
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 40

FLEXIBLE OPERATORS IN SPARROW

Lucian Radu Teodorescu
1
, Vlad Dumitrel

2
, Rodica Potolea

3

1
Technical University of Cluj-Napoca, University Politehnica of Bucharest, Technical University of Cluj-Napoca

2
Technical University of Cluj-Napoca, University Politehnica of Bucharest, Technical University of Cluj-Napoca

2
Technical University of Cluj-Napoca, University Politehnica of Bucharest, Technical University of Cluj-Napoca

Abstract
Operators are a fundamental tool in programming languages, allowing computations to be expressed in a natural and convenient

manner. Custom operators are supported by many programming languages, however their underlying mechanisms typically suffer
from various limitations. This paper describes a method of defining and customizing operators at the library level in the Sparrow

programming language. We argue that our system is more flexible than what other languages have to offer, and that it allows

operators to be defined and used in a straightforward and natural way.

Keywords: Programming languages, operators, flexibility, Sparrow, C++, Scala

--***--

1. INTRODUCTION

Operators originated in mathematical notations, where they
are used to conveniently represent various laws of
composition, functions, or relations. Unsurprisingly, these
concepts are just as necessary in programming languages.
Most languages provide the typical set of arithmetic
operators, along with relational, logical, and bitwise
operators.

As the range of applications for computer programs grew, so
did the need for other kinds of operators, many of which
applied to non-mathematical objects. Examples include
string concatenation using the + operator, and iteration using
++ and --. Eventually, it became more convenient for some
languages to offer programmers the ability to define their
own custom operators for user-defined types, instead of
hardcoding a fixed set of operators into the language itself.
Consequently, from a semantic standpoint, operators
became more similar to functions.

An operator has various properties, which are especially
relevant in a programming language context. From a
syntactic standpoint, an operator can be prefix, infix, or
postfix. Arity refers to the number of operands on which an
operator is applied. Precedence and associativity determine
the order of evaluation in compound expressions.

In this paper we propose a flexible and natural mechanism
for user-defined operators in a language called Sparrow [1],
[2]. This is a general-purpose, imperative programming
language, influenced by C++. Sparrow itself is designed to
be flexible, natural, and efficient, and therefore having a
powerful operator system is of significant importance.

Our approach is library-based, and supports binary infix, as
well as unary prefix and postfix operators. Furthermore,
precedence and associativity are fully customizable for each
operator, also at the library level. We argue that our solution
is more versatile than those used in other languages, and can
be employed with minimal effort from the programmer’s
part.

2. RELATED WORK

Although not all programming languages support operators

in the traditional sense, the vast majority of programming
languages have support for unary and binary operators.

However, support for operator customization varies greatly

across the spectrum of languages.

In Lisp there is no distinction between functions and

operators; they are all written as the first token in a list

expression. Haskell [3] is more flexible, allowing the use of

arbitrary symbol tokens as operators, infix and postfix (there

is only one prefix operator: -), and the use of prefix

functions with infix notation. In addition, the user can

customize the precedence and the associativity of these
operators.

For our purposes, we are interested in languages that use C-

like syntax for expressions. Languages like C and Java [4]

have a fixed set of operators, their precedence and

associativity rules are defined by the language, and they do

not allow the user to overload these operators; they are the

less flexible from this point of view. In C++ [5], even

though the operators and the precedence rules are fixed, the

user can overload operators for custom types. Scala [6] is

even more flexible, allowing the user to create operators

from arbitrary symbol tokens; identifiers can be used as
infix and postfix operators, however the set of prefix

operators is fixed (-, +, ! and ~). On the downside, Scala’s

rules for computing the precedence and associativity are

fixed; they are based on the first and last characters of the

token, except for assignment operators (=, +=, /=, etc.)

which are handled differently.

Defining custom operators in C++ is done via a special

operator construct, similar to a function declaration. To

distinguish between prefix and postfix operator calls, C++

requires a dummy int parameter to be added when defining
a postfix operator. Overloading infix operators in C++ can

be performed both in the namespace of the operand type

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 41

(recommended) or inside the class of the left operand. In

Scala an infix expression A op B is syntactic sugar for

A.op(B), and the symbol operators are just regular

identifiers. Similarly a postfix expression A op is equivalent

to A.op(). On the other hand, a prefix expression op A

(where op can only be -, +, ! and ~) is treated as
A.unary_op().

3. FLEXIBLE OPERATORS IN SPARROW

3.1 Design

Operators in Sparrow are designed to meet several

requirements:

 operators should be defined in the library, not by

fixed grammar rules

 the user must be able to create custom operators

(infix, prefix, and postfix)

 the names of operators can be (almost) any

combination of symbols

 the user must be able to use identifiers as operators

(infix, prefix and postfix)

 definitions of custom operators are identical to

definitions of regular functions

 the user must be allowed to set the precedence of

the operators and change their associativity rules

These requirements ensure that programmers will have a

large range of possibilities at their disposal when defining

operators. Additionally, the operators will be easy to create

and use.

3.2 Grammar Rules

The implementation for Sparrow operators begins with a set

of lexical rules [7]:

Letter ::= [‘a’-’z’ | ‘A’-’Z’ | ‘_’]

OpChar ::= [‘~’|‘!’|‘@’|‘#’|‘$’|‘%’|‘^’|‘&’|‘-

’|‘+’|‘=’|‘|’|‘\’|‘:’|‘<’|‘>’|‘?’|‘/’|‘*’]

OpCharDot ::= OpChar | ‘.’

Operator ::= OpChar*

 | OpCharDot+ ‘.’ OpCharDot*

IdLetters ::= Letter (Letter | Digit)*

IdLettersOp ::= IdLetters ‘_’ Operator

Identifier ::= IdLetters | IdLettersOp

IdOrOperator ::= Identifier | Operator

Identifiers from languages like C++, containing only letters

and digits, will be accommodated easily by this scheme.

In addition, the user can construct identifiers by appending

symbols after a regular identifier ending in ‘_’. This allows

the construction of names such as pre_++ and post_++.

Almost any combination of symbols that are typically

available on an ASCII US keyboard can form a lexical token

corresponding to an operator, with minor exceptions which

are presented below. In theory, the list of characters
accepted as part of operators can be extended as much as

needed (e.g., with Unicode symbols), but for simplicity we

listed only the ones that are commonly used in programming

languages.

The following symbols cannot be used as part of an

operator: {, }, [,], (,), ; (semicolon), , (comma), `

(backquote) because they act as special separators in the
Sparrow syntax. Also, a closer look at the way the operators

are defined reveals that we cannot use the dot symbol as an

operator if there is no other dot in the sequence; this ensures

that a single dot can always be used as a compound

expression separator.

The following are valid examples of operators: +, -, ++, **,

#$, =/=/=/=. Valid examples of identifiers include foo,

bar123, _123, oper_$#@.

Based on the above lexical rules, we defined the following
parsing rules [7] for operators:

PostfixExpr ::= InfixExpr IdOrOperator?

InfixExpr ::= PrexixExpr

 | InfixExpr IdOrOperator InfixExpr

PrefixExpr ::= SimpleExpr

 | Operator PrefixExpr

 | ‘`’ Identifier ‘`’ PrefixExpr

SimpleExpr ::= Identifier | ...

These simple rules provide a wide range of usage

possibilities, and are similar to the ones in Scala [6]. The
main difference is the fact that we allow any operator or

backquoted identifier to be part of a prefix expression.

Here are some examples of expressions involving operators:

a + b (add a and b), a + b * c (add a to the product of b and

c), ++a++ (prefix ++ on a, then apply the postfix ++), v1

dot v2 (dot product between v1 and v2), `length` a (calling

length on a with prefix call notation), 1..100 (the numeric

range between 1 and 100 , inclusive), @Int (type

representing a reference to Int).

Ignoring prefix operators, if we have a sequence of

identifiers and operators, then the terms in odd positions are

always operands, and the terms in even positions are always

operators. If the sequence has an even number of terms, then

the last term is a postfix operator. Note that a SimpleExpr

cannot contain operators; therefore we cannot find operators

in odd positions (if there are no prefix expressions in the

sequence).

Prefix operators always have precedence over other types of

operators. If the compiler finds an operator in an odd

position in the sequence, it means that it has encountered a
prefix expression. This way, there is no ambiguity in

distinguishing between prefix, infix, and postfix

expressions.

Although these simple grammars rules cover most of the

required Sparrow functionality, there are two main cases

that are not handled.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 42

The first case concerns the ternary operator: condition ?

alt1 : alt2. Not only does this not fit grammatically in our

scheme, but there are also some additional semantic issues

associated with it. While any prefix, postfix and infix

operator can be implemented as a function call (macro or

regular function), there is no way to implement the ternary
operator in this manner. This is mainly due to the fact that

one alternative is not evaluated at all, whereas for a regular

function all the arguments need to be evaluated before the

actual function call. Normally, the boolean short-circuit

operators (&& and ||) would share the same problem, but

they can be implemented in terms of the ternary operator.

The second case is related to the handling of the = operator.

The way the Sparrow grammar is constructed, there are

situations in which we want to prohibit the use of the =

operator inside expressions. For example, let us look at a

variable definition:

var name: typeExpr = initializer;

Here, typeExpr is actually an expression that can contain

prefix, infix, and even postfix operators. For instance,

denoting a reference type requires a simple prefix operator

call: @Int. If the = operator were allowed inside the type

expression, then variable declarations would be ambiguous.

The compiler would not know whether you are using the

infix = operator or separating the type expression from the

initializer of the variable. To resolve this, the relevant

grammar rules have two versions: one that allows the =
operator, and one that does not. The latter is used for

variable declarations. If the symbol = had not been used by

Sparrow as a syntactic separator, this issue would not have

existed.

3.3 Defining Operators

In Sparrow, defining an operator is identical to defining a

regular function:

class Complex {...}

fun + (x, y: Complex): Complex { return

Complex(x.re + y.re, x.im, y.im); }

fun - (x: Complex) = Complex(-x.re, -x.im);

Here we defined a binary operator and an unary operator.

The second definition showcases a convenient method of

defining a function that simply returns an expression.

With these definitions, one can actually use the two

operators as infix, prefix, and postfix:

var a, b: Complex;

cout << a+b << endl;

cout << -a << endl;
cout << a- << endl;

As the reader may have noticed, the definition of the unary

minus operator makes it possible for it to be used both as a

prefix and a postfix operator. Sometimes this is not

desirable; for example, in our case the a- notation is

confusing. Another important example is the ++ operator,

where the postfix and prefix versions have different

semantics. To distinguish between the two types of operator

calls, one can use the pre_ and post_ prefixes when defining

the operators, as shown below:

fun pre_++ (x: Complex): @Complex { x += 1;
return x; }

fun post_++(x: Complex): Complex { var old = x; x

+= 1; return old; }

3.4 Operator Lookup

Although operators behave like functions, there are some

differences in terms of the way they are looked up. For a

function call f(a1, a2, …) a name lookup is initiated for the

name f from the context of the function call, going upward

until one or more definitions with the name f are found.

Afterwards, a function overload selection algorithm is

applied to determine which definition should be called with

the current arguments.

For operators, the algorithm is different. There are three

contexts in which the operator is looked up:

 inside the class of the first operand (left operand for

infix expressions, and the only operand of the

prefix and postfix expressions)

 in the package that contains the class of the first

operand

 starting from the context of the operator call and

going upward

For unary operators, the compiler can search for two
operator names:

 with a name prefix (pre_ for prefix operators, and

post_ for postfix operator)

 without any prefix, just the operator name

Putting it all together, the compiler performs the following

searches in order:

 in the class of the first operand, with a name prefix

(for unary operators)

 in the class of the first operand, with the actual

operator name

 in the package that contains the class of the first
operand, with a name prefix (for unary operators)

 in the package that contains the class of the first

operand, with the actual operator name

 upward from the context of the operator call, with a

name prefix (for unary operators)

 upward from the context of the operator call, with

the actual operator name

If a matching definition is found in any of these steps, the

algorithm will not search any further.

Typically, operators for a new type are written inside or near

the class. By choosing the definition that is closest to the

class of the first operand, the algorithm maximizes the odds

of finding the most suitable operator for the given argument

type. This is similar to Scala [6], where a + b actually means

a.+(b), and to some extent to Argument-Dependent Lookup

(also called Koening lookup) form C++ [5], [8].

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 43

3.5 Precedence and Associativity Rules

For infix operators, we also need to consider precedence and

associativity. Precedence determines the order in which

different infix operators inside the same expression are

called. Associativity determines whether for an expression

containing only operators of the same type the order of

applying the operator is from left to right, or from right to
left.

For each infix operator we can associate a numeric value

such that we can compare the precedence of two operators.

Let us denote by p1 the precedence of the operator op1 and

by p2 the precedence of the operator op2. Then, the

expression A op1 B op2 C would be interpreted as (A op1

B) op2 C if p1 ≥ p2, and as A op1 (B op2 C) if p1 < p2. For

example, multiplication and division have a higher

precedence than addition and subtraction.

For an infix operator op, an expression like A op B op C
would be interpreted as (A op B) op C if op has left

associativity, and A op (B op C) if op has right

associativity. Most of the mathematical operators have left

associativity, but an operation like assignment makes sense

to have right associativity. Also, if one were to define an

exponentiation operator, it should also have right

associativity.

Because Sparrow operators are defined in the library, there

should be a possibility to define precedence and

associativity in the library. There should be some kind of
definition that the user can write, and the compiler can

search for, when determining the precedence and

associativity for infix operators. The easiest way this can be

achieved in Sparrow is with using directives:

using oper_precedence_default = 100;

using oper_precedence_+ = 500;

using oper_precedence_* = 550;

using oper_assoc_= = -1;

Such a directive associates a name with a value; it is similar

to defining a constant. Whenever the + operator is used in
the language, the compiler searches for the name

oper_precedence_+ and, if successful, evaluates the

expression to get the precedence value for the operator. If

the name cannot be found, the compiler will use the

precedence value denoted by oper_precedence_default.

For associativity, if the returned value is negative, then the

operator is considered to have right associativity.

Although these using declarations are convenient to write,

there is a better method of getting and setting the precedence

rules, by using function calls:

setOperPrecedence("*", 550);

setOperPrecedence("**", getOperPrecedence("*") +

1);

setOperRightAssociativity("**");

By using these functions, the user is not required to know

the underlying details of operator precedence and

associativity. Moreover, the getOperPrecedence function

will check whether a value is defined for the given operator,

and if not, the default value will be returned.

Sparrow is powerful enough that it allows these functions to

be defined at library level, without changing the compiler.
The implementation for these functions involves using

macros and the Compiler API, which allow the programmer

to manipulate the internal structure of the program at the

Abstract Syntax Tree (AST) level [7].

4. EVALUATION

We presented the method through which one can construct

flexible operator schemes in Sparrow. All Sparrow operators

are defined in this manner, and their precedence and

associativity values are set using the mechanism described

above. In this section we evaluate the benefits and

limitations of this approach.

Let us start with an example of an operator for raising a

number to a given power:

fun pow(x, y: Double) = Math.pow(x, y);

fun **(x, y: Double) = pow(x, y);

setOperPrecedence("**", getOperPrecedence("*") +

1); // higher precedence than multiplication

setOperRightAssociativity("**"); // right

associativity

cout << 4 * 3 ** 2 << endl; // will print 36,

interpreted as 4 * (3**2)
cout << 4 ** 3 ** 2 << endl; // will print 262144,

interpreted as 4 ** (3**2) == 4 ** 9

As illustrated, it is easy to define the operator and to set its

precedence and associativity. Furthermore, the newly

created operator can be integrated seamlessly with standard

arithmetic operators.

Another example involves the use of map and filter

operations, heavily used in the context of functional

programming:

fun filter(range: Range, pred: AnyType) =

mkFilteredRange(range, pred);

fun map(range: Range, f: AnyType) =

mkTransformedRange(range, f);

fun .. (start, end: Number) = mkNumericRange(start,

end, true);

printRange(1..10 filter isOdd map (fun n = n*2));

// will print: 2 6 10 14 18

The last line of code contains some interesting features that

are worth mentioning. Firstly, the expression 1..10
represents a numeric range [9] constructed using the

operator ... Secondly, (fun n = n*2) is an anonymous

function that returns the double of its argument. Finally, we

can chain a sequence of infix operations (.., filter, map) that

will make the entire expression natural to the programmer.

If we had written the same expression without operators,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 44

similar to what one writes in a language like C++, it would

have become:

printRange(map(filter(mkNumericRange(1,10),

isOdd), (fun n=n*2)));

Although this version is valid, it is much harder to read than

what we obtained by using operators.

A representative example for this operator system concerns

reference types (a concept similar to C++ references). In

Sparrow, if one wanted to declare a reference to a type, say

Int, it would write @Int. Even though this pattern is

pervasive in Sparrow, this is actually a prefix call to the

operator @ that acts on a type. Due to its advanced

metaprogramming capabilities (a feature called hyper-

metaprogramming) [2], [10], [11], Sparrow allows the user
to define functions (and operators) that act on types and can

return other types. Thus, expressing a reference type

becomes an operator call. Other examples of type operators

in Sparrow are: -@ (remove reference), !@ (ensure one at

least one reference) and #$ (get a value of the given type).

All these examples show that by using this method of

defining operators we can actually enhance the naturalness

of the programming language.

4.1 Comparison with Other Languages

In order to compare Sparrow to other languages in terms of

the capabilities of their operators, we have identified several
specific features. The degree of support for these features

provided by Sparrow and several mainstream programming

languages is outlined in the following table:

 C++ Java Scal

a

Has

kell

Spar

row

Overloading existing

operators

yes - yes yes yes

Infix and postfix

operators with

custom symbols

- - yes yes yes

Prefix operators with

custom symbols

- - - - yes

Prefix operator with

identifier

- - - - yes

Postfix operator with

identifier

- - yes - yes

Infix operator with
identifier

- - yes yes yes

Custom precedence

and associativity

- - - yes yes

As we have explained in previous sections, Sparrow

supports the complete set of features. The two functional

languages come closest to supporting the full set, whereas

C++ only supports overloading existing operators. Finally,

Java does not allow any form of operator customization.

4.2 Limitations

Although this method of defining operators is flexible,

extensible, and can improve code naturalness, it has some

drawbacks.

The first drawback comes from the fact that the lexer allows

all symbol sequences as valid tokens. For example the
sequence of two characters *- is a valid token. This means

that an expression like a*-b will be parsed as the infix

operation *- applied to terms a and b. In languages like C++

and Java, this would be parsed as “a times the negative of

b”. Because the lexer always takes the longest possible

sequence of characters when forming a token, *- will never

be interpreted as two separate tokens. To solve this problem,

the user must enter a space between the two symbols,

transforming the expression into a* -b; in this case, the

parsing will be similar to the one used in C++ or Java. In

most cases however, even in C++, the user will place a

space between the two symbols, or use parentheses, just to
make the code easier to read.

Another limitation is related to postfix operators. In

Sparrow, these can be used either as the last element in an

expression, or inside parentheses. Expressions such as a++ *

b, which is valid in C++ (post increment a and multiply the

old value by b), are not valid in Sparrow. This expression is

interpreted as “infix ++ between a and *, and then postfix

with an operation named b; this is invalid because the

second operand must not be a symbol token. There is an

easy fix for this, by placing the postfix call in parentheses:
(a++) * b. Again, in typical scenarios, the programmer

rarely applies the postfix increment inside expressions.

The presented method has an additional limitation, but this

time not with respect to languages like C++, but to our

initial goals. We wanted to allow the possibility of defining

different precedence values for operators, depending on the

types of the arguments. For example, one may desire a

matrix multiplication to have a different precedence than an

integer multiplication. Because applying infix operators

yields different types based on the order in which the

operations are applied, the choice of the highest precedence
operator quickly becomes ambiguous. For example let us

say that we have the expression a + b * c, with all three

operands of different (class) types; let us assume that the +

operation between a and b has precedence 10 and the *

operation between b and c has precedence 15. Moreover let

us assume that the precedence of + between a and the result

of (b*c) is 20 and the precedence of * between the result of

(a+b) and c is 5. In this case, no matter the order in which

the operations are executed, it violates the precedence rules.

5. CONCLUSION

We presented a method of constructing flexible operator

schemes at the library level. All Sparrow operators, their
precedence, and associativity, are defined using this

mechanism. Not only is this true even for basic operators

(e.g. arithmetic), it also applies to the operator that creates a

reference type: @.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 17 | IACEIT-2014 | Dec-2014, Available @ http://www.ijret.org 45

The grammar rules for operators and expressions are simple

and non-restrictive, allowing for a large variety of definable

operators. Precedence and associativity can be easily

configured using compile-time function calls.

In our evaluation we have provided several examples,
showing that custom operators can be useful in a variety of

scenarios. Furthermore, using our proposed method, they

can be defined and used in a natural way. Despite some

limitations, our approach is more powerful and flexible as it

provides users with more customization options for their

operators compared to other languages.

Finally, as mentioned before, one of our initial goals was to

allow type-dependent precedence values. We intend to

further investigate this issue and attempt to integrate this

type of functionality into our current solution.

REFERENCES

[1] L. R. Teodorescu, A. Suciu, and R. Potolea,

“Sparrow: Towards a New Multi-Paradigm

Language,” Analele Univ. Vest din Timisoara, vol.

48, no. 3, 2011.

[2] L. Teodorescu and R. Potolea, “Compiler Design for

Hyper-metaprogramming,” in Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2013

15th International Symposium on, 2013, pp. 201–

208.

[3] S. Marlow, “Haskell 2010 language report,” 2010.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha, The
Java Language Specification. 2005, p. 688.

[5] “Standard - the C++ language. Report ISO/IEC

14882:2011.” .

[6] M. Odersky, “The Scala Language Specification,”

2011.

[7] A. V Aho, M. S. Lam, R. Sethi, and J. D. Ullman,

Compilers: Principles, Techniques, and Tools (2nd

Edition). Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2006.

[8] A. Koenig, “A Personal Note About Argument-

Dependent Lookup,” Dr. Dobb’s Bloggers, 2012.

[Online]. Available: http://www.drdobbs.com/cpp/a-
personal-note-about-argument-

dependent/232901443.

[9] A. Alexandrescu, “Iterators Must Go,” 2009.

[10] L. R. Teodorescu and R. Potolea, “Metaprogramming

can be Easy, Fast and Fun: A Plea for Hyper-

Metaprogramming,” ACAM J. Autom. Comput. Appl.

Math., vol. 21, 2012.

[11] L. R. Teodorescu, V. Dumitrel, and R. Potolea,

“Moving Computations from Run-time to Compile-

time: Hyper-metaprogramming in Practice,” in

Proceedings of the 11th ACM Conference on
Computing Frontiers, 2014, pp. 17:1–17:10.

