
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 6

BEST LOOKUP ALGORITHM FOR 100+GBPS IPV6 PACKET

FORWARDING

Suja G J
1
, Sangeetha Jose

2

1
M.Tech Scholar, Dept of Information Technology, Govt. Engineering College Painavu Idukki, Kerala, India
2
Asst.Professor, Dept of Information Technology, Govt. Engineering College Painavu Idukki, Kerala, India

Abstract
As internet traffic is growing day by day, it is a key requirement to increase more and more IP addresses. IPv4 cannot

accommodate this need due to the exhaustion of its 232 address. Hence in order to effectively satisfies this increase in demand for

IP address new addressing scheme called IPv6 is developed. It has 2128 addresses so the exhaustion is not possible in near future.

To forward IPv4 packet efficient mechanisms are there. But IPv6 is of 128bit length, so the present forwarding techniques is not

possible to forward IPv6 packet effectively. In this paper we try to explore currently existing different lookup algorithms

(Distributed Memory Organizations, Triec, Recursive Balanced Multi-way range trees and Range tree based IPv6 lookup) and

analyze the best lookup algorithm for 100+ Gbps IPv6 packet forwarding by performing a comparative survey.

Keywords: IPv4, IPv6, Lookup Algorithm.

--***--

1. INTRODUCTION

We are living in an era in which, we always adopt best

technology focus on how to achieve our goal as fast as

possible. For that we always adopt best technology or

development which saves our time. The emerging field like

networking has a great influence on these developments. For

the case of networking there are so many subsections like
internet, mobile etc. Due to these developments the face of

the world is also changed. In the case of internet the people

always need to connect with their needs as much fast as

possible. The packet or data from one place to another place

must reach faster so that our need can be achieved smoothly.

So our aim is to present best data forwarding or routing

technique which will overcome the present disadvantage and

improve the performance in data forwarding.

Modern societies rely heavily on information. If information

was to stay in one place, then there would be no much use of
it. This is what led to the vast development and employment

of information networks, ranging from simple computer

networks to advanced telecommunication networks. In any

of these cases, information travels throughout the network

and it is imperative to find its way from its source to its

destination.

In communication network the information is divided into

the capacity of the network as Maximum Transmission Unit

and for the secure operation and for the transmission the

data is fed in a packet with source and destination address
and routed towards the destination through set of

intermediate node. In each intermediate node it must be

decided where to forward the packet based on a routing

table and the destination. The destination address is looked

up in the routing table to decide the action to be taken (see

Fig-1). This process of searching in the routing table is

called address lookup.

Fig-1: Router Lookup

The data or packet forwarding is the role of routers. So our

work will focus on the router. So the router must forward

packet to the destination address as much fast as it can

possible by looking them to the destination address in the

forwarding table of router it is called packet forwarding.

There are so many techniques arises to achieve the role of
mapping the destination address with the forwarding table of

router this mapping process is called lookup[8].

Now our aim is that how we can achieve fast lookup. There

are so many techniques available. We compare the lookup

process and try to put forward a best technique. And we

promise you that the new technique will give 100+ Gbps

IPv6 Packet Forwarding on Multi-Core Platforms. For the

explanation we need to familiar with some words now we

move to the basics then can go to the solution.

1.1 Motivation

Internet traffic is growing day by day. So there is an
increase in the need for more and more IP addresses. IPv4

cannot accommodate this need due to the exhaustion of its

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 7

232 address. In order to effectively satisfies this increase in

demand for IP address, new addressing scheme called IPv6

is developed. It has 2128 addresses so the exhaustion is not

possible in near future. To forward IPv4 packet efficient

mechanisms are there. But IPv6 is of 128bit length, so the

present forwarding technique is not possible to forward IPv6

packet effectively. Hence, our motivation is to find a best

lookup algorithm for 100+ Gbps IPv6 packet forwarding by
comparing four present lookup algorithms: Distributed

memory organization, TrieC, Recursive balanced multi-way

range trees, Range tree based IPv6 lookup. This survey

motivation is because of the increase in the IPv6 address

usage. Now a days only 2% of the total IPV6 address is used

but it gradually increases. Due to its increasing nature best

lookup algorithm is an essential prerequisite to forward

traffic as much speed as it can possible.

1.2 Organization of the Paper

We organized the paper as follows: In section 2, we glance

into the preliminary concepts which are essential for the

proper understanding of the related works. Session 3 deals
with related work in this area. Session 4 elaborates existing

various lookup algorithms and session 5 explains a detailed

analysis with comparison. Session 6 concludes with an

eminent open problem to be worked on.

2. DEEP LOOK ON THE PACKET

FORWARDING

The goal of routers is to forward packet to their destination.

When a router received a packet it is responsible to decide

where to send the packet next. This decision can be either

the packet destination or to the next router (next-hop

router) which route it to the destination. If the decision is

made then it also need to decide through which interface the

packet is routed. For all these decision purpose the router

will maintain a forwarding table or routing table which
will store the information like the next hop address and the

interface address. The router will gather this information

with the help of routing protocols and the router will

update its routing table periodically by these protocols. The

router will consult the forwarding table each time when a

packet is coming and use destination address as key to

consult the forwarding table this process is called address

lookup. On retrieving this information the router will

forward packet from the incoming link to the appropriate

outgoing link by the process called forwarding or

switching.

2.1 IP Address

We always specified the word “address” throughout our

discussion what really it is IP Address that means an

identity to the devices on the internet. IP Address is the

unique identity given to the device which when connected to

an internet. The first address scheme come is the IPv4,

which means it is a 32 bit IP address which is used to

identify the devices. As the technology development

increases the devices on the internet is increases. Therefore

IPv4 address could not sufficient to address this issue. So a

new address scheme is developed that is the IPv6 address

scheme. It is a 128 bit IP address which will sufficient and

we cannot go for a new scheme of IP address in near future.

The difference between two address scheme is shown in the

Table -1.

Table -1: Difference between IPv4 & IPv6 Address

 IPv4 Address IPv6 Address

Deployed 1981 1999

Address

Size

32 Bit 128 Bit

Number
of

Address

232
(4,294,967,296)

different address

2128 (340,282,366,920,938,
463,463,374,607,431,

768,211,456)

different address

Address

Format

Dotted Decimal

Notation

Eg: 192.168.10.1

Hexadecimal Notation

Eg:1254:1532:26B1:CC14:

0123: 1111:2222:3333

Prefix

Notation

192.168.0.0/24

1254:1532:26B1::/48

Address

Scheme

Classful &

Classless scheme

Classless scheme

Table -2: IPv4 Addresses

Class Address Range

A 0.0.0.0 To 127.255.255.255

B 128.0.0.0 To 191.255.255.255

C 192.0.0.0 To 223.255.255.255

D 224.0.0.0 To 239.255.255.255 (Multicast)

E 240.0.0.0 To 255.255.255.255 (Future Research)

2.2 Classfull IP Address

From the Table -1 we find out that the class based IP

address is IPv4. Here it divide the full ie. 232 = (4, 294, 967,

296) IPv4 address space into five class of IP addresses

which is listed in Table -2. But from the table we can
understand that in class based schemes, there is IP address

wastage happens. So the classless subnetting scheme is

introduced. The subnetting divides the network into small

network based on the requirements. In the case of subnetting

packet is forwarded by Classless Inter Domain Routing

(CIDR). The subnetting overcomes the IP address wastage.

But due to the innovation of technologies the internet is

growing to an unimaginable size so that the IPv4 couldn’t

sufficient so a new address scheme called IPv6 is

introduced.

2.3 IPv6

As the requirements are growing faster, all IPs will be
totally consumed soon. There will be no more available IPs.

In order to solve this problem IPv6 was developed. The IPv6

scheme is represented in hexadecimal notation of 8 blocks

separated by a colon (:). Every block contains 16 bits. This

means that IPv6 scheme has 128 bit (ie. 8 * 16 = 128 bits).

It has 2128 = 340, 282, 366, 920, 938, 463, 463, 374, 607,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 8

431, 768, 211, 456 different address so we doesn’t bother

about the IPv6 address exhaustion in near future. Eg: 2001 :

0003 : 1b53 : 76ba : f678 : 8261 : 43bd : 3ab1 but storing

this large value is memory wastage. We can also shorter this

address by removing contiguous zero from every block (Eg.

2001 : 0000 : 0000 : 006b : 0000 : 0000 : 0874 : 4c32 as

2001 ::: 6b : 0 : 0 : 874 : 4c32).

IPv6 communication mode are :

 Unicast : One to one communication

 Multicast : One to many communication

 Anycast : One to the nearest communication. This

means that we can give the same address to many

devices, and the data that is sent from one sender

will be delivered to only the nearest receiver found

from those devices [2].

IPv6 special addresses are:

 ‘0:0:0:0:0:0:0:1’ (Equals to ‘::1’) Loopback address

 ‘FF00::/8’ Multicast address.

 ‘3FFF:FFFF::/32’ and ’2001:0DB8::/32’ The range

is reserved for examples and documentation.

2.4 Address Prefix

Due to the large value of IP address, to store it, we need a

large memory space. Hence the best method is to represent a

range of contiguous address by an address prefix. The

prefix length is the decimal value specifying that the length

of a prefix (i.e. the leftmost contiguous bits of prefix length

are same). The prefix based address is written in the

following format. The Fig -2 shows an example that we

discussed.

”ipv6-address/prefix-length”

Fig -2: Prefix Notation

2.5 IPv6 Packet Structure

IPv6 datagram consist of header and payload data field and

it is larger than IPv4 due to its increased in address as shown

in Fig- 3. The header fields are listed in Table- 3.

Fig -3: IPv6 Packet Structure

Table -3: Header fields of ipv6 packet structure

Field Name No.of

Bits

Indicate Similar to

IPv4 field

Version 4 bit Version no.of IP

(Consistency Check)

Version

Traffic

class

8 bit Type of

service

Flow Label

20 bit

Datagram between

source & Destination

treated same

Payload

Length

16 bit

Length in bytes of

remainder of

datagram

Next
Header

8 bit

Protocol of the
payload data

Hop Limit 8 bit Number of hops the

datagram traverses

TTL

Source

Address

128 bit

Initial sender of the

packet

Destination

Address

128 bit

Address of intended

recipient

Table -4: Forwarding table

Destination

Address Prefix

Next Hop

Outgoing

Interface

1254:1532:26B1:::13

24:1432:1342/64

2001:::6a:0:0:874:

4c32/64

1

2154:1532:26C1:::13

24:1432:1342/64

2001::::6b:0:0:874:

4c32/64

2

1524:1532:26C1:::13
24:1432:1342/64

2001::::6c:0:0:874:
4c32/64

4

2.6 Migration from IPv4 to IPv6

Due to the development of IPv6 so many changes are there.

However, there are many techniques that enable the network

administrator to migrate from IPv4 to IPv6 without making

any interruptions for the operation of the network.

2.7 Forwarding Table

The forwarding table is created in the router. The example

for the forwarding table as shown in Table -4. By the lookup

in the table we can forward packet to the destination. So that
the table must be small as possible to decrease the searching

time. The research shows that there are growth of routing

table size due to the growing network.

2.8 IPv6 Packet Forwarding

There are different IPv6 packets forwarding techniques are

there. Fig -4 is a representation of lookup processes. It select

best lookup based on the following parameters:

 It should has low latency(Delay)

 High throughput

 Low memory requirements

 Should scale efficiently when the address width

and/or the number of ranges increases (By scaling
efficiently, we mean that an increase in address

width and/or the number of ranges should affect).

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 9

Fig -4: Router Decision Making

2.9 Requirements on Address Lookup Algorithms

It is important to review the characteristics of today’s

routing environment to derive adequate requirements and

metrics for the address lookup algorithms. Using address
prefixes is a simple method to represent groups of

contiguous addresses [3]. Address prefixes allow

aggregation of forwarding information and hence support

the growth of the Internet. As shown above, the growth of a

typical backbone router table. The characteristic of the

routing environment includes:

 Search methods drastically reduce the search space

at each step.

 Algorithms must be scalable with respect to the

number of prefixes.

 Forwarding table needs to be updated dynamically
to reflect route changes

 Backbone routers may receive bursts of route

changes at rates exceeding several hundred prefix

updates per second.

 The prefix length distribution in the forwarding

tables can be used as a metric of the quality of the

Internet hierarchy and address aggregation. Shorter

prefixes represent a greater degree of aggregation.

Thus, a decrease in average prefix length would

indicate improved aggregation and hierarchy in the

Internet.

3. RELATED WORK

The lookup algorithm is used to find the best outgoing links

to the destination through which the packet is forwarded.

Distributed Memory Organization [7] is a novel algorithm

and mutating binary search on hash tables organized by

prefix lengths. This scheme scales very well as address and

routing table sizes increase, requires a worst case time of

log2(address bits) hash lookups and a Marker Storage

algorithm for optimized storage.

TrieC[5] is a high-performance IPv6 forwarding algorithm.
It is implemented efficiently in the Intel IXP2800 network

processor (NPU). High performance can be achieved

through close interaction between algorithm design and

architectural mapping.

Recursive balanced multi-way range trees[6] it implemented

a new category of prefixes covering prefixes and covered

prefixes. Categorized the prefixes into hierarchy sets,

prefixes overlapping would be no longer existent in a

particular set. Naive binary search on prefix value would be

applied on each set, search would adapt the PRM scheme

and memory consuming is reduced because storage for

precomputed information is free.

Range Tree-Based IPv6 Lookup[1] Tree-based solutions, are

elegant in terms of the number of memory accesses required

to perform a lookup, which is O(log N), where N is the

number of keys/ranges. Here a tree of range based lookup

algorithm is presented.

4. DETAILED LOOK ON LOOKUP

ALGORITHMS

The migration from IPv4 to IPv6 addressing is gradually

taking place with the exhaustion of IPv4 address space. This

requires the network infrastructure to have the capability to

process and route IPv6 packets. However, with the increased

complexity of the lookup operation and storage

requirements, performing IPv6 lookup at wire-speed is
challenging.

The different lookup algorithms taken for comparison are:

1) Distributed memory organization[7]

2) TrieC[5]

3) Recursive balanced multi-way range trees[6]

4) Range tree base IPv6 lookup[1]

4.1 Distributed Memory Organization [7]

Distributed Memory Organization is an IPv4 & IPv6 novel

lookup algorithm. Based on prefix length a hash table is

used and uses a mutating binary search on this hash table it

requires log2 (address bits) of worst case hash lookup time.
It has 5 hash lookup for IPv4 and 7 hash lookup for IPv6. It

scales very well when address and routing table size

increases. Optimized storage is achieved by Marker Storage

algorithm. This is achieved by classifying the addresses

stored in the routing table by analyzing the data of prefixes.

Table -5: Memory module allocation

Lookup unit No. Bits 1,2,3,4

1 0001

2 0010

3 0011

……… ………

16 1111

In Distributed Memory Organization prefixes are stored in a

routing table. Depending on certain bits the routing table is

classified into several flows. If 4 bits are used as ID bits and

based on this ID bits routing table is classified into 16

categories as shown in Table -5. If the prefixes are less than

4 then it is expanded to 4 bits for example 110* is expanded.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 10

The destination IP address is classified into 16 categories

based on four ID bits. Then longest matching prefix is find

out by using the parallel lookup algorithm 1. The complete

parallel lookup mechanism and the distributed memory

organization is shown in Fig -5.

4.2 TrieC[5]

Trie is also an IPv6 lookup algorithm. It mimics the features

of the multicore and multithreaded system. As from most

analysis it shows that tree (trie) based techniques is used to
find a longest prefix match from root node to a matching

leaf node. It ignore 1st 3 and lowest 64 bits, build a tree

which cover prefix with length between 3 and 49 and all

others are find out by hashing.

Algorithm 1: Parallel lookup Algorithm

1. Function Lookup (Destination Address).

2. Use the ID bits of Destination Addresses to

classify.

3. Push the IP Addresses into the FIFO of the
corresponding Lookup unit.

4. For each Lookup unit simultaneously do

5. While (FIFO not empty) do

6. Pop an address from the local FIFO.

7. Use binary lookup schemes to find BMP.

8. Push the Next-Hop-Address into Output cache.

9. End While

10. End Loop

11. End Function

It uses a modified compact prefix expansion technique in

which routing table consist of duplicate next hop so it must
be compress the bit and store it only once. Next-hop indices

A appear 48 times and B appear 16 times in a block

therefore these bits are made only in next hop index array

with ABA made once. The lowest 18 bits in a 64bit address

prefix are called Tindex and lowest 6 bits are used as

another index to search a bitAtlas which locate correct next

hop index NHIA. The IPv6 TrieC lookup algorithm is given

in 2.

Fig -5: Distributed memory organization and parallel lookup

4.3 Recursive Balanced Multiway Range trees [6]

Recursive Balanced Multiway Range trees (RBMRT) is a

tree based IPv6 lookup algorithm. Here there are two classes

of algorithms covering and covered prefixes. Covering

prefix again subdivided into level-1 and level-2+ covered

prefixes. RBMRT mechanism consist first a data structure

design and then the lookup procedure. It is also a tree based

structure in which it is divided into different hierarchy. Each

hierarchy holds the pointer to the next level hierarchy ie,

first level remember the 2nd level hierarchy. Routing table

is shown in Fig -6. Data structure is shown in Table -6.

Algorithm 2: TrieC Lookup Algorithm

IPv6_Lookup_TrieC(IN DstIP,OUT Next-HopID)

1. Current_Block=TrieC15_6;

2. Tindex=DstIP[124:110];

3. Bit_Vec=GetBitVec(Current_Block,Tindex);

4. BAindex=DstIP[109:104];

5. NHI=GetNHI(Bit_vec,BAindex);

6. if(NHI.flag=0) return NHI.Next-HopID;

7. else{ // search TrieC4/4 tables, base[i] is base of

8. (i + 1)th-level TrieC tree
9. Current_Block=TrieC4/4 at Base[0]+NHI[14:0];

10. for(i=1;i¡=3;i++) {

11. Tindex=DstIP[103-8*(i-1):100-8*(i-1)];

12. Bit_Vec=GetBitVec(Current_Block,Tindex);

13. BAindex=DstIP[99-8*(i-1):96-8*(i-1)];

14. NHI=GetNHI(Bit_Vec,BAindex);

15. If(NHI.flag=0) return NHI.Next HopID;

16. Else {

17. if(i!=3) Current_Block=TrieC4/4

18. at Base[i]+NHI[14:0] << 4;

19. else break; //search longer prefix in Hash16
20. }

21. }

22. if(Hash(DstIP[79:64])) return Next-HopID;

23. else return Default-Next-HopID;

24. }

25. } // IPv6 Lookup TrieC

If the destination address address for the lookup is fall in the

range P6 then the lookup operation is carried in the order

first it look in the Btree which is the root and which contain

all the 0th hierarchy prefix so get the first prefix P1 and it
then point to the prefix set P4 and it again reach set p and

there is no more remember in p6 so the longest prefix is p6

and it is returned.

Fig -6: Example of prefix set

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 11

Table -6: Data structure of prefix

P1 1*

P2 100*

P3 101*

P4 110*

P5 10000*

P6 10001*

P7 10101*

P8 11001*

4.4 Range Tree-Based IPv6 Lookup [1]

Tree-based solutions are elegant in terms of the number of

memory accesses required to perform a lookup, which is

O(log N), where N is the number of keys/ranges[1].

Enabling Parallelism for IP lookup: Parallelism means

perform computation in parallel. It is essential for high
performace and it may exploit the multiple processing

capability of GPP’s.

The most basic method of parallelization can be thought of

as search tree duplication, in which case, all partitions

possess the entire routing table information and lookup can

be carried on independent of other packet lookups.

However, this causes the memory required to store the

search tree to increase proportional to the number of

partitions. While this is not a desirable solution, in most

cases on software platforms, this translates to increased
lookup time since the cache memory will not be sufficient to

store the duplicated search trees, especially for large routing

tables.

A more attractive method to perform partitioning is to place

the prefixes in a set of bins in such a way that the prefixes in

one bin are disjoint from those in other bins. In the context

of our problem, IPv6 lookup, the state of being disjoint can

be described as being able to search in only one bin and

finding the corresponding routing information, without

consulting the other bins. Since packets correspond to

different prefixes in a given trace, when more disjoint
partitions are present, the more likely for them to be

processed independently and in a parallel fashion. This

provides opportunities for parallelism. However, it is

imperative that the formed partitions are of similar sizes.

Otherwise, it gives rise to various other issues such as

fairness (some packets experiencing longer latency than

others) and uneven memory distribution.

Disjoint Partitioning: Disjoint partitioning can be achieved

in numerous ways. Using

 The leftmost bits of the IP addresses

 A selected set of bits from the IP addresses can be

chosen as well.

The initial bits based partitioning divides the address space

into multiple disjoint sections and considering subsets of

prefixes belonging to each section as a smaller routing table.

If p bits are used, there can be as many as O(2p) partitions,

depending on the prefix distribution of a given routing table.

Partitions formed using this method can be of disparate

sizes. Also, the prefix with length less than p needs to be

expanded under this partitioning scheme.

Disjoint partitioning has two main benefits:

1. Identification of the corresponding partition for an

incoming packet is simply a table lookup which can
be completed in O(1) time and

2. Even though the initial partitioning may not be

balanced (i.e. near-uniform prefix distribution across

partitions), it is relatively easy to achieve balanced

partitioning by aggregating initial partitions.

Algorithm and Partitioning: After partitioning using the p

leftmost bits is done, process them further to achieve

balanced partitioning. The rationale behind this further

processing is that the initial partitions may contain different

number of prefixes which causes the packet latency for

different partitions to change significantly across partitions.
Hence, perform an aggregation operation in which subsets

of initial partitions are combined to form a single aggregated

partition. This step may not ensure perfectly balanced

partitioning depending on the distribution of the prefixes.

The aggregation algorithm can be described in Algorithm 3.

For a routing table with N prefixes, time complexity for

initial partitioning is O(N). To form the aggregated

partitions, the time complexity is O(ni) where ni is the

number of initial partitions formed, hence the time taken to

form the partitions is fairly small. The number of bits used
for partitioning is denoted by p, and ni and na stand for

initial and aggregated number of partitions, respectively.

varied p and set maxsize to the largest initial partition size of

each scenario. One can use the tuning parameters p and

maxsize to adjust the number of aggregated partitions (na)

created.

Lookup Algorithm: Now we discuss about how to map the

partitions formed by the aggregation algorithm onto

multicore platforms and how the packet forwarding is

performed. The initial portion of the lookup is the partition
identification.

Algorithm 3: Aggregation Algorithm

1. Define the maximum size for the aggregated

partitions, maxsize

2. If all partitions are marked used go to step 8, if not,

go to step 3

3. Select the largest initial partition that is not marked

used

4. If the selected partition size is equal to or greater

than maxsize, mark the selected partition as used
and go to step 2

5. If all partitions are marked used go to step 8, if not

go to step 6

6. Starting from the smallest partition that has not been

marked used, combine the prefixes from the smaller

partition into the larger partition

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 12

7. If the aggregated partition size is equal to or greater

than maxsize go to step 2, otherwise go to step 5

8. Algorithm complete

This can be simply realized using an initial lookup table. For

example, If p bits are taken then make lookup table of size

2p is created and sub pointer information of each partition is
stored in it. O(1) is the search complexity due to the

aggregation step.

Fig -7: Hierarchical multi-threaded architecture of the

proposed IPv6 lookup engine [1]

We can adopt Master-worker architecture. Here when the

partition search is completed the packet is forwarded to the

corresponding Master Mi and which create the worker
thread Wi-j, where j is worker thread number. It is flexible

architecture because the worker thread creation can be

controlled by the user. The basic architecture is shown in

Fiig -7.

On multi-core platforms, it is desirable to have more

partitions (i.e. more master threads) which provide more

opportunity for parallelism. Further, when the number of

partitions is higher, the number of prefixes (hence the height

of the range tree) per partition decreases. This effectively

reduces packet lookup latency. Also, the explicit range tree

approach is more suited for the software engine since the
search can be terminated when the corresponding node is

found. This comes at the cost of higher memory

consumption. However, on GPPs, this is a minor concern.

5. ANALYSIS OF LOOKUP ALGORITHMS

From the survey, we can summarize about different lookup

algorithms as as shown in Table -7. It shows that the

Distributed Memory Organization require time complexity

of O(log (log N)) and in TrieC it is log2 (address bits) for

RBMRT it is O(logk N) and for the range tree it is O(N). The

complexity parameter comparison shows that the search and

time based complexity is best for the range tree based

solution.

Comparison also shows that other method can scale very

less but the range tree based solution can perform high

lookup of 2 million packets at a time. This will overcome

the disadvantages of all existing lookup algorithm especially

for the IPv6. The proposed solution will exist for the

development and to overcome the challenge of the growing

of the IPv6 and the scheme provide 100+ Gbps IPv6 packet

forwarding.

Table -7: Complexity based analysis

Lookup

Method

Complexity

Concept

Distributed

Memory

Organization

Time=O(log(Log N))

Table

Partitioning

Triec

Time=log2 (address

bits)

Based on the

Longest prefix

match

Recursive

Balanced

Multi-way

Range Trees

(RBMRT)

Memory=2 N

Search=O(log N)

Time=O(log N)

Based on a

novel data

structure

Range tree

Based IPv6

Lookup

Memory=O(log N)

Search=O(1)

Time=O(N)

Routing Table

Partitioning

based on range

6 CONCLUSION AND FUTURE

DEVELOPMENTS

We have conducted a literature survey on the existing

lookup algorithms and it is summarized as shown in Table -

7 and Table -8. It shows that the range tree it is best in time,
memory and lookup performance complexity. Feature based

comparison also shows that other method can scale very less

but the range tree based solution can perform high lookup of

2 million packets at a time. This will overcome the

disadvantages of all existing lookup algorithm especially for

the IPv6. Range tree based IPv6 lookup is more suitable

especially for multi-core platform. Updation is also limited

to only one partition and hence updation performance is also

very high. Experiment results shows that range tree based

lookup has 3 times lower the memory consumption as that

of Triec and has 5 times more lookup rate than the
corresponding RBMRT.

Table 8: Feature based analysis

Lookup

Method

Advantages

Disadvantages

Distributed

Memory

Organization

Design simplicity

Scales very well

when RT sizes

increase

Can perform only

16 lookup at a

time

TrieC

Thread

synchronization

Latency hiding

Memory

bottleneck occur

at some Time

Recursive

Balanced

Multi-way

Rang

Trees(RBMRT)

achieve the optimal

lookup time or

binary search

Search Time

Increases

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 15 | Dec-2014 | IWCPS-2014, Available @ http://www.ijret.org 13

Range tree

Based IPv6

Lookup

2 Million packets

processed at a time

memory

consumption is 3

times lower than

that of triec 5 times

higher LOOKUP

rate than that of

RBMRT

We can also suggest that performance of IPv6 packet

forwarding can be improved drastically by combining the

concepts of range tree based IPv6 lookup with that of the

recursive balanced multi-way range tree and this is an

eminent open problem to be worked on.

REFERENCES

[1]. Thilan Ganegedara and Viktor Prasanna Ming Hsieh,

“100+ Gbps IPv6 Packet Forwarding on Multi-Core

Platforms”, Dept. of Electrical Engineering University of

Southern California Los Angeles.

[2]. Mohamed Salem Salem Ali Easa, ”CCNA in 21 Hours”,

bookboon.com
[3]. Miguel A. Ruiz-Sanchez, Ernst W. Biersack and Walid

Dabbous, “Survey and Taxonomy”, January 15, 2001

[4]. Hoang Le and Hoang Le, “Scalable Tree-based

Architectures for IPv4/v6 Lookup Using Prefix

Partitioning”.

[5]. Xianghui Hu, Hefei and Xinan Tang, “High-

performance IPv6 Forwarding Algorithm for Multi-core and

Multithreaded Network Processor”.

[6]. Pingfeng zhong, “An IPv6 Address Lookup Algorithm

Based on Recursive Balanced Multi-Way Range Trees with

Efficient Search and Update”.

[7]. Pankaj Gupta, Uma Nagaraj, Nikhil Anthony, Deepak
Jain, Pranav Gupta, and Harsh Bhojwani, “Advanced

Routing Algorithm for IP Lookup (IPv6)”,

[8]. Georgios Stefanakis, “Design and implementation of

range trie for address lookup”.

BIOGRAPHIES

Suja G. J currently doing post graduation

in network engineering in Department of

Information Technology at Government

Engineering College Idukki. Her area of

research includes networking software

engineering, cloud computing &

cryptography. Suja G J can contacted at

gjsujavipin@gmail.com

Sangeetha Jose is working as faculty in

the Department of Information

Technology at Government Engineering

College Idukki. Her areas of research

interests mainly focus on cryptography,

network security, security issues in cloud

computing, computer networks, software engineering and

algorithms. Sangeetha Jose can be contacted at

sangeethajosem@gmail.com.

