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Abstract 
Next generation sequencing (NGS) is a new area for generating massive genome sequencing data at high speed with low cost. 

Due to this, there are huge problems for data storage, analysis, and management. At NGS, Short Read Alignment is a fundamental 

problem and it has a lot of applications, such as genetic variation, whole genome sequencing, and personalized medicine. 

Recently, many tools and algorithms have been developed to align the short-reads in NGS. This paper, describes a short survey on 

NSG-short read alignment in particular High Performance Computing environment. The authors discussed the performance of the 

most widely used tools like (BOWITE, BWA, SOAP, CLOUDBURST, etc.). Based on the results, CLOUDBURST gives the best 

performance compare to other methods. 
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1. INTRODUCTION 

The modern NGS machines generate huge amount of short 

read sequences within few hours. A fundamental problem 

is, to aligning these short reads in proper formats such that 

they represent the actual genome.  It has many applications 

such as genetic variation, whole genome sequencing, and 

personalized medicine [1]. NGS able to produce short 
reads, sizes ranging from 25basepairs (bp) to 400bp [2]. 

Roche 454, ABI Solid and Illumina are experimental 

technologies used in NGS. These methods consume a lot of 

time and having less accuracy rate for aligning short reads. 

Researchers have developed many computational tools like 

Bowtie [3], BWA [4], SOAP [5], Novoalign [5], Mr. Fast 

[6], MAQ [6], Cloudburst [7] and CUSHAW [8] in recent 

days for short read alignment. 

 

The problems relating to genome sequencing are: 

We don’t know the position information of the short reads, 
which part of the genome they came from and region of the 

corresponding short reads in the genome reference 

sequence. 

 The genome reference sequence can be very long 

(3 billion bases for human) and making it an 

overwhelming task to find a matching region. 

 Due to short reads, there may be many, similar 

places in the  genome reference sequence which 

are matched to short reads are also read. This will 

occur mostly in repetitive regions. 

 In the case of perfect matches to reference, we 
would not have any variation, so, we need to allow 

some structural variation and some mismatches in 

short reads. 

 In case of errors in reads once should accept a 

lower  level of sequencing errors. 

 This process should be performed for lots of reads 

in sequencing data, which makes it tedious. 

 
Fig -1: Short read alignment in NGS 

 

Many quality problems arise due to Short Read Mapping 
Quality. 

 

The low quality data represent a probabilistic wrong 

sequence, this wrong sequence will finally lead to wrong 

alignment. Sensitivity was used to determine the accuracy 

of an alignment algorithm. Mapping errors will happen 

because of low sensitivity, i.e., it misses the true matches 

in the short reads. Because of the repeated structure reads, 

repetitive regions generally, get very low mapping quality. 

[9]. 

 

2. A REVIEW ON SHORT READ ALIGNMENT 

TECHNIQUES 

In this section, the authors described the indexing 

techniques like Hash table, Suffix tries and Burrows-
Wheeler transform for short read alignment. 

 

2.1 Short Read Alignment with Hash Table 

Hash based methods can be performed by hashing the read 

and the reference genome sequences. The whole idea was 

to build a hash table for the short reads of a reference 

genome sequence. Here, key refers to short reads while 

value refers to the position where the short read appear in 

the reference genome. 

 

BLAST uses a hash table and indexes every position in the 

query, with an index width of 9 nucleotides. It scans the 
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genome and uses this index to find positions that needs to 

be examined closely for a match. Some hashes based 

algorithms index the genome, they are matched with, while 

others indexes the query. 

 

Algorithms based on hash table must follow the seed-and-

extend model. In case of BLAST, it keeps the position of 

k-mer short read of the query in a hash table along with the 
k-mer short read being the key, and scans the databases 

genome reference sequences for k-mer exact matching 

short reads [11]. In the larger short read sequences, 

increasing the size of hash table could reduce the execution 

time, but increases the memory size of hash table[12]. 

 

The seed –and –extend model used in various read 

mapping algorithms, it has fastest model for the short read 

mapping computation [7].  The key approach for this 

technique is that, so if a read maps to the genome at a 

particular location with a relatively small number of 

differences, then a significant fraction of the read must 
map, without any error. A conflict can arise due to 

exchange of character (mismatch), additional characters in 

the query (insertion), or leaving out characters from the 

reference (deletion). 

 

2.2 Short Read Alignment with Suffix Tries 

The structure of ordering tries into tree structures and 

practicing them to store strings for fast and exact matching 

was discussed in [11]. The applications requiring perfect 

genome matches can obtain fast results using tries. 

Imperfect matches would require backtracking the tires and 

can be costly if too many variances are taken into account. 

The main problem with using traditional tries for alignment 
is that the size of a tries for the full genome would end up 

being too large to be held in memory [12]. 

 

2.3 Short Read Alignment with Burrows Wheeler 

Transform 

Burrow-Wheeler Transform is powerful data indexing 

technique and it maintains a very small memory when 

searching through a given data block. The FM - index 

technique was extended in BWT and support exact 

matching short read sequence to genome reference 

sequence. In the cases, genome sequencing transforms in to 

FM – index, where a single read matches multiple 

locations in the genome sequencing. BWT compared to 

hash table better quality in a short read alignment accuracy. 
An FM-index is just as effective as a tries, but is much 

more space efficient [14]. 

 

2.4 Short Read Alignment with GPGPU 

Computing 

Currently, GPGPU developed can be performed by NGS 

short read alignment. GPGPU can reduce the execution 

time for short read alignment and sequencing error [15]. In 

the GPGPU sequence alignment based on BWT, to get 

faster mapping into sequence reads and genome reference 

sequence. GPGPU based short read alignment tools can be 

easily to align the lengthy reference sequence too short 

reads. The encoded reference sequence and short read 

sequence transfer from disk to GPU Memory. A GPGPU 

alignment kernel where the alignment task of each of the 

short read sequences is distributed to hundreds of 

processors within the GPU [17] [18]. 

 

2.5 Short Read Alignment with Map Reduce 

In the mapping phase it generates key-value pairs of seeds 
which are patterns of the reads as well as the reference 

genome. In the shuffling stage the seeds are grouped based 

on the keys, which collects together similar keys between 

the short reads and the genome reference sequence. On the 

reduction stage an exact alignment with the allowed 

mismatches is found by extending the parallel keys, 

performing an end-to-end alignment, via these processes 

the seed and extend technique is implemented [19]. 

 

A review of some of the short read alignment tools 

including Bowtie, SOAP, Novoalign, MAQ, BWA and Mr. 
Fast is presented in Table 1. 

 

Table-1: Short read alignment tools 

 

Features 

BWT indexing 

techniques 

Hash indexing techniques 

Bowtie SOAP Novoalign MAQ BWA Mr. 

Fast 

Fast High High Low Low High Low 

Sensitivity Low Low High High High High 

Accuracy Low Low Low Low High High 

Memory High High Low Low Low Low 

 

3. EXPERIMENTAL RESULTS AND 

DISCUSSION 

In this study, the short read alignment tools are analyzed 

by aligning short reads on the human genome to genome 

reference sequence. The system configuration details are 

listed in Table 2. 

 
Table- 2: System Configuration details 

Item Equipment 

CPU 

Memory 

Hard Disk 

OS 

Compiler version 

Intel®core2Duo processor 

@2. 20 GHZ 

3.00 GB 

500 GB 

Ubuntu 13.04 desktop 

gcc version 4.7.0 

 

The performance of short read alignment accuracy and 

CPU time has been evaluated by comparing it with Bowtie 

(version 0.12.7), BWA (version 0.6.2), MAQ (version 

0.7.1) and Mr Fast (version 2.6.0.1), SOAP (version 1.0), 

NovoAlign (version 1.0), Cloudburst [7] and CUSHAW 
[8] using simulated and real short read sequence data sets 
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Table 3: Short read Alignment accuracy results (in 

percentage) 

Datasets (Pair 

End) 

Bowtie BW

A 

MA

Q 

mrFas

t 

SRR000129PE 98.3 98.7 97.8 98.4 

SRR022868PE 98.7 99.6 96.7 96.3 

SRR068211PE 97.2 98.4 98.1 98.5 

SRR000133PE 96.8 96.4 95.1 95.3 

 

Table -4: Short read Alignment accuracy results (in 

percentage) 

Datasets (Pair 

End) 

Novoal

ign 

SOA

P 

CUS

HA
W 

Cloud

burst 

SRR000129PE 97.5 98.3 98.1 98.6 

SRR022868PE 96.1 99.3 99.5 99.1 

SRR068211PE 97.9 98.3 98.7 98.9 

SRR000133PE 95.3 96.1 98.6 99.1 

 

 
Chart -1: Short read alignment  accuracy results 

 

All aligns were assessed using four real data sets from 454, 
Ion Torrent, and Illumina sequencers. All these data sets 

are publicly existing and named after their accession 

numbers in the NCBI Sequence Read Archive (SRA). 

Measurements were carried out in terms of CPU time and 

clock run time. CUSHAW and CloudBurst shows 

consistently low Clock and CPU times, while Novo align 

demonstrates the highest clock cycles and CPU time (Chart 

2, 3). 

 

 
Chart -2: Performance for CPU time for short read 

alignments 

Table -5: Performance for CPU time for short read 

alignments 

Datasets (Pair 

End) 

Bowtie BWA MAQ mrFast 

SRR000129 
PE 

10158 26786 31367 15989 

SRR022868 

PE 

9874 21137 29876 16876 

SRR068211 

PE 

11739 276.57 26780 21785 

SRR000133 

PE 

10215 26321 32987 20438 

 

Table -6: Performance for CPU time for short read 

alignments 

Datasets 

(Pair End) 

Novoalig

n 

SOA

P 

CUSHA

W 

Cloudburs

t 

SRR00012

9 PE 

45276 1058

7 

5835 6784 

SRR02286

8 PE 

42987 1134

2 

6921 7598 

SRR06821

1 PE 

51456 1389

3 

6739 7338 

SRR00013

3 PE 

35965 1365

9 

6127 6073 

 

 
Chart -3: Performance for Clock time for short read 

alignments 

 
Table -7: Performance for Clock time for short read 

alignments 

Datasets (Pair 

End) 

Bowtie BWA MAQ mrFast 

SRR000129 

PE 

10158 26786 31367 15989 

SRR022868 

PE 

9874 21137 29876 16876 

SRR068211 

PE 

11739 276.57 26780 21785 

SRR000133 

PE 

10215 26321 32987 20438 
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Table -8: Performance for Clock time for short read 

alignments 

Datasets 

(Pair End) 

Novoalig

n 

SOA

P 

CUSHA

W 

Cloudburs

t 

SRR00012
9 PE 

45276 1058
7 

5835 6784 

SRR02286

8 PE 

42987 1134

2 

6921 7598 

SRR06821

1 PE 

51456 1389

3 

6739 7338 

SRR00013

3 PE 

35965 1365

9 

6127 6073 

 

All aligns were assessed using four real data sets from 454, 

Ion Torrent, and Illumina sequencers. All these data sets 

are publicly existing and named after their accession 

numbers in the NCBI Sequence Read Archive (SRA). 

Measurements were carried out in terms of CPU time and 

clock run time. CUSHAW and CloudBurst shows 

consistently low Clock and CPU times, while Novo align 

demonstrates the highest clock cycles and CPU time (Chart 
– 2,3). 

 

It can be observed from   chart 1 that on an average, 

Cloudburst performs well, and CUSHAW follows it with a 

very small lessening in performance with a few data sets, 

while lagging behind in others. Hence, it cannot be 

considered to provide consistent performance. Cloudburst 

and CUSHAW exhibit consistent performance, hence can 

be considered to be highly reliable when compared to other 

algorithms. 

 

4. CONCLUSION 

Next Generation Sequencing machines clue to 
computationally difficult alignment problems that can take 

many hours on a modern computer. Many studies have 

been passed out to analyze the performance of short read 

alignment.  Short read alignment is supposed to be the 

computing bottleneck in analysis of new genome 

sequencing data. Fortunately, the dynamic development of 

short read alignment algorithms solved this problem along 

with   better high throughput of sequencing machines. A 

survey of the short read alignment tools is presented here. 

Their efficiency and time taken to perform tasks were 

analyzed experimentally and presented in this paper. From 
our study, we found that most of the approaches are 

inherently parallel and can benefit from a distributed 

storage and processing architecture like Hadoop. We also 

consider these applications to CUDA C to make use of the 

massively parallel nature of GPGPU. 
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