
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 113

A NOVEL METHODOLOGY FOR TEST SCENARIO GENERATION

BASED ON CONTROL FLOW ANALYSIS OF UML 2.X SEQUENCE

DIAGRAMS

Saroj Kanta Misra
1
, Durga Prasad Mohapatra

2

1
 Assistant professor, Department of IT, GIET, Gunupur, Odisha, India

2
 Associate Professor, Department of CSE, National Institute of Technology, Rourkela, Odisha, India

Abstract

Now a days UML is widely used for preparing design documents. It helps to specify, construct, visualize and document artifacts of

software systems. This paper presents an approach to test the software in the early stage (design phase) of software development
life cycle, so that it can help the software testers in the later stages. This paper focuses on generating test scenarios from UML 2.x

Sequence diagrams. The most challenging problem in generating test scenarios from UML 2.x sequence diagram is the presence

of fragments such as alt, loop, break, par, opt etc. We propose an intermediate control flow graph in a testable form named

Sequence Control Flow Graph (SCFG) resulting from the control flow analysis of UML 2.x sequence diagrams. We also propose

a systematic approach named Sequence Test Scenario Generation Algorithm (STSGA) for generating test scenarios from UML 2.x

Sequence diagrams. The test scenarios generated by our approach are suitable for detection of scenario faults, use case

dependency and system testing.

Key Words: Test scenarios, UML 2.x Sequence diagram, Sequence Control Flow Graph (SCFG), Test Scenario

Generation Algorithm (STSGA).

--***--

1. INTRODUCTION

Nowadays, due to rapid increase in size and complexity of

software applications, more emphasis is given towards

object-oriented design strategy, which helps to reduce

software cost and increase software reliability, and usability.

But, introduction of object-oriented design and

implementation approach brings out some new difficulties
for software testing. Several features of object-oriented

approach like polymorphism, dynamic binding, inheritance

etc. create certain difficulties in software testing process. To

test such object-oriented software from their implementation

code is a very a complex process due to the different

features of object oriented approach. Model Based Testing

of these object-oriented software can be beneficial to detect

the error in the design phase itself, so that these error do not

propagate to other stages of software development life cycle.

Control Flow Analysis (CFA) plays a vital role in

determining all possible alternative paths a program may

follow during execution. A Control Flow Graph (CFG) is a
static representation of a program that represents all

alternatives of control flow. For example, both choices for

If-else statement can be represented in CFG as different

control flow paths. A Loop can be represented as a cycle in

a CFG.

According to Garousi et al. [1] Control flow information can

be derived from two different sources: from software design

artifacts and code itself. In Code-based CFA(CBCFA),

control flow information is obtained from the available

source code, whereas in Model-based CFA(MBCFA),

control from information is obtained from design models

such as UML. The motivation of our work is to derive

control flow information and generate test cases in the early

stage of software development life cycle, after the UML

design models of a system become available.

2. BASIC CONCEPTS AND DEFINITIONS

UML behavioral diagrams such as interaction diagram,

activity diagram, and state machine diagram describe

different functionalities of the system and also capture

various dynamic behavior of the system. Interaction

diagrams illustrate the system functionalities using different

fragments such as alternative, loop, break, parallel, etc. In

this section we provide an overview of interaction diagram,

XMI and Sequence Control Flow Graph (SCFG), how to

obtain a SCFG.

2.1. UML 2.x Interaction Diagram

Interaction diagrams describe how a group of objects

collaborate in some behavior - typically a single use-case.
Interaction diagrams are of two types: Sequence diagram

and Communication diagram. The basic objective of both

the diagrams is same. Sequence diagrams accentuate on the

time sequence of messages passed between the

communicating objects, and the communication diagrams

accentuate on the structural organization of the

communicating objects that send and receive messages. In

our approach, we have used UML 2.x Sequence diagrams to

generate test scenarios.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 114

2.1.1 New Features of UML 2.x sequence diagram

List below describes some of the feature of UML 2.O

sequence diagrams

 Interaction:

Series of messages that is passed between different

communicating objects to satisfy some task is called
interaction.

 Interaction Occurrences:

When an interaction used within another interaction or

context, then it is called interaction occurrence.

 Combined Fragments:

Combined fragment is an interaction fragment which is a

combination of multiple interaction fragments. Each

combined fragment has an interaction operator and

corresponding interaction operands.

 Interaction Operand:
Interaction operand shows grouping of interactions within

the combined fragment.

 Interaction Operator:

Interaction operator for combined fragments describes how

the interaction operands present inside the combined

fragments are going to be used. The followings are the list

of interaction operators defined.

 Alternative (alt):

The interaction operator alt works like if-then-else structure.
At most one operand can be selected based on the guard

expression's true value. If there is no guard expression, then

an implicit true guard value is implied.

 Option (opt):

The interaction operator opt is used, when the combined

fragment represents the operand as an option where the

operand either happens or may not happen. It works like an

alternative combined fragment where one operand is

nonempty and the other one is empty.

 Loop (loop):

The interaction operator loop represents a loop structure.

The interaction operand present inside the loop combined

fragment will be repeated many times. The repetition of

loop can be controlled either or both by iteration bound and

guard. If a loop combined fragment has no bound specified,

then the loop will execute with infinite as upper bound and

zero as lower bound.

 Break (break): The interaction operator break is

used to represent a breaking or exceptional scenario

to be performed instead of the remaining
interaction fragment.

 Parallel (par): The interaction operator par

describes parallel execution of behaviors of the

interaction operands present inside a combined

fragment.

2.2 XMI

XMI (XML Metadata Interchange), is an extension of XML

that facilitates the standardized way for interchanging object

models and metadata. Specifically, XMI is useful to

programmers using the Unified Modeling Language (UML)

with various languages and development tools to exchange

their data models with each other.

2.3 Sequence Control Flow Graph (SCFG)

In order to examine and visualize the control flow

information present in the UML sequence diagram, we first

extract all the control flow information from the XMI

equivalent of the sequence diagram, then we construct an

intermediate control flow graph in a testable form called

Sequence Control Flow Graph (SCFG). As UML sequence

diagram contains information about objects of a system in

form of messages in a time sequence and we focus on

functional testing of the system, we will not give emphasis

on messages sent between internal objects. For each

message that is sent from internal objects to user object, our
goal is to generate test scenarios taking these messages as

end points. So, we will obtain SCFG, where nodes represent

messages in sequence diagram and edges represent path

between nodes. The messages sent from internal objects to

user object are colored gray. We have added some

additional nodes for the sake of simplicity in the process of

generating test scenarios.

The following are the type of nodes considered for

constructing Sequence Control Flow Graph (SCFG).

Definition: An Sequence Control Flow Graph is a tuple
R ={R, M, Fstart, Fend, Eoutput, C, E} where,

 R is the root node of the Sequence Control Flow Graph

(SCFG).

 M is a message node that represents a message from

UML sequence diagram.

 Fstart (Fragment start) is a set of nodes representing the

starting of a fragment.

 Fend (Fragment end) is a set of nodes representing the

End of a fragment.

 Eoutput (Expected output) is the set of nodes that precedes

the message from internal object to user object in

Sequence Control Flow Graph(SCFG).

 C (Condition node) is the set of nodes representing

conditions for the fragments.

 E is the set of final nodes representing an exit of

Sequence Control Flow Graph (SCFG).

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 115

2.4 Constructing the Sequence Control Flow Graph

(SCFG)

Fig.1. A sample Sequence diagram

We construct the SCFG for representing control flow among

messages in presence of fragments and nested fragments. In

this process, we give more emphasis on use scenarios [3]

(actions executed by the user and actions viewed by the

user).

Each message present in the sequence diagram is
represented by a node in SCFG. The start and the end of

every fragment is denoted by two additional fragment nodes

representing starting and ending of fragment such as

alt_start, alt_end, par_start, par_end etc. In alt fragment,

the conditions for control flow are also denoted by

additional $control$ nodes containing a condition sequence

number and condition itself such as condition1_true,

condition2_false, etc. The steps to build a SCFG from a

sequence diagram are presented as fallows.

 The root node of SCFG is represented by a node start.

 The end points of SCFG are represented by the node

end.

 From the root node start, for each message in the

sequence diagram, a new node is added into the SCFG

with it's value same as message name in the sequence

diagram.

Fig.2. Derived SCFG from UML sequence diagram given in

Figure 1

 For each message (in order it appearing sequence

diagram) do the following :

1. If the message is from user object to non-user

object (internal object) or from non-user object to

non-user object then a new node is added into

SCFG with a directed edge from its previous node

to itself.

2. If the message is from non-user object to user

object then two nodes are added into SCFG (1) first

node with value expected_output and a directed

edge from its previos node to itself. (2) second a

gray color node with value same as message name

and a directed edge from expected_output node to

itself.
Figure 1 shows an example UML 2.x sequence diagram

where message passing occurs between user object and

various internal objects of the system. The corresponding

SCFG for Figure 1 is given in figure 2. We can observe

from the SCFG in Figure 2, that all the messages of

sequence diagram are represented as nodes and the starting

of alt fragment is represented using a Fragment start node

alt start1 and ending using a Fragment end node alt end1.

Both the conditions for alt fragment are represented by

Condition nodes Condition 1 True, Condition 2 False. The

gray colored nodes represent messages that are passed from
the internal objects to the user objects.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 116

3. PROPOSED METHODOLOGY

Fig. 3. Block diagram for generating test scenarios from

UML 2.x sequence diagram

In this section we discuss our approach for test scenario

generation from UML 2.x sequence diagrams. Our sequence

diagram includes combined Fragments using various
Intraction Operators such as alt, par, loop, break etc. We

propose a mechanism to extract the messages in their timing

sequence and Fragments precisely from XMI representation

of UML 2.x sequence diagram. Then we map every message

to its corresponding fragment. Next we generate the

Sequence Control Flow Graph (SCFG) using Sequence

Control Flow Generator. Then, we generate test scenarios

using Test Scenario Generator .The block diagram for

generating test scenarios from sequence diagram is given in

Figure 3.

The major steps of our approach are partitioned into three
phases. They are given below:

 Parsing the XMI representation of UML 2.x Sequence

Diagram.

 Developing the Sequence Control Flow Graph (SCFG)

generator.

 Developing the Test case generator.

The first step of our approach is to parse the XMI

representation of UML 2.x sequence diagram. We have used

IBM Rational Rose Architecture (RSA) to draw the
sequence diagram, and then we have exported the XMI

representation for the sequence diagram, which is used as

the input for our procedure. We propose a parser that parses

the XMI file to extract information about messages,

structure of fragments and combined fragments. Messages

that are sent from any non user object to user object are

identified. Using all the extracted information, a Sequence

Control Flow Graph is generated.

In order to generate test scenarios for the sequence diagram,

the SCFG needs to be traversed. We propose a Sequence
Test Scenario Generation Algorithm (STSGA) for

generating test scenarios. The detailed algorithm is shown in

Algorithm 1. This algorithm traverses the Sequence Control

Flow Graph (SCFG) to first identify the the messages that

are .rom non user object to user object. Then it generates the

test paths from start node to the nodes connected to these

messages and then finally generates test scenarios for these

messages.

4 IMPLEMENTATION OF OUR ALGORITHM

In this section, we exemplify our approach for generating

test scenarios form XMI representation of UML sequence

diagram by converting XMI representation of UML

sequence diagram into an equivalent Sequence Control Flow

Graph (SCFG) and then generating test scenarios. We

generate test scenarios from UML sequence diagram to test

the feasibility and concurrency errors.

We have developed a prototype tool called XMI2SCFG

(XMI to Sequence Control Flow Graph) for generating test

scenarios. XMI2SCFG works in two steps (1) Parsing of

XMI representation of UML Sequence diagram.(2) Creating
a SCFG (Sequence Control Flow Graph) in image format,

and generating test scenarios from SCFG. We have

implemented XMI2SCFG in Java language using Netbeans

IDE 7.0.1. XMI\-2\-SCFG takes the XMI representation of

UML 2.x sequence diagram as input. We have used IBM

Rational Software Architecture (RSA) 7.0 to draw the

sequence diagram and then exported the XMI representation

(XMI equivalent of UML sequence diagram).

In the first phase, XMI2SCFG uses SAX parser to parse the

XMI representation of sequence diagram. Along with the
main class and sequenceParser some auxilary classes such

as listMsg, listAlt, listPar, listLoop, listBreak are used for

this propose. The sequenceParser class implements various

methods such as getMsgID(), getMsgName(), getUserMsg(),

getAlt-Msg(), getBreakMsg(), getPar-Msg(), getLoop-Msg()

to interact with SAX parser. These methods process the

tagged elements present in XMI representation of UML

sequence diagram such as “packagedElement'', “message'',

“fragment'', "ownedAttribute'',” l̀ifeline'', “operand'',

“guard'', “body'', ``ownedOperation'' to extract various

information like message name, message flow, message

dependacies, message type, guard condition, etc.

In the second phase,the task of XMI2SCFG is to visualize

the SCFG (Sequence Control Flow Graph) in an image

format. For SCFG visualization two main classes are used :

DotTransformer and Graphvizvisualization. We have used

for Graphviz. Taking two linked lists tranSource and

tranDestination as input, the DotTransFormer objet creates a

.dot file . After the .dot file is created, the methods present

in graphiviz getDotSource(), getGraph(), and

writeGraphTofile() create an image for SCFG (Sequence

Control Flow Graph). Then the SCFG is supplied as input to
Sequence Test Scenario Generation (STSG) Algorithm

which generates the test scenarios. Starting from the root

node $start$, STSGA scans each node of the SCFG,

depending on the node type such as message node,

Fragment node, Condition node, etc each node is processed

differently in STSGA. Finally STSGA generates a set of test

scenarios for UML sequence diagram.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 117

5 CASE STUDY

In this section, we illustrate the working of our approach for

generating test scenarios with the help of a case study
pertaining to Restaurant Automation System (RAS). The

RAS automates different functionalities of a Restaurant

such as take order, order processing, Generate Bill etc. We

are considering a particular use case, “Generate Bill “. In the

use case Generate Bill, The manager inputs the order

number to generate the bil. Based on the current status of the

order, different scenarios are possible such as bill already

generated, order is not processed etc.

The sequence diagram of Generate Bill usecase is given in

Figure 4. The sequence diagram for Generate Bill use case

contains two alt (alternate) fragment and two par (parallel)

fragment, two loop fragment and two break fragment. . In
the Generate Bill use case sequence diagram the messages

DisplayMessagee(Bill will be generated after delivary),

DisplayMessage(Bill_is already generated),

DisplayMesage(Bill Number, Bill Amount) and

DisplayMessages(Oreder is not found while generating the

bill) are the messages the user receives from internal

objects. The complete Sequence Control Flow Graph

(SCFG) generated for the Generate Bill use case of the

sequence diagram in Figure 4 is given in Figure 6. Each

message that the user object receives from internal objects is

represented by gray colored nodes preceded by expected

output nodes.
Table 1 shows the test scenarios are which obtained by

supplying SCFG as input to our STSG

6 COMPARISONS WITH RELATED WORK

In this section, we discuss some existing approaches similar

to our approach for test scenario generation from sequence

diagrams. In many cases test scenario generation is done

manually, as in case of many related work. For large

systems, it is practically impossible to generate test

scenarios manually from sequence diagrams.

Sarma et al. [2] proposed an approach to generate test

scenarios from UML sequence diagram, by converting
sequence diagram into an directed graph called Sequence

Diagram Graph (SDG), where a nodes in SDG represents a

message in the sequence diagram and a directed edge

represent control flow between the nodes. SDG is then used

to generate test scenarios. Sarma et al.\cite{Ref2} used

UML 1.x sequence diagram for their work, which did not

support fragments such as alt, par, loop, break etc whereas

our approach considers these fragments by using UML 2.x

sequence diagram.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 118

Fig.4. Sequence Diagram of Generate Bill use case

Fig.5. A portion of the SCFG for Generate Bill uses case and test scenarios using XMI2SCFG

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 119

Fig.6. The complete SCFG of Generate Bill use case of the

sequence diagram given in figure 4

Cartaxo et al. [3] proposed a approach to generate test paths

for mobile application using sequence diagram. They,

constructed an intermediate model call Labeled Transition

System (LTS) from sequence diagram, where directed edges

ware used to represent control flow, expected output. Then,

they have applied depth first search (DFS) algorithm to

traverse the LTS model for generating test paths. However,

their approach did not support fragments present in UML

2.x sequence diagram.

Khandai et al. [4] proposed another approach to generate
test cases from sequence diagrams. They had constructed an

intermediate graph called Concurrent Composite Graph

(CCG) generated from sequence diagram, which was a

variant of activity diagram. Then they traversed the CCG by

applying depth first search (DFS) and breath first search

(BFS) to generate test cases. They have used BFS algorithm

to explore fork and joint constructs.

We proposed a novel approach to test object-oriented

software based on control flow analysis of UML sequence

diagrams. Our approach is a fully systematic approach for

automatic test scenario generation from UML 2.x sequence

diagram, which supports various fragment such as alt, par,

etc.

7. CONCLUSIONS

In this paper, we have proposed a novel approach for test

scenario generation from UML 2.x sequence diagram

considering the fragments, nesting of fragments and control

flow primitives present in sequence diagrams. The method

first generates an intermediate graph called Sequence

Control Flow Graph (SCFG) from the XMI representation

of UML 2.x sequence diagram. Then by analyzing the

control flow information, message sequence and the

fragment structure, our proposed approach generates test

scenarios, for various use case present in a system. Most of

the existing techniques of test scenario generation from
UML sequence diagrams are manual and do not consider

fragments and nesting of fragments into test scenarios.

Hence, these methods become more complex while taking

UML 2.x sequence diagrams.

Our approach is a fully systematic interpretation of control

flow information for various fragments as well as nested

fragments present in UML 2.x sequence diagram. The

control flow information generated from UML 2.x sequence

diagram used to handle fragment and nested fragment

structure present in sequence diagram, while generating test
scenarios. . Subsequently our approach uses these control

flow primitives for test scenario generation. Our approach is

fully automatic. The test scenarios thus generated are

suitable for functional testing and detecting interaction and

scenario faults.

REFERENCES

[1] Garousi, Vahid, Lionel C. Briand, and Yvan Labiche.

“Control ow analysis of UML 2.0 sequence diagrams."

In Model Driven Architecture foundations and

Applications, pp. 160-174. Springer Berlin Heidelberg,

2005.

[2] Sarma, Monalisa, Debasish Kundu, and Rajib Mall.
“Automatic test case generation from UML sequence

diagram." In Advanced Computing and

Communications. ADCOM 2007. International

Conference on, pp. 60-67. IEEE, 2007.

[3] Cartaxo, Emanuela G., Francisco G. Oliveira Neto, and

P. D. Machado. “Test case generation by means of

UML sequence diagrams and labeled transition

systems." In Systems, Man and Cybernetics. ISIC.

IEEE International Conference on, pp. 1292-1297.

IEEE, 2007.

[4] Khandai, Monalisha, Arup Abhinna Acharya, and

Durga Prasad Mohapatra. “A novel approach of test
case gener- ation for concurrent systems using UML

Sequence Dia- gram." In Electronics Computer

Technology (ICECT), 3rd International Conference on,

Vol. 1, pp. 157-161. IEEE, 2011.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 120

[5] D. Kundu, D. Samanta, and R. Mall. “An approach to

convert XMI representation of UML 2. x interaction

dia- gram into control ow graph". ISRN Software

Engineering, pp. 1-22, 2012.

[6] G. Booch, I. Jacobson, and J. Rumbaugh. “The Uni_ed

Modeling Language User Guide". Pearson Education.
[7] T. T. Dinh-Trong, S. Ghosh, and R. B. France. “A sys-

tematic approach to generate inputs to test UML design

models". In Software Reliability Engineering, 2006. IS-

SRE'06. 17th International Symposium on, pp. 95-104.

IEEE, 2006.

[8] Y. Lei and N. Lin. “Semi automatic test case generation

based on sequence diagram". In International Computer

Symposium (ICS2008), pp. 349-355, 2008.

[9] Nayak and D. Samanta. “Model-based test cases syn-

thesis using UML interaction diagrams". ACM

SIGSOFT Software Engineering Notes, 34(2):1-10,

1993.

[10] Rountev, S. Kagan, and J. Sawin. “Coverage criteria for

testing of object interactions in sequence diagrams". In
Fundamental Approaches to Software Engineering, pp.

289-304. Springer, 2005.

[11] M. Shirole and R. Kumar. “UML behavioral model

based test case generation: a survey". ACM SIGSOFT

[12] Samuel, Philip, and Anju Teresa Joseph. "Test sequence

generation from UML sequence diagrams." Software

Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2008. SNPD'08. Ninth

ACIS International Conference on. IEEE, 2008.

Table 1: Test scenarios generated for Generate Bills use case.

Test

Sce-

nari

o ID

Messages from

non user object

 to user object

Scenario or path sequence

1 M7 Start ->M1 ->M2 ->loopS1->M3->loopE1->loopS1->altS1->M4->altE1 ->altS2 ->M6 -> breakS1-> Expected_output0->M7

2 M7 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6-> breakS1-> Expected_output0->M7

3 M7 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1-> Expected_output0->M7

4 M7 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1-> Expected_output0->M7

5 M10 Startt->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2-> M9->

breakS2-> Expected_output1->M10

6 M10 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->

breakS2-> Expected_output1->M10

7 M10 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> Expected_output1-

>M10

8 M10 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> Expected_output1-

>M10

 9 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M12->M13->M14->parE1-> Expected_output2->M15

10 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M12->M14->M13->parE1-> Expected_output2->M15

11

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M13->M12->M14->parE1-> Expected_output2->M15

12

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M13->M14->M12->parE1-> Expected_output2->M15

13

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M14->M12->M13->parE1-> Expected_output2->M15

14

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M14->M13->M12->parE1-> Expected_output2->M15

15 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M12->M13->M14->parE1-> Expected_output2->M15

16 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M12->M14->M13->parE1-> Expected_output2->M15

17 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M13->M12->M14->parE1-> Expected_output2->M15

18

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M13->M14->M12->parE1-> Expected_output2->M15

19

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M14->M12->M13->parE1-> Expected_output2->M15

20

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8-> loopS2->M9->

breakS2->loopE2->loopS2-> M11->parS1->M14->M13->M12->parE1-> Expected_output2->M15

21 M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M12->M13-> M14->parE1-> Expected_output2->M15

22

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M12->M14-> M13->parE1-> Expected_output2->M15

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 121

23

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M13->M12-> M14->parE1-> Expected_output2->M15

24

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M13->M14-> M12->parE1-> Expected_output2->M15

25

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M14->M12-> M13->parE1-> Expected_output2->M15

26

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M14->M13-> M12->parE1-> Expected_output2->M15

27 M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M12->M13-> M14->parE1-> Expected_output2->M15

28

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M12->M14-> M13->parE1-> Expected_output2->M15

29

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M13->M12-> M14->parE1-> Expected_output2->M15

30

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M13->M14-> M12->parE1-> Expected_output2->M15

31

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M14->M12-> M13->parE1-> Expected_output2->M15

32

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2->M9->breakS2-> loopE2->loopS2-

>M11->parS1->M14->M13-> M12->parE1-> Expected_output2->M15

33 M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M12->M13->M14-> parE1-> Expected_output2->M15

34

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M12->M14->M13-> parE1-> Expected_output2->M15

35

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M13->M12->M14-> parE1-> Expected_output2->M15

36

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M13->M14->M12-> parE1-> Expected_output2->M15

37

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M14->M12->M13-> parE1-> Expected_output2->M15

38

M15 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8-> loopS2->M11->parS1-

>M14->M13->M12-> parE1-> Expected_output2->M15

39

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M12->M13->M14->parE1-> Expected_output2->M15

40

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M12->M14->M13->parE1-> Expected_output2->M15

41

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M13->M12->M14->parE1-> Expected_output2->M15

42

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M13->M14->M12->parE1-> Expected_output2->M15

43

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M14->M12->M13->parE1-> Expected_output2->M15

44

M15 Start->M1->M2->loopS1->M3->loopE1->loops1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->

parS1->M14->M13->M12->parE1-> Expected_output2->M15

45 M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M12-> M13->M14-

>parE1-> Expected_output2->M15

46

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M12-> M14->M13-

>parE1-> Expected_output2->M15

47

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M13-> M12->M14-

>parE1-> Expected_output2->M15

48

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M13-> M14->M12-

>parE1-> Expected_output2->M15

49

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M14-> M12->M13-

>parE1-> Expected_output2->M15

50

M15 Start->M1->M2->loopS1->altS1->M4->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M14-> M13->M12-

>parE1-> Expected_output2->M15

51 M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M12->M13->M14-

>parE1-> Expected_output2->M15

52

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M12->M14->M13-

>parE1-> Expected_output2->M15

53

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M13->M12->M14-

>parE1-> Expected_output2->M15

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 122

54

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M13->M14->M12-

>parE1-> Expected_output2->M15

55

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M14->M12->M13-

>parE1-> Expected_output2->M15

56

M15 Start->M1->M2->loopS1->altS1->M5->altE1->altS2->M6->breakS1->M8->loopS2-> M11->parS1->M14->M13->M12-

>parE1-> Expected_output2->M15

57 M16 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M4->altE1->altS2-> Expected_output3->M16

58 M16 Start->M1->M2->loopS1->M3->loopE1->loopS1->altS1->M5->altE1->altS2-> Expected_output3->M16

59 M16 Start->M1->M2->loopS1-> altS1->M4->altE1->altS2-> Expected_output3->M16

60 M16 Start->M1->M2->loopS1-> altS1->M5->altE1->altS2-> Expected_output3->M16

