbol as an 

operator if there is no other dot in the sequence; this ensures 

that a single dot can always be used as a compound 

expression separator. 

 

The following are valid examples of operators: +, -, ++, **, 

#$, =/=/=/=. Valid examples of identifiers include foo, 

bar123, _123, oper_$#@. 

 

Based on the above lexical rules, we defined the following 
parsing rules [7] for operators: 

 

PostfixExpr   ::= InfixExpr IdOrOperator? 

InfixExpr     ::= PrexixExpr 

                | InfixExpr IdOrOperator InfixExpr 

PrefixExpr    ::= SimpleExpr 

                | Operator PrefixExpr 

                | ‘`’ Identifier ‘`’ PrefixExpr 

SimpleExpr    ::= Identifier | ... 

 

These simple rules provide a wide range of usage 

possibilities, and are similar to the ones in Scala [6]. The 
main difference is the fact that we allow any operator or 

backquoted identifier to be part of a prefix expression. 

 

Here are some examples of expressions involving operators: 

a + b (add a and b), a + b * c (add a to the product of b and 

c), ++a++ (prefix ++ on a, then apply the postfix ++), v1 

dot v2 (dot product between v1 and v2), `length` a (calling 

length on a with prefix call notation), 1..100 (the numeric 

range between 1 and 100 , inclusive), @Int (type 

representing a reference to Int). 

 
Ignoring prefix operators, if we have a sequence of 

identifiers and operators, then the terms in odd positions are 

always operands, and the terms in even positions are always 

operators. If the sequence has an even number of terms, then 

the last term is a postfix operator. Note that a SimpleExpr 

cannot contain operators; therefore we cannot find operators 

in odd positions (if there are no prefix expressions in the 

sequence). 

 

Prefix operators always have precedence over other types of 

operators. If the compiler finds an operator in an odd 

position in the sequence, it means that it has encountered a 
prefix expression. This way, there is no ambiguity in 

distinguishing between prefix, infix, and postfix 

expressions. 

 

Although these simple grammars rules cover most of the 

required Sparrow functionality, there are two main cases 

that are not handled. 
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The first case concerns the ternary operator: condition ? 

alt1 : alt2. Not only does this not fit grammatically in our 

scheme, but there are also some additional semantic issues 

associated with it. While any prefix, postfix and infix 

operator can be implemented as a function call (macro or 

regular function), there is no way to implement the ternary 
operator in this manner. This is mainly due to the fact that 

one alternative is not evaluated at all, whereas for a regular 

function all the arguments need to be evaluated before the 

actual function call. Normally, the boolean short-circuit 

operators (&& and ||) would share the same problem, but 

they can be implemented in terms of the ternary operator. 

The second case is related to the handling of the = operator. 

The way the Sparrow grammar is constructed, there are 

situations in which we want to prohibit the use of the = 

operator inside expressions. For example, let us look at a 

variable definition: 
 

var name: typeExpr = initializer; 

 

Here, typeExpr is actually an expression that can contain 

prefix, infix, and even postfix operators. For instance, 

denoting a reference type requires a simple prefix operator 

call: @Int. If the = operator were allowed inside the type 

expression, then variable declarations would be ambiguous. 

The compiler would not know whether you are using the 

infix = operator or separating the type expression from the 

initializer of the variable. To resolve this, the relevant 

grammar rules have two versions: one that allows the = 
operator, and one that does not. The latter is used for 

variable declarations. If the symbol = had not been used by 

Sparrow as a syntactic separator, this issue would not have 

existed. 

 

3.3 Defining Operators 

In Sparrow, defining an operator is identical to defining a 

regular function: 

 

class Complex {...} 

fun + (x, y: Complex): Complex { return 

Complex(x.re + y.re, x.im, y.im); } 

fun - (x: Complex) = Complex(-x.re, -x.im); 
 

Here we defined a binary operator and an unary operator. 

The second definition showcases a convenient method of 

defining a function that simply returns an expression. 

 

With these definitions, one can actually use the two 

operators as infix, prefix, and postfix: 

 

var a, b: Complex; 

cout << a+b << endl; 

cout << -a  << endl; 
cout << a-  << endl; 

 

As the reader may have noticed, the definition of the unary 

minus operator makes it possible for it to be used both as a 

prefix and a postfix operator. Sometimes this is not 

desirable; for example, in our case the a- notation is 

confusing. Another important example is the ++ operator, 

where the postfix and prefix versions have different 

semantics. To distinguish between the two types of operator 

calls, one can use the pre_ and post_ prefixes when defining 

the operators, as shown below: 

 

fun pre_++ (x: Complex): @Complex { x += 1; 
return x; } 

fun post_++(x: Complex): Complex  { var old = x; x 

+= 1; return old; } 

 

3.4 Operator Lookup 

Although operators behave like functions, there are some 

differences in terms of the way they are looked up. For a 

function call f(a1, a2, …) a name lookup is initiated for the 

name f from the context of the function call, going upward 

until one or more definitions with the name f are found. 

Afterwards, a function overload selection algorithm is 

applied to determine which definition should be called with 

the current arguments. 
 

For operators, the algorithm is different. There are three 

contexts in which the operator is looked up: 

 inside the class of the first operand (left operand for 

infix expressions, and the only operand of the 

prefix and postfix expressions) 

 in the package that contains the class of the first 

operand 

 starting from the context of the operator call and 

going upward 

For unary operators, the compiler can search for two 
operator names: 

 with a name prefix (pre_ for prefix operators, and 

post_ for postfix operator) 

 without any prefix, just the operator name 

Putting it all together, the compiler performs the following 

searches in order: 

 in the class of the first operand, with a name prefix 

(for unary operators) 

 in the class of the first operand, with the actual 

operator name 

 in the package that contains the class of the first 
operand, with a name prefix (for unary operators) 

 in the package that contains the class of the first 

operand, with the actual operator name 

 upward from the context of the operator call, with a 

name prefix (for unary operators) 

 upward from the context of the operator call, with 

the actual operator name 

 

If a matching definition is found in any of these steps, the 

algorithm will not search any further. 

 
Typically, operators for a new type are written inside or near 

the class. By choosing the definition that is closest to the 

class of the first operand, the algorithm maximizes the odds 

of finding the most suitable operator for the given argument 

type. This is similar to Scala [6], where a + b actually means 

a.+(b), and to some extent to Argument-Dependent Lookup 

(also called Koening lookup) form C++ [5], [8]. 
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3.5 Precedence and Associativity Rules 

For infix operators, we also need to consider precedence and 

associativity. Precedence determines the order in which 

different infix operators inside the same expression are 

called. Associativity determines whether for an expression 

containing only operators of the same type the order of 

applying the operator is from left to right, or from right to 
left. 

 

For each infix operator we can associate a numeric value 

such that we can compare the precedence of two operators. 

Let us denote by p1 the precedence of the operator op1 and 

by p2 the precedence of the operator op2. Then, the 

expression A op1 B op2 C would be interpreted as (A op1 

B) op2 C if p1 ≥ p2, and as A op1 (B op2 C) if p1 < p2. For 

example, multiplication and division have a higher 

precedence than addition and subtraction. 

 

For an infix operator op, an expression like A op B op C 
would be interpreted as (A op B) op C if op has left 

associativity, and A op (B op C) if op has right 

associativity. Most of the mathematical operators have left 

associativity, but an operation like assignment makes sense 

to have right associativity. Also, if one were to define an 

exponentiation operator, it should also have right 

associativity. 

 

Because Sparrow operators are defined in the library, there 

should be a possibility to define precedence and 

associativity in the library. There should be some kind of 
definition that the user can write, and the compiler can 

search for, when determining the precedence and 

associativity for infix operators. The easiest way this can be 

achieved in Sparrow is with using directives: 

 

using oper_precedence_default = 100; 

using oper_precedence_+       = 500; 

using oper_precedence_*       = 550; 

using oper_assoc_=            = -1; 

 

Such a directive associates a name with a value; it is similar 

to defining a constant. Whenever the + operator is used in 
the language, the compiler searches for the name 

oper_precedence_+ and, if successful, evaluates the 

expression to get the precedence value for the operator. If 

the name cannot be found, the compiler will use the 

precedence value denoted by oper_precedence_default. 

For associativity, if the returned value is negative, then the 

operator is considered to have right associativity. 

Although these using declarations are convenient to write, 

there is a better method of getting and setting the precedence 

rules, by using function calls: 

 
setOperPrecedence("*", 550); 

setOperPrecedence("**", getOperPrecedence("*") + 

1); 

setOperRightAssociativity("**"); 

 

By using these functions, the user is not required to know 

the underlying details of operator precedence and 

associativity. Moreover, the getOperPrecedence function 

will check whether a value is defined for the given operator, 

and if not, the default value will be returned. 

 

Sparrow is powerful enough that it allows these functions to 

be defined at library level, without changing the compiler. 
The implementation for these functions involves using 

macros and the Compiler API, which allow the programmer 

to manipulate the internal structure of the program at the 

Abstract Syntax Tree (AST) level [7]. 

 

4. EVALUATION 

We presented the method through which one can construct 

flexible operator schemes in Sparrow. All Sparrow operators 

are defined in this manner, and their precedence and 

associativity values are set using the mechanism described 

above. In this section we evaluate the benefits and 

limitations of this approach. 

 
Let us start with an example of an operator for raising a 

number to a given power: 

 

fun pow(x, y: Double) = Math.pow(x, y); 

fun **(x, y: Double)  = pow(x, y); 

setOperPrecedence("**", getOperPrecedence("*") + 

1); // higher precedence than multiplication 

setOperRightAssociativity("**");                     // right 

associativity 

cout << 4 * 3 ** 2 << endl;            // will print 36, 

interpreted as 4 * (3**2) 
cout << 4 ** 3 ** 2 << endl;           // will print 262144, 

interpreted as 4 ** (3**2) == 4 ** 9 

 

As illustrated, it is easy to define the operator and to set its 

precedence and associativity. Furthermore, the newly 

created operator can be integrated seamlessly with standard 

arithmetic operators. 

 

Another example involves the use of map and filter 

operations, heavily used in the context of functional 

programming: 

 
fun filter(range: Range, pred: AnyType) = 

mkFilteredRange(range, pred); 

fun map(range: Range, f: AnyType) = 

mkTransformedRange(range, f); 

fun .. (start, end: Number) = mkNumericRange(start, 

end, true); 

printRange( 1..10 filter isOdd map (fun n = n*2) );                

// will print: 2 6 10 14 18 

 

The last line of code contains some interesting features that 

are worth mentioning. Firstly, the expression 1..10 
represents a numeric range [9] constructed using the 

operator ... Secondly, (fun n = n*2) is an anonymous 

function that returns the double of its argument. Finally, we 

can chain a sequence of infix operations (.., filter, map) that 

will make the entire expression natural to the programmer. 

If we had written the same expression without operators, 
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similar to what one writes in a language like C++, it would 

have become: 

 

printRange(map(filter(mkNumericRange(1,10), 

isOdd), (fun n=n*2))); 

 
Although this version is valid, it is much harder to read than 

what we obtained by using operators. 

 

A representative example for this operator system concerns 

reference types (a concept similar to C++ references). In 

Sparrow, if one wanted to declare a reference to a type, say 

Int, it would write @Int. Even though this pattern is 

pervasive in Sparrow, this is actually a prefix call to the 

operator @ that acts on a type. Due to its advanced 

metaprogramming capabilities (a feature called hyper-

metaprogramming) [2], [10], [11], Sparrow allows the user 
to define functions (and operators) that act on types and can 

return other types. Thus, expressing a reference type 

becomes an operator call. Other examples of type operators 

in Sparrow are: -@ (remove reference), !@ (ensure one at 

least one reference) and #$ (get a value of the given type). 

 

All these examples show that by using this method of 

defining operators we can actually enhance the naturalness 

of the programming language. 

 

4.1 Comparison with Other Languages 

In order to compare Sparrow to other languages in terms of 

the capabilities of their operators, we have identified several 
specific features. The degree of support for these features 

provided by Sparrow and several mainstream programming 

languages is outlined in the following table: 

 

 C++ Java Scal

a 

Has

kell 

Spar

row 

Overloading existing 

operators 

yes - yes yes yes 

Infix and postfix 

operators with 

custom symbols 

- - yes yes yes 

Prefix operators with 

custom symbols 

- - - - yes 

Prefix operator with 

identifier 

- - - - yes 

Postfix operator with 

identifier 

- - yes - yes 

Infix operator with 
identifier 

- - yes yes yes 

Custom precedence 

and associativity 

- - - yes yes 

 

As we have explained in previous sections, Sparrow 

supports the complete set of features. The two functional 

languages come closest to supporting the full set, whereas 

C++ only supports overloading existing operators. Finally, 

Java does not allow any form of operator customization. 

 

 

4.2 Limitations 

Although this method of defining operators is flexible, 

extensible, and can improve code naturalness, it has some 

drawbacks. 

 

The first drawback comes from the fact that the lexer allows 

all symbol sequences as valid tokens. For example the 
sequence of two characters *- is a valid token. This means 

that an expression like a*-b will be parsed as the infix 

operation *- applied to terms a and b. In languages like C++ 

and Java, this would be parsed as “a times the negative of 

b”. Because the lexer always takes the longest possible 

sequence of characters when forming a token, *- will never 

be interpreted as two separate tokens. To solve this problem, 

the user must enter a space between the two symbols, 

transforming the expression into a* -b; in this case, the 

parsing will be similar to the one used in C++ or Java. In 

most cases however, even in C++, the user will place a 

space between the two symbols, or use parentheses, just to 
make the code easier to read. 

 

Another limitation is related to postfix operators. In 

Sparrow, these can be used either as the last element in an 

expression, or inside parentheses. Expressions such as a++ * 

b, which is valid in C++ (post increment a and multiply the 

old value by b), are not valid in Sparrow. This expression is 

interpreted as “infix ++ between a and *, and then postfix 

with an operation named b; this is invalid because the 

second operand must not be a symbol token. There is an 

easy fix for this, by placing the postfix call in parentheses: 
(a++) * b. Again, in typical scenarios, the programmer 

rarely applies the postfix increment inside expressions. 

 

The presented method has an additional limitation, but this 

time not with respect to languages like C++, but to our 

initial goals. We wanted to allow the possibility of defining 

different precedence values for operators, depending on the 

types of the arguments. For example, one may desire a 

matrix multiplication to have a different precedence than an 

integer multiplication. Because applying infix operators 

yields different types based on the order in which the 

operations are applied, the choice of the highest precedence 
operator quickly becomes ambiguous. For example let us 

say that we have the expression a + b * c, with all three 

operands of different (class) types; let us assume that the + 

operation between a and b has precedence 10 and the * 

operation between b and c has precedence 15. Moreover let 

us assume that the precedence of + between a and the result 

of (b*c) is 20 and the precedence of * between the result of 

(a+b) and c is 5. In this case, no matter the order in which 

the operations are executed, it violates the precedence rules. 

 

5. CONCLUSION 

We presented a method of constructing flexible operator 

schemes at the library level. All Sparrow operators, their 
precedence, and associativity, are defined using this 

mechanism. Not only is this true even for basic operators 

(e.g. arithmetic), it also applies to the operator that creates a 

reference type: @. 
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The grammar rules for operators and expressions are simple 

and non-restrictive, allowing for a large variety of definable 

operators. Precedence and associativity can be easily 

configured using compile-time function calls. 

 

In our evaluation we have provided several examples, 
showing that custom operators can be useful in a variety of 

scenarios. Furthermore, using our proposed method, they 

can be defined and used in a natural way. Despite some 

limitations, our approach is more powerful and flexible as it 

provides users with more customization options for their 

operators compared to other languages. 

 

Finally, as mentioned before, one of our initial goals was to 

allow type-dependent precedence values. We intend to 

further investigate this issue and attempt to integrate this 

type of functionality into our current solution. 
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