
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 44

EVALUATION OF METRICS AND ASSESSMENT OF QUALITY OF

OBJECT ORIENTED SOFTWARE

Neeraj Chauhan
1
, Mohan Vishal Gupta

2

1
CCSIT College, TMU, Moradabad

2
CCSIT College, TMU, Moradabad

Abstract
Quality assessment of software is big issue for software development team The reason is variations of designed software in size

and methodology. A huge number of metrics has designed to assess quality of software up to a level. In this paper we are

discussing Object oriented metrics used to assess quality of software at design level as well as at code level. Although correct

assessment of software quality is not possible but using Object oriented metrics quality can be assessed up to limit. The main

focus of research is to assess software quality at design level because design level quality assessment effects coding, testing,
maintaining phase of software development life cycle.

First, for evaluating metrics of design level UML diagram is used as an input. A Java Parser is designed for parsing the XML

code of UML diagram .Second, Quality of same software projects also assessed at code level using same formula as at the design

level. At code level Eclipse with Metrics 1.3.6 is used for assessing quality. We observed that software quality at code level moves

around CC (Cyclometer Complexity), LCOM (Lack Cohesion of Methods) and LOCM (Lines of Code of method).And we find out

that for increasing quality of software, CC and LCOM and LOCM are low. For decreasing quality CC, LCOM and LOCL are

high.

Keywords— Object oriented technique, object oriented, software, Object Oriented Design (OOD), Software metrics.

---***--

1. INTRODUCTION

Assessment of software quality is a big issue for software

engineers. Because software engineers are not very sounded

in the basic quantitative laws of Physics. And question is that

which factors should be taken at the different level of quality

assessment of software? The solution of this problem is

searched in the form of Metrics [11]. Metrics are a means for

attaining more accurate estimations of project milestones,

and developing a software system that contains minimal

faults [7]. A huge number of metrics has been designed to
assess the quality of software at different level of software

development life cycle. In these metrics some metrics do not

work for Object Oriented designed software. So a good set of

metrics is required for assessing quality of Object Oriented

software. Object Oriented metrics are used to measure

properties of object oriented designs. A very popular CK

metrics model and MOOD metrics model is used for

assessing quality at design level [A.b CK]. The challenge

for a quality engineer is to select those metrics which meet

the specific needs of each software project. A quality

engineer has to face the problem of selecting the appropriate
set of metrics for assessing quality of his/her software.

Quality assessment at design level is needed for software

development. For software quality assessment we used

various steps:

 Analysis of existing metrics for object oriented

software.

 Selection of appropriate metrics for quality assessment

at design level and code level.

 Development of a Parser for extracting metrics values

from UML diagram.

 Assessment of object oriented software quality at

design level.

 Verification of design level quality using Eclipse with

metrics 1.3.4.

Various quality models have been developed for software
quality assessment like McCall quality model(1977), Barry

W. Boehm’s quality model(1978), R. Geoff Dromey’s

quality model that is very similar to McCall quality model

and Boehm’s quality model and ISO 9126 model.

2. USED METHODOLOGY FOR SOFTWARE

QUALITY ASSESSMENT

Quality assessment of object oriented software at design

level, various tasks are identified:

 Selection of UML diagrams as well as code of object

oriented software.

 Selection of metrics for software quality assessment.

 Extraction of metrics value from UML diagram.

 Evaluation of software quality attributes using an
appropriate formula.

 Assessment of software quality at design level.

 Verification of software quality at product level using

Eclipse with metrics1.3.4.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 45

In this paper we are presenting software quality assessment at

design level as well as code level. At design level we are

extracting information from UML diagram of software. For

code level quality assessment we are using software code as

an input. Finally the result of both design quality and code

quality are compared one by one for each selected software.
For quality assessment at design and code level selected

software are divided into three categories. These categories

are Good, Bad and Medium. By comparing quality at design

level as well as at the code level we concluded that there is

positive co-relation between design quality and product

quality.

3. USED METRICS FOR SOFTWARE QUALITY

ASSESSMENT

Used metrics for quality assessment are discussed below:

3.1 Weighted Method Per Class (WMC)

WMC metric is used to measure the complexity of a class.

Complexity of a class can be calculated by calculating the

sum of complexity of the methods of a class. WMC is a

predictor of how much time and effort is required to develop
and to maintain the class.High value of WMC indicates the

class is more complex than that of low values.“Class with

less WMC is better”. If all methods complexities are

considered unit then WMC=n, number of methods [9].

3.2 Depth of Inheritance Tree (DIT)[CK Metrics

Suite]

DIT metric is used to calculate the length of the maximum

path from the node to the root of the tree. This metric

calculates how far down a class is declared in the inheritance

hierarchy. “If DIT increases, it means that more methods are

to be expected to be inherited, which makes it more difficult

to calculate a class’s behaviour”. Thus it can be hard to

understand a system with many inheritance layers. On the

other hand, a large DIT value indicates that many methods
might be reused.

3.3 Number of Children (NOC)

NOC, number of immediate sub-classes subordinated to a

class in class hierarchy [9].This metric is used to calculate

number of sub-classes that are going to inherit the methods

of the parent class. The size of NOC approximately indicates

the level of reuse in an application. If NOC grows it means

reuse increases that satisfies the condition of reusability but

on the other hand, by increment in NOC, testing and

maintenance cost will also increase because more children in

a class indicate more responsibility [2].So, NOC represents

the effort required to test the class and reuse. Small values of
NOC may be an indicator of lack of communication between

different class designers.

3.4 Coupling between Objects (CBO)

CBO for a class is count of number of other classes to which

this class is coupled [3]. High coupling between classes is not

good because it will prevent reuse. If a class in more

independent means provides the more reusability.

3.5 Response for a Class (RFC)

RFC is used to calculate the number of methods that can be

invoked in response to a message in a class. If a large

numbers of methods are invoked from a class means RFC is
high then testing and maintenance of the Class becomes more

complex because test sequence grows. On the other hand

lower values indicate greater polymorphism [3].

3.6 Lack of Cohesion in Methods (LCOM)

LCOM metric measures the dissimilarity of methods in a

class via instanced variables. LCOM also measures the

amount of cohesiveness present, how well a system has been

designed and how complex a class is [9]. Greater values of

LCOM increases complexity that does not promotes

encapsulation and implies classes should probably be split

into two or more subclasses.

If LCOM is high, methods may be coupled to one another via
attributes and then class design will be complex.

4. EVALUATION OF SOFTWARE QUALITY

ATTRIBUTES USING AN APPROPRIATE

FORMULA

4.1 Selected Software Projects for Quality

Assessment

For analyzing quality of object oriented software at design

level, we used CK Metrics suite and selected six software
projects. Focusing on coupling and cohesion in software

projects. Object oriented software having high coupling and

low cohesion are low quality projects in comparison of

software projects having low coupling and high cohesion.

Table: 1 Selected Projects for Quality Assessment

S.No Software Project Quality

1 JMoney Software High Quality

2 JUtility High Quality

3 JFractal Applet Medium Quality

4 ATM System Medium Quality

5 OnlineAirTicket System Low Quality

6 Student Project Low Quality

4.2 Used Object Oriented concepts for Quality

Assessment

Used Object oriented concepts for Quality assessment are

discussed in the table given below

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 46

Table 2:.Evaluated Object oriented concepts at design level

S.NO Object

Oriented

Concepts

Evaluation of Object

Oriented Concepts

1 Encapsulation Total number of members in

the class.

2 Polymorphism Actual method overrides

divided by the maximum

number of possible method
overrides.

3 Inheritance Total number of public and

protected attributes and

methods divided by total

methods and attributes

declared in that class.

4 Messaging Total number of public

methods and attributes in the

class.

5 Design Size Total number of classes used

in software design.

6 Complexity The number of methods in

class .

7 Cohesion R(M)=Parameters used in

method /Total no of

parameters in class.
Cohesion of each class=

Sum(R(M)) / Total no of

methods in class.

Software Cohesion=Sum

of cohesion of classes / Total

no of classes.

8 Abstraction Ratio of the number of

methods inherited by a class

to the total number of

methods accessible by

member methods of the

class.

9 Coupling Coupling metric is evaluated

by identifying type of

coupling between object,

data coupling, stamp

coupling, common coupling,

content coupling

10 Hierarchy Total number of trees in the

software that are not

involved in inheritance.

4.3 Evaluation of Quality Attributes at Design level

Positive quality attributes Reusability, Flexibility,

Understandability, Extensibility, Effectiveness and

Functionality are selected for software quality assessment.
The relationship among object oriented concepts and design

quality attributes is shown in the table 3.1 and formulas used

for calculating quality attributes are given below:

Reusability = -

0.25*Coupling+0.25*Cohesion+0.5*Messaging+0.5*Design

Size

Flexibility = 0.25*Encapsulation - 0.25*Coupling +

0.5*Composition + 0.5* Polymorphism

Understandability=-0.33*Abstraction+0.33*Encapsulation-
0.33*Coupling+0.33*Cohesion -0.33*Polymorphism-

0.33*Complexity-0.33*Design Size

Functionality = 0.12*Cohesion + 0.22*Polymorphism +

0.22*Messaging + 0.22*Design Size

 +0.22*Hierarchies

Extendibility = 0.5*Abstraction - 0.5*Coupling +

0.5*Inheritance +0.5*Polymorphism

Effectiveness = 0.2*Abstraction + 0.2*Encapsulation +

0.2*Composition+ 0.2*Inheritance +

0.2*Polymorphism

Table 3: Evaluated Object Oriented Concepts at Design Level

Project JMoney JUtility JFractal ATM Library Hospital

Polymorphism 2.4 2.75 1.35 1.21 0.699 0.798

Messaging 155 142 132 140 112 98

Composition 2.28 3.121 2.01 3.209 1.031 1.231

Inheritance 1.737 1.401 1.565 1.206 1.06 1.32

Coupling 2.55 2.05 4.75 3.95 5.05 5.35

Hierarchies 3 2 2 3 2 3

Complexity 3.375 2.151 4.075 4.125 6.075 5.657

Design Size 20 24 20 18 22 20

Cohesion 0.698 0.659 0.431 0.503 0.412 0.312

Abstraction 4.01 3.45 3.56 4.402 2.66 2.36

Encapsulation 243 285 225 215 220 133

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 47

Table 4: Assessed Quality Attributes and Project Quality at Design Level

4.4 Assessment of Quality at Code Level

As we have discussed first, quality assessment at code level

is done using Eclipse with Metrics 1.3.6. Selected metrics for

evaluating object oriented concepts are discussed below.

Number of Overridden Methods as a Polymorphism, Number

of Methods as a Messaging, Nested Block Depth as a

Composition, Depth of Inheritance Tree as a DIT, (Afferent+

Efferent) coupling as a Coupling, Number of Interfaces as a

Hierarchies, McCabe Cyclomatic Complexity as a

Complexity, Total Lines of Code as a Design Size, Lack of

Cohesion of Methods as a Cohesion, Abstractness Distance

as a Abstraction, Weighted methods per Class as a

Encapsulation.

Table 5: Evaluated Object Oriented Concepts at Code Level

Project JMoney JUtility JFractal ATM Library Hospital

Polymorphism 48 34 28 22 18 20

Messaging 167 153 141 170 112 109

Composition 1.173 1.297 1.183 1.585 1.080 1.017

Inheritance 1.867 1.318 1.455 1.708 1.357 1.012

Coupling 4 2.667 3.76 6 4.75 5.302

Hierarchies 3 2 0 1 0 1

Complexity 2.167 2.355 4.324 3.605 5.375 5.102

Design Size 3500 3790 3000 2490 2580 1900

Cohesion .563 0.659 .448 .432 .304 .314

Abstraction 2.5 1.5 1.5 1 0 0

Encapsulation 364 385 287 360 223 149

Table 6: Assessed Quality Attributes and Project Quality at Code Level

Project Reusability Flexibility Understandability Functionality Extendibility Effectiveness Quality of

Project

JMoney 1950.9152 121.2312 -1023.7140 866.6193 28.0754 84.6230 325.158

JUtility 1791.0065 114.5841 -998.4700 801.3728 24.1834 83.5079 309.988

JFractal 1569.7469 85.4261 -906.8885 697.2577 12.8970 63.5276 259.363

ATM 1328.1330 101.2925 -913.4840 590.5438 9.5831 77.4585 233.798

Libray 999.9884 37.1025 -590.8389 443.6044 5.3034 27.8879 157.850

Hospital 1003 41.4329 -594 446.63 7.85 30.205 160.2937

4.5 Quality Assessment of all Selected Six Projects at Design Level and Code Level Represented in Graph.

Project Reusability Flexibility Understand

ability

Functionality Extendibility Effectiveness Quality of

Project

JMoney 87.0370 68.2524 56.2517 42.3237 8.5985 53.0054 46.3320

JUtility 86.6522 73.1731 56.9251 48.664 6.275 58.9441 44.0642

JFractal 74.9203 56.2429 62.5993 34.228 2.8625 46.2927 39.6996

ATM 73.138 54.9721 60.9321 33.5466 1.6601 45.0961 38.972

Library 58.840 54.5913 61.0097 27.0432 0.9844 45.6083 25.8499

Hospital 57.7405 27.926 26.120 26.8329 0.4359 23.7417 23.4394

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 14 | Nov-2014 | SMART-2014, Available @ http://www.ijret.org 48

5. CONCLUSION

In this paper we have discussed object oriented metrics for

assessing quality of object oriented software. For this we

used CK metrics suite, MOOD metrics suite and QMOOD

metric suite. For quality assessment we selected positive

quality attributes of software like Reusability, Extendibility,

Flexibility, Understandability, Functionality etc. Because all
selected attributes are positive attributes, they will increase

software quality.

The first work deals with quality assessment at design level

of software development. For that we used UML diagram as

an input and evaluated design metrics and object oriented

concepts and finally assessed software quality using a

specific formula of software quality attributes contribution.

We also assessed quality of software at the code level and

compared the two qualities. Results obtained are perfectly as

per expectations.

REFERENCES

[1] Abreu, F. B. e., "The MOOD Metrics Set,"

presented at ECOOP '95 Workshop on Metrics,

1995.

[2] Abreu, F. B. e. and Melo, W., "Evaluating the

Impact of OO Design on Software Quality,"

presented at Third International Software Metrics

Symposium, Berlin, 1996.

[3] Abreu F.B. and R.Carapuca.“Object-Oriented

Software Engineering: “Measuring and Controlling

the Development Process”. Proceedings of the 4th

International Conference on Software Quality,

McLean,Virginia USA,October ,1994
[4] Bansiya J. and C. G. Davis (2002): A Hierarchical

Model for Object-Oriented Design Quality

Assessment IEEE Transactions on Software

Engineering, pp. 4-17, 2002

[5] Basili, V. R., Briand, L. C., and Melo, W. L., "A

Validation of Object Orient Design Metrics as

Quality Indicators," IEEE Transactions on Software

Engineering, vol. 21, pp. 751-761, 1996.

[6] Bee Bee Chua and Laurel Evelyn Dyson “Applying

the ISO 9126model to the evaluation of an e-

learning system” 1995
[7] Boehm, B. W., "Improving Software Productivity,"

IEEE Computer, pp. 43-57, September 1987.

[8] Briand, L., Emam, K. E., and Morasca, S.,

"Theoretical and Empirical Validation of Software

Metrics," 1995.

[9] Briand, L., Ikonomovski, S., Lounis, H., and Wust,

J., "Measuring the Quality of Structured Designs,"

Journal of Systems and Software, vol. 2, pp. 113-

120, 1981.

[10] Briand, L. C., Daly, J. W., and Wust, J. K., "A

Unified Framework for Coupling Measurement in

Object-Oriented Systems," IEEE Transactions on
Software Engineering, vol. 25, pp. 91-121,

January/February 1999.

[11] Chidamber, S. R. and Kemerer, C. F., "A Metrics

Suite for Object Oriented Design," IEEE

Transactions on Software Engineering, vol. 20,

1994.

[12] Churcher, N. I. and Shepperd, M. J., "Comments on

'A Metrics Suite for Object-Oriented Design'," IEEE

Transactions on Software Engineering, vol. 21, pp.

263-5, 1995.
[13] Dr. Deepshikha Jamwal “Analysis of Software

Quality Models for Organizations “ 2010

[14] El Emam, K., "A Methodology for Validating

Software Product Metrics," National Research

Council of Canada, Ottawa, Ontario, Canada

NCR/ERC-1076, June 2000 June 2000.

[15] Fenton, N. E. and Pfleeger, S. L., Software Metrics:

A Rigorous and Practical Approach: Brooks/Cole

Pub Co., 1998.

[16] Fowler, M., Beck, K., Brant, J., Opdyke, W., and

Roberts, d., Refactoring: Improving the Design of
Existing Code. Reading, Massachusetts: Addison

Wesley, 1999.

