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Abstract 
In the span of last twenty years, a lot of software solutions were proposed to utilize the inherent parallelism of the Artificial Neural 

Networks (ANNs). In order to take the full advantage of Neural Networks, dedicated hardware implementations are essentially 

required. But still, very few hardware models of multi layer feed forward networks with simplified activation functions are available 

today. Hence the effective utilization of Hardware neural Networks (HNNs) is restricted to only simple applications rather than 

complex power system problems. This paper analyzes the complications in the HNN design and a simplified algorithm for designing 

the multiplier part of a HNN is proposed. A comparison between existing and proposed model is provided. 
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1. INTRODUCTION 

The Artificial Neural Networks (ANNs) have found 

numerous applications in the electric power system including 

load forecasting, stability enhancement, unit commitment and 

economic dispatch problems. Also they are playing very 

crucial role in control engineering, signal processing and 

pattern recognition areas. But still, ANN is a research field 

with many open challenges in the topics of theory, 

applications and implementations. The hardware 

development of ANNs is lagging far behind compared to the 

conventional neural theories. It is because of the fact that lot 

of computations, huge investment and skilled man power is 

required for designing a simple Hardware neural Network 

(HNN). Also the low cost micro controller or DSP based 

controllers are found to be equally effective for the above 

applications. But due to the “self understanding and decision 

making”, the unique ability of a HNN controller, it is 

certainly superior in power system applications. Hence it is 

important to address the key issues related to the design of 

cost effective HNNs. Due to the rapid growth of VLSI 

technology, and their simple, cost effective algorithms, there 

is a scope for the future of HNNs for power system 

applications. 

 

2. BASICS OF PROPOSED DESIGN 

With the currently available ASIC and FPGA technologies, 

the digital implementation of Neural Networks become very 

attractive. However, when it is required to work with the 

Multilayer Feed Forward Neural Networks (MFNN), the 

direct implementation is near impossible because of the 

involvement of large number of multiplications. Many of the 

power system applications normally require large scale 

neural networks with hundreds of neurons and synapses. It is 

possible to design analog VLSI circuits for such kind of 

applications. But there are certain difficulties like noise and 

un availability of high precision resistors makes this task very 

complicated. 

 

 
Fig: 1 A typical Neuron in MFNNs 

 

The fig (1) shows the basic neuron in MFNN architecture 

with summation, multiplication and activation blocks. A 

practical MFNN may be the combination of any number of 

such neurons. Basically, each neuron has „n‟ multipliers to 

multiply each input value by the corresponding weight. The 

„n‟ results of the multipliers are added with the bias and 

finally, the transfer function delivers the neuron's output. 

 

Therefore two important arithmetic operations are involved 

in the hardware implementation of an ANN. The evaluation 

of the inner products is the first and the foremost operation. 

The computation of activation function is the second work in 

Hardware Neural Network (HNN) fabrication. 

 

The design of multipliers which are used as synapse in neural 

network circuits creates many often conflicting constraints on 

the designer. Among these are small size, high speed, 

linearity, and four quadrant multiplications. The inputs are in 

the form of voltage differences and are denoted by the 

couples x1-x2, and y1-y2. The output of the multiplier is a 
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current difference which is proportional to the multiplication 

of the voltage differences (x2 - x1) and (y1 - y2)  I diff K (x2 - 

x1) (y1 - y2) where K is the proportionality constant. 

 

The current difference is then converted to a single ended 

current (Z) through current mirrors. This improves the 

linearity of the multiplier. Therefore, modeling procedure 

becomes easier which is one of the most important tasks 

during the training phase. Beside the improvement in 

linearity, the current mirror plays a role as buffer which will 

allow easy interfacing with the following circuitry. 

 

2.1 Limitations Experienced 

As shown in the fig 1, the solution of the inner products is 

obtained by simple mathematical summation. It seems to be a 

very easier task to handle. 

 

 
 

But during the HNN implementation, large number of steps 

are required for obtain the same. In a fully parallel network, 

the number of multipliers per neuron must be equal to the 

number of connections to this neuron. Since all of the 

products must be summed, the number of full adders equals 

to the number of connections to the previous layer minus one. 

 

For example, in a 4-8-1 network the output neuron must have 

8 multipliers and 7 full adders while the neurons in the 

hidden layer must have 4 multipliers and 3 full adders. 

Hence, different neuron architectures have to be designed for 

each layer. Similarly selecting an appropriate activation 

function from the available choices of threshold, ramp and 

sigmoidal expressions are required very complex procedures. 

Once the hardware model is implemented with a particular 

activation function, it cannot be modified for the other and 

hence the lack of flexibility makes the system for selected 

applications only. 

 

The primary function of MFNNs is to pass a weighted sum of 

inputs through a non linear activation function. Hence the 

digital implementation of MFNNs consists of several major 

functional blocks including multiplications, summations and 

calculation of non linear functions. The summations can be 

obtained by using adders and accumulators. The non linear 

calculations can be designed using look up tables. 

 

But it is not advisable to design the multiplication between 

the inputs and the weights using VLSI since it requires large 

chip space and very slower operation. 

 

2.2 Hardware Representation 

To implement the neural network into hardware design, it is 

required to translate generated model into device structure 

and implemented using sophisticated digital or analog 

circuits. Despite the fact that FPGAs do not achieve the 

power, clock rate or gate density, they are preferred over the 

typical software solutions because of their re-configurable 

nature and fastness. The number of processing elements in a 

hardware implementation can be used to characterize the 

degree of parallelism achieved. With the introduction of 

FPGAs, it is feasible to provide custom hardware for 

application specific computation design. 

 

But in the FPGA design, the balancing of achieving the 

required bit precision along with the increased cost is a 

challenging task. For the inputs, weights and activation 

function the degree of precision to be such that the iterations 

for the desired output must be lower. During the learning 

phase, precision has a significant impact. Only during the 

propagation phase, the precision can be slightly sacrificed. 

Hence the effective memory space will be enormously 

increased. 

 

Fig: 2 Basic representation of a single neuron 

 

An artificial Neuron can be visualized as the combination of 

a multiplier and an accumulator. Fig 2 represents a simple 

hardware neuron. Every Single neuron will have its own 

weight storage ROM. The inputs from the previous stages 

will enter into the present neuron serially, and are multiplied 

with the corresponding weights. The accumulator will add all 

the multiplied values. All this functions will be synchronized 

by suitable clock signals. If there are „N‟ connections are 

present in the previous stage, then at least „N-1‟ clock pulses 

required for the present neuron to complete its task. The 

accumulator has a load signal for loading the bias values to 

every neuron at starting. The proposed structure is 

maintained fixed for various parts of the entire network. This 

may create some sort of error during the training process 

which can be neglected. 

 

A circuit which is very closely imitates a biological neural 

structure is known as Neuro morphic (NM).Mostly NMs are 

involved with analog components despite the final outcomes 

may be digital. An essential aspect of NM is Address Event 

Representation (AER) protocol. In most of the power system 

applications, it is always required to have point to point pulse 

communication between neural assemblies.AER is used to 

develop such kind of communication paths by using a 

suitable algorithm. 

 

3. PROPOSED FORMAT FOR MFNNs 

For minimizing the time delay in the multiplier operation, a 

simplified logic termed “Equivalent Shifted Powers of 

Multiplication” (ESPM) is proposed in this paper. In this 

format, equivalent powers of two valued connection weights 

can be used instead of original continuously valued weights. 

Hence the multiplication can be replaced by shifting 
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operation. The net silicon area needed for shifting operation 

for the same input data will be a fraction of the space for 

multiplication for the problem considered. It is possible to 

extend admissible weight values to be sum of two or more 

“terms of powers of two”   and hence the complexity can be 

minimized. 

 

When the „ESPM‟ format is used, all weights in the MFNN 

only to be taken in the following set of discrete values: 

 

WESPM = {± 1, ±2
-1

, ±2
-2

, ±2
-3

,….. ±2
-X

, 0} 

 

Where ‟X‟ is the maximum number of bits that may be shifted 

For the given value of „X‟, there are 2X+3 weight values are 

available to choose from. Again for some cases more than one 

„ESPM‟ value may be suitable. In such scenario, the chip area 

requirement to be evaluated for identifying the   optimum 

value of shifted weight. 

 

4. HYBRID QUANTIZATION 

Neural Networks, in general, work with floating-point 

numbers. Working with floating-point numbers in hardware 

is a difficult problem because the arithmetic operations are 

more complex than with integer numbers. Furthermore, the 

dedicated circuits for floating-point operations are more 

complex, slower, and occupy a larger chip area that integer 

number circuits. A solution used to make this project easier 

and improve its performance has been converting the floating 

point numbers to integer numbers. 

 

Of course it implies in some loss of precision but in this 

particular case, good results have been achieved. The outputs 

of activation functions and connection weights in an MFNN 

are evaluated by back propagation algorithm. These 

quantities are continuously valued, so that the multiplication 

is un avoidable. Even though the ESPM values may reduce 

this burden considerably, the realization of the resultant 

activation function is not easier. Alternatively, continuous 

weights with approximated (quantized) neurons may provide 

the necessary freedom to be adopted for diverse problems. 

For combining both these futures, it is proposed to go for 

adopting the „ESPM‟ weights and further successive 

approximation for the sake design the HNN. This 

combination of quantization and ESPM implementation is 

known as „HYBRID‟ design of multipliers.  There are three 

stages involved in the hybrid design . 

(i) The conventional Back Propagation (BP) algorithm 

to be applied to find the set of continuous weights 

for the given problem. 

(ii) Then the approximation to be applied to convert the 

obtained weights to the „ESPM‟ values. 

(iii) Adoption of the slope of the activation function to 

be employed for fine-tuning the post-approximation 

network to the pre-determined error level. 

 

4.1 Step 1: Evaluation of Weights 

Until the output error falls below a pre-set value „e‟, the 

following sigmoid activation functions to be used. 

 

f(x) =  p  (1-β
-αx

)  /   (1+β
-αx

) 

 

Here the constant „p‟ is introduced for balancing the non 

linear coefficients during the convergence process. Upon the 

convergence, a network with continuous weights and sigmoid 

activation function is obtained. Let it be # Net:1. This 

network should produce an effective error ‟eK‟ which should 

be less than or equal to the pre set error „E‟. During the real 

time implementation, the values of weights may further to be 

approximated for the sake of accommodating newer neurons. 

If one half of the activation function is quantized and the 

remaining part retain as it is, this task can be easily achieved. 

But such kind of partial quantization may leads to the actual 

solution to divert from its desired value. 

 

The flowchart shown in fig:3 represent this process. The flow 

chart does not show some more calculation steps and it is 

only used as the basic representation. 

 

 
Fig 3: Flow Chart for Proposed Quantization 
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4.2 Step 2: Replacing the Weights 

Keeping the topology of the network remains unchanged, the 

neurons in # Net: 1 to be replaced by their approximated 

values. Then the existing weights to be adjusted with the 

corresponding ESPM weights. The resultant neuron will have 

different activation function from its original one. During the 

replacing of original neurons with the quantized weights, it 

was found that the output error of the system was increased. 

The issue was sorted out by adjusting the system parameters. 

 

4.3 Step 3: Design of Shifter 

The basic function of the shift block is to shift a weight 

according to the activation of the corresponding neuron 

which is of the „ESPM‟ format, instead of doing 

multiplication. Since the output of a neuron is different under 

different input patterns, the number of bits to be shifted in the 

corresponding weight varies from one pattern to another. 

Hence the shift block should be able to detect and control the 

actual number of bits to be shifted. This is achieved by 

employing two shift registers. Let them be SR1 and SR2.SR1 

is assigned for control the number of bits to be transferred 

and SR2 is involved in the actual shifting operation.SR1 is 8 

bit device and SR2 is 16 bit component.  Now to be fitted into 

a neurons operation in MFNNs with „ESPM‟ weights the pin 

„A‟ is connected to a particular input to the neuron. The 

control vector is mapped to the corresponding ESPM weight. 

 

Table 1: Shifting Operation for X=2 

Sl.No Control 

vector (C) 

Input 

vector (A) 

Output 

vector (Y) 

1 00000 A7…A0 000000000000 

2 10000 A7…A0 A7…A00000 

3 01000 A7…A0 A7A7…A0000 

4 00001 A7…A0 A7 A7 A7 

A7A7…A0 

 

In the table shown above the control vector „C‟ is deciding 

the number of bits to be shifted. Vector „Y‟ is the shifted 

version of input vector „A‟. This operation can be 

implemented either by using multiplexers or simple 

combinational logic. 

 

Taking the negative powers of ESPM values, the shifter has 

shift-right moments. For example, let X=2. Then, the 

possible ESPM choices are 2
0
, 2

-1
, 2

-2
 and 0. The related 

control vectors of the shifter are 10000, 01000, 00100 and 

00000 respectively. A separate VHDL code is created for this 

shifting operation. 

 

 

 

 

 

 

Table 2: Comparative Table 

 

5. RESULTS AND DISCUSSIONS 
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Fig 4: Graphical Representation of the Results 

 

The above table gives the comparison between conventional 

multiplier and a shifter for the same specifications. It is to be 

noted from the table that the number of gates required for the 

digital implementation for the same operation is reduced 

considerably. 

 

Also the delay time for the execution of one complete set of 

input vector (A) is reduced in case of the shifter 

implementation. But it is to be noted that there is a deviation 

in the convergence when the shifter is too much trained. 

 

6. CONCLUSIONS 

Because of the implementation of „ESPM‟ weights, the 

multiplications needed for weighted sum operations were 

replaced by shift operations. Hence there is a considerable 

improvement in both silicon area and operation speed in 

digital VLSI design of MFNNs. It also ensured that the 

proposed network is capable of very closely achieving the 

same generalized performance of the network with 

conventional multipliers. But it is to be mentioned that the 

overall cost of this improved system will be comparatively 

higher than the multiplying system. Also the mapping ability 

of the derived multiplier with the activation function is below 

average in this work. This can be enhanced by increasing the 

number of control registers. Over all the designed equivalent 

Sl. No CRITERIA MFNN  with 

direct 

Multiplying 

components 

MFNN  

with ESPM 

implementat

ion 

1 Calculation Zj(h)* Wij(h) Zj(h) * Wij
(h)

 

2 Implementation Multiplier (4 X 

4) 

Shifter 

3 Area ( No of 

gates) 

126 87 

4 Delay (s) 6.2 1.8 
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multiplier is capable of reducing the chip area approximately 

by 31% which is a desired outcome of this work. 
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