
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 82

COMPARISON OF SHORTEST PATH ALGORITHMS USING C#

Swati Vishnoi
1
, Hina Hashmi

2

1
CCSIT, TMU, Moradabad

2
CCSIT, TMU, Moradabad

Abstract
Many applications like transportation and communication network use shortest path algorithm to find out the shortest path

between two or more nodes. In the Single source shortest path algorithm, a shortest path is calculated from one node to another

node. In this paper, I have compared the results of the shortest path algorithms (Dijkstra, Bellman Ford) on the basis of running

time. I used C# programming language to compare the algorithms. I compared the algorithms on the basis of complexity and

space. I also tried to give some advantages and disadvantages of both the algorithms.

Keywords— Shortest Path, Dijkstra, Bellman Ford, Run-time Analysis

---***--

1. INTRODUCTION

Shortest Path Problem is the problem to find out the shortest

path between two nodes. There are so many shortest path

algorithms depending on the source and destination.

a) Single source Shortest Path

b) Single destination Shortest Path

c) All pair Shortest path Algorithm

In Single source shortest path algorithm, there is a source and

we have to find the shortest path from this source to all the

vertices. In single destination shortest path algorithm, there is

a destination node and we have to find the shortest path from

all nodes to a single node. In All pair shortest path algorithm,

we have to find out the shortest path from all nodes to

another node. We need efficient shortest path algorithm to

run in an efficient time and take less memory to store the

temporary results. In this paper, I am comparing single

source shortest path algorithms (Dijkstra’s and Bellman

Ford).

2. LITERATURE REVIEW

As mentioned earlier, In Graph, vertices are representing the

cities and edges are representing the routes from one city to

another. A graph representation is explained further, and

implementations of the shortest path algorithms being studied

are presented.

3. WORKING OF DIJKSTRA’S AND BELLMAN

FORD ALGORITHM

The working of Dijkstra’s algorithm and bellman ford

algorithm is as follows:

3.1 Dijkstra’s Algorithm

The algorithm stores all nodes in a queue and the distance of

the node from the root-First set the distance of source to zero

and the distance of all the vertices except source is set to

infinity. Select the least distance node from the queue and

calculate the distance of all unprocessed adjacent nodes. This

means that the algorithm checks for the following condition:
[3]

distance +edgeweight <distance

3.2 Bellman Ford Algorithm

The Bellman-Ford algorithm is the relaxation operation

algorithm. This procedure calculate the distance from the list

of nodes to the adjacent nodes by checking the condition i.e.

the distance is added to the edge length is less than distance

to the adjacent node.

4. COMPARISON ON THE BASIS OF

COMPLEXITY AND SPACE

We consider a graph[G] with the vertices or nodes [V] and

the edges[E].Now If we find the complexity of Dijkstra’s

Algorithm and the Bellman Ford, we find that the complexity

in terms of time is O(E+V(log V)) and in terms of space is

O(V) for Dijkstra’s Algorithm. And for Bellman Ford it is

O(EV) and O(V).

4.1 Advantages and Disadvantages

4.1.1 Dijkstra’s Algorithm

1. It is a Greedy Algorithm.

2. It doesn’t work on negative weight.

3. It can work for directed and undirected graph.

4. It requires global information.

4.1.2 Bellman Ford Algorithm

1. It is a dynamic Algorithm.

2. It can work on negative weight.

3. It can only work for directed graph.

4. It only requires local information.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 83

5. COMPARISON USING C# CODE

Now, I will determine the efficiency of shortest path

algorithm. I created a window based application to find out

the running time of both the algorithms. I created a

application named Comparison1, in which I have created a

Form and add a list box to display the running time of

Dijkstra’s and bellman ford algorithm. I implemented

Dijkstra’s algorithm and Bellman Ford algorithm using C#

code. I created two functions for Dijkstra’s and Bellman Ford

algorithms. From the Form_Load () method, both functions

are called and display the shortest path for every node from a

single source. I used stopwatch to calculate the running time

of Dijkstra’s algorithm and Bellman Ford algorithm in

microseconds. I used Random numbers to generate a graph.

5.1 To Strore a Graph

public struct Edge

{

public int u, v, w;

};

int NODES ;

int EDGES;

int[]d=new int [10000]; /* d[i] is the minimum

distance from source node s to node i */

double[,] G = new double[1000, 1000]; /* graph to store the

graph adjacency matrix */

5.2 To Store the Adjacency Matrix of Graph using

Random Numbers

Random rn1 = new Random();

for (m = 0; m length; m++)

{

for (n = 0; n < length; n++)

{

w[m, n] = rn1.Next(0, 10000);

G[m, n] = w[m, n];

}

}

5.3 To Store the Edges with their Weight

c = 0;

for (a = 0; a < NODES; ++a)

{

for (b = 0; b < NODES; ++b)

{

if (w[a, b] != 0)

{

edges[c].u = a;

edges[c].v = b;

edges[c].w = w[a, b];

c++;

}

l++;

}

}

EDGES = k;

5.4 To find Out the Running Time using Stopwatch:

Stopwatch s = new Stopwatch();

s.Start();

BellmanFord(source_vertex); /* Call for Bellman Ford

Algorithm */

s.Stop();

long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L

* 1000L));

listBox1.Items.Add("time taken by Bellman ford is"+ time+"

microseconds");

s.Start();

Dijkstra(source_vertex); /* Call for Dijkstra’s Algorithm */

s.Stop();

long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L

* 1000L));

listBox1.Items.Add("time taken by Dijkstra’s algorithm is"+

time+" microseconds");

Table I

First Run

N
Dijkstra’s

Algorithm

Bellman Ford

Algorithm

5 1577 741

10 1617 764

50 1853 4655

100 2777 32026

500 23923 4205010

1000 92550 33416106

Second Run

N Dijkstra’s

Algorithm

Bellman Ford

Algorithm

5 1459 657

10 3570 687

50 1918 9631

100 2921 32822

500 23794 4224362

1000 96836 33603691

Third Run

N Dijkstra’s

Algorithm

Bellman Ford

Algorithm

5 1567 667

10 1455 697

50 1758 4557

100 2644 37941

500 25087 4158252

1000 92149 33592017

Fourth Run

N Dijkstra’s

Algorithm

Bellman Ford

Algorithm

5 1460 688

10 1411 678

50 1748 4476

100 2466 32904

500 24285 4196981

1000 92377 34340142

Fifth Run

N Dijkstra’s

Algorithm

Bellman Ford

Algorithm

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 84

5 1506 670

10 1495 728

50 1659 4486

100 3479 31950

500 24323 4147961

1000 126932 33643137

Average

5 1513.8 684.6

10 1909.6 710.8

50 1787.2 5561

100 2857.4 33528.6

500 24282.4 4186513.2

1000 100168.8 33719018.6

We can observe from this table that for the small number of

vertices (N=5, 10) Bellman Ford is taking less time in

comparison with Dijkstra’s algorithm For the large number

of vertices (N=50, 100, 500, 1000) Dijkstra’s is taking less

time in comparison with Bellman Ford.

6. CONCLUSION

In this paper I have given review about two single source

shortest path algorithms and their comparison. There is some

advantage of the algorithms as well as some disadvantage in

each algorithms. I created a program for comparing the

running time (in Microseconds).and execute the program five

times with the different values (for each different value of

N=5, 10, 50, 100, 500, 1000), And the output shown by the

program(i.e. running time)is shown in the paper and then

make a graph of that results. By these charts I have seen that

for a small number of nodes (N=5, 10) Bellman Ford is the

most efficient algorithm to find out the shortest path.

1513.8

1909.6

684.6710.8

0

500

1000

1500

2000

Dijkstra's Bellman Ford

 Average Running Time for N=5,10

N=5

N=10

Fig 1

For N=50, Dijkstra’s algorithm is the efficient algorithm.

Fig 2

For N=100,again Dijkstra’s algorithm is efficient algorithm,

there is a very big difference in running time of Bellman Ford

running time and Dijkstra’s algorithm.

Fig 3

For N=500, 1000, Dijkstra’s algorithm is more efficient

algorithm than Bellman Ford.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

Dijkstra's Bellman Ford

24282.4

4186513.2

Average Running Time for N=500

N=500

Fig 4

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 85

By these all charts, we can conclude that for small number of

nodes (N < 50) Bellman Ford perform better than Dijkstra’s

algorithm. Dijkstra’s algorithm takes twice the running time

of Bellman Ford algorithm. But a large number of nodes

(N>50) Dijkstra’s algorithm becomes more efficient. For

N=50, Bellman Ford algorithm is three times to Dijkstra’s

running time. For N=100, Bellman Ford is 11 times to

Dijkstra’s algorithm.

Fig 5

For N=500, 1000, Dijkstra’s algorithm outperforms in

comparison to Bellman Ford algorithm.

REFERENCES

[1] Faramroze Engineer, Fast Shortest Path Algorithms

for Large Road Networks

[2] Kairanbay Magzhan, Hajar Mat Jani, A Review And

Evaluations Of Shortest Path Algorithms

[3] http://en.algoritmy.net/article/45514/Dijkstras-

algorithm

[4] http://en.algoritmy.net/article/47389/Bellman-Ford-

algorithm

