
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 12 | ICAESA - 2014 | Jun-2014, Available @ http://www.ijret.org 43

A SIMPLIFIED DESIGN OF MULTIPLIER FOR MULTI LAYER FEED

FORWARD HARDWARE NEURAL NETWORKS

V.Parthasarathy
1
, B.C.Hemapriya

2
, H.M.Ravikumar

3

1
EEE Department, Nitte Meenakshi Institute of Technology, Bangalore, India

2
ECE Department, Nagarjuna College of Engineering and Technology, Bangalore, India

3
EEE Department, Nitte Meenakshi Institute of Technology, Bangalore, India

Abstract
In the span of last twenty years, a lot of software solutions were proposed to utilize the inherent parallelism of the Artificial Neural

Networks (ANNs). In order to take the full advantage of Neural Networks, dedicated hardware implementations are essentially

required. But still, very few hardware models of multi layer feed forward networks with simplified activation functions are available

today. Hence the effective utilization of Hardware neural Networks (HNNs) is restricted to only simple applications rather than

complex power system problems. This paper analyzes the complications in the HNN design and a simplified algorithm for designing

the multiplier part of a HNN is proposed. A comparison between existing and proposed model is provided.

Keywords: Hardware Neural Networks, Multipliers, Multi layer feed forward networks.

---***---

1. INTRODUCTION

The Artificial Neural Networks (ANNs) have found

numerous applications in the electric power system including

load forecasting, stability enhancement, unit commitment and

economic dispatch problems. Also they are playing very

crucial role in control engineering, signal processing and

pattern recognition areas. But still, ANN is a research field

with many open challenges in the topics of theory,

applications and implementations. The hardware

development of ANNs is lagging far behind compared to the

conventional neural theories. It is because of the fact that lot

of computations, huge investment and skilled man power is

required for designing a simple Hardware neural Network

(HNN). Also the low cost micro controller or DSP based

controllers are found to be equally effective for the above

applications. But due to the “self understanding and decision

making”, the unique ability of a HNN controller, it is

certainly superior in power system applications. Hence it is

important to address the key issues related to the design of

cost effective HNNs. Due to the rapid growth of VLSI

technology, and their simple, cost effective algorithms, there

is a scope for the future of HNNs for power system

applications.

2. BASICS OF PROPOSED DESIGN

With the currently available ASIC and FPGA technologies,

the digital implementation of Neural Networks become very

attractive. However, when it is required to work with the

Multilayer Feed Forward Neural Networks (MFNN), the

direct implementation is near impossible because of the

involvement of large number of multiplications. Many of the

power system applications normally require large scale

neural networks with hundreds of neurons and synapses. It is

possible to design analog VLSI circuits for such kind of

applications. But there are certain difficulties like noise and

un availability of high precision resistors makes this task very

complicated.

Fig: 1 A typical Neuron in MFNNs

The fig (1) shows the basic neuron in MFNN architecture

with summation, multiplication and activation blocks. A

practical MFNN may be the combination of any number of

such neurons. Basically, each neuron has „n‟ multipliers to

multiply each input value by the corresponding weight. The

„n‟ results of the multipliers are added with the bias and

finally, the transfer function delivers the neuron's output.

Therefore two important arithmetic operations are involved

in the hardware implementation of an ANN. The evaluation

of the inner products is the first and the foremost operation.

The computation of activation function is the second work in

Hardware Neural Network (HNN) fabrication.

The design of multipliers which are used as synapse in neural

network circuits creates many often conflicting constraints on

the designer. Among these are small size, high speed,

linearity, and four quadrant multiplications. The inputs are in

the form of voltage differences and are denoted by the

couples x1-x2, and y1-y2. The output of the multiplier is a

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 12 | ICAESA - 2014 | Jun-2014, Available @ http://www.ijret.org 44

current difference which is proportional to the multiplication

of the voltage differences (x2 - x1) and (y1 - y2) I diff K (x2 -

x1) (y1 - y2) where K is the proportionality constant.

The current difference is then converted to a single ended

current (Z) through current mirrors. This improves the

linearity of the multiplier. Therefore, modeling procedure

becomes easier which is one of the most important tasks

during the training phase. Beside the improvement in

linearity, the current mirror plays a role as buffer which will

allow easy interfacing with the following circuitry.

2.1 Limitations Experienced

As shown in the fig 1, the solution of the inner products is

obtained by simple mathematical summation. It seems to be a

very easier task to handle.

But during the HNN implementation, large number of steps

are required for obtain the same. In a fully parallel network,

the number of multipliers per neuron must be equal to the

number of connections to this neuron. Since all of the

products must be summed, the number of full adders equals

to the number of connections to the previous layer minus one.

For example, in a 4-8-1 network the output neuron must have

8 multipliers and 7 full adders while the neurons in the

hidden layer must have 4 multipliers and 3 full adders.

Hence, different neuron architectures have to be designed for

each layer. Similarly selecting an appropriate activation

function from the available choices of threshold, ramp and

sigmoidal expressions are required very complex procedures.

Once the hardware model is implemented with a particular

activation function, it cannot be modified for the other and

hence the lack of flexibility makes the system for selected

applications only.

The primary function of MFNNs is to pass a weighted sum of

inputs through a non linear activation function. Hence the

digital implementation of MFNNs consists of several major

functional blocks including multiplications, summations and

calculation of non linear functions. The summations can be

obtained by using adders and accumulators. The non linear

calculations can be designed using look up tables.

But it is not advisable to design the multiplication between

the inputs and the weights using VLSI since it requires large

chip space and very slower operation.

2.2 Hardware Representation

To implement the neural network into hardware design, it is

required to translate generated model into device structure

and implemented using sophisticated digital or analog

circuits. Despite the fact that FPGAs do not achieve the

power, clock rate or gate density, they are preferred over the

typical software solutions because of their re-configurable

nature and fastness. The number of processing elements in a

hardware implementation can be used to characterize the

degree of parallelism achieved. With the introduction of

FPGAs, it is feasible to provide custom hardware for

application specific computation design.

But in the FPGA design, the balancing of achieving the

required bit precision along with the increased cost is a

challenging task. For the inputs, weights and activation

function the degree of precision to be such that the iterations

for the desired output must be lower. During the learning

phase, precision has a significant impact. Only during the

propagation phase, the precision can be slightly sacrificed.

Hence the effective memory space will be enormously

increased.

Fig: 2 Basic representation of a single neuron

An artificial Neuron can be visualized as the combination of

a multiplier and an accumulator. Fig 2 represents a simple

hardware neuron. Every Single neuron will have its own

weight storage ROM. The inputs from the previous stages

will enter into the present neuron serially, and are multiplied

with the corresponding weights. The accumulator will add all

the multiplied values. All this functions will be synchronized

by suitable clock signals. If there are „N‟ connections are

present in the previous stage, then at least „N-1‟ clock pulses

required for the present neuron to complete its task. The

accumulator has a load signal for loading the bias values to

every neuron at starting. The proposed structure is

maintained fixed for various parts of the entire network. This

may create some sort of error during the training process

which can be neglected.

A circuit which is very closely imitates a biological neural

structure is known as Neuro morphic (NM).Mostly NMs are

involved with analog components despite the final outcomes

may be digital. An essential aspect of NM is Address Event

Representation (AER) protocol. In most of the power system

applications, it is always required to have point to point pulse

communication between neural assemblies.AER is used to

develop such kind of communication paths by using a

suitable algorithm.

3. PROPOSED FORMAT FOR MFNNs

For minimizing the time delay in the multiplier operation, a

simplified logic termed “Equivalent Shifted Powers of

Multiplication” (ESPM) is proposed in this paper. In this

format, equivalent powers of two valued connection weights

can be used instead of original continuously valued weights.

Hence the multiplication can be replaced by shifting

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 12 | ICAESA - 2014 | Jun-2014, Available @ http://www.ijret.org 45

operation. The net silicon area needed for shifting operation

for the same input data will be a fraction of the space for

multiplication for the problem considered. It is possible to

extend admissible weight values to be sum of two or more

“terms of powers of two” and hence the complexity can be

minimized.

When the „ESPM‟ format is used, all weights in the MFNN

only to be taken in the following set of discrete values:

WESPM = {± 1, ±2
-1

, ±2
-2

, ±2
-3

,….. ±2
-X

, 0}

Where ‟X‟ is the maximum number of bits that may be shifted

For the given value of „X‟, there are 2X+3 weight values are

available to choose from. Again for some cases more than one

„ESPM‟ value may be suitable. In such scenario, the chip area

requirement to be evaluated for identifying the optimum

value of shifted weight.

4. HYBRID QUANTIZATION

Neural Networks, in general, work with floating-point

numbers. Working with floating-point numbers in hardware

is a difficult problem because the arithmetic operations are

more complex than with integer numbers. Furthermore, the

dedicated circuits for floating-point operations are more

complex, slower, and occupy a larger chip area that integer

number circuits. A solution used to make this project easier

and improve its performance has been converting the floating

point numbers to integer numbers.

Of course it implies in some loss of precision but in this

particular case, good results have been achieved. The outputs

of activation functions and connection weights in an MFNN

are evaluated by back propagation algorithm. These

quantities are continuously valued, so that the multiplication

is un avoidable. Even though the ESPM values may reduce

this burden considerably, the realization of the resultant

activation function is not easier. Alternatively, continuous

weights with approximated (quantized) neurons may provide

the necessary freedom to be adopted for diverse problems.

For combining both these futures, it is proposed to go for

adopting the „ESPM‟ weights and further successive

approximation for the sake design the HNN. This

combination of quantization and ESPM implementation is

known as „HYBRID‟ design of multipliers. There are three

stages involved in the hybrid design .

(i) The conventional Back Propagation (BP) algorithm

to be applied to find the set of continuous weights

for the given problem.

(ii) Then the approximation to be applied to convert the

obtained weights to the „ESPM‟ values.

(iii) Adoption of the slope of the activation function to

be employed for fine-tuning the post-approximation

network to the pre-determined error level.

4.1 Step 1: Evaluation of Weights

Until the output error falls below a pre-set value „e‟, the

following sigmoid activation functions to be used.

f(x) = p (1-β
-αx

) / (1+β
-αx

)

Here the constant „p‟ is introduced for balancing the non

linear coefficients during the convergence process. Upon the

convergence, a network with continuous weights and sigmoid

activation function is obtained. Let it be # Net:1. This

network should produce an effective error ‟eK‟ which should

be less than or equal to the pre set error „E‟. During the real

time implementation, the values of weights may further to be

approximated for the sake of accommodating newer neurons.

If one half of the activation function is quantized and the

remaining part retain as it is, this task can be easily achieved.

But such kind of partial quantization may leads to the actual

solution to divert from its desired value.

The flowchart shown in fig:3 represent this process. The flow

chart does not show some more calculation steps and it is

only used as the basic representation.

Fig 3: Flow Chart for Proposed Quantization

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 12 | ICAESA - 2014 | Jun-2014, Available @ http://www.ijret.org 46

4.2 Step 2: Replacing the Weights

Keeping the topology of the network remains unchanged, the

neurons in # Net: 1 to be replaced by their approximated

values. Then the existing weights to be adjusted with the

corresponding ESPM weights. The resultant neuron will have

different activation function from its original one. During the

replacing of original neurons with the quantized weights, it

was found that the output error of the system was increased.

The issue was sorted out by adjusting the system parameters.

4.3 Step 3: Design of Shifter

The basic function of the shift block is to shift a weight

according to the activation of the corresponding neuron

which is of the „ESPM‟ format, instead of doing

multiplication. Since the output of a neuron is different under

different input patterns, the number of bits to be shifted in the

corresponding weight varies from one pattern to another.

Hence the shift block should be able to detect and control the

actual number of bits to be shifted. This is achieved by

employing two shift registers. Let them be SR1 and SR2.SR1

is assigned for control the number of bits to be transferred

and SR2 is involved in the actual shifting operation.SR1 is 8

bit device and SR2 is 16 bit component. Now to be fitted into

a neurons operation in MFNNs with „ESPM‟ weights the pin

„A‟ is connected to a particular input to the neuron. The

control vector is mapped to the corresponding ESPM weight.

Table 1: Shifting Operation for X=2

Sl.No Control

vector (C)

Input

vector (A)

Output

vector (Y)

1 00000 A7…A0 000000000000

2 10000 A7…A0 A7…A00000

3 01000 A7…A0 A7A7…A0000

4 00001 A7…A0 A7 A7 A7

A7A7…A0

In the table shown above the control vector „C‟ is deciding

the number of bits to be shifted. Vector „Y‟ is the shifted

version of input vector „A‟. This operation can be

implemented either by using multiplexers or simple

combinational logic.

Taking the negative powers of ESPM values, the shifter has

shift-right moments. For example, let X=2. Then, the

possible ESPM choices are 2
0
, 2

-1
, 2

-2
 and 0. The related

control vectors of the shifter are 10000, 01000, 00100 and

00000 respectively. A separate VHDL code is created for this

shifting operation.

Table 2: Comparative Table

5. RESULTS AND DISCUSSIONS

0
20
40
60
80

100
120
140

no of
components

delay time in sec

Fig 4: Graphical Representation of the Results

The above table gives the comparison between conventional

multiplier and a shifter for the same specifications. It is to be

noted from the table that the number of gates required for the

digital implementation for the same operation is reduced

considerably.

Also the delay time for the execution of one complete set of

input vector (A) is reduced in case of the shifter

implementation. But it is to be noted that there is a deviation

in the convergence when the shifter is too much trained.

6. CONCLUSIONS

Because of the implementation of „ESPM‟ weights, the

multiplications needed for weighted sum operations were

replaced by shift operations. Hence there is a considerable

improvement in both silicon area and operation speed in

digital VLSI design of MFNNs. It also ensured that the

proposed network is capable of very closely achieving the

same generalized performance of the network with

conventional multipliers. But it is to be mentioned that the

overall cost of this improved system will be comparatively

higher than the multiplying system. Also the mapping ability

of the derived multiplier with the activation function is below

average in this work. This can be enhanced by increasing the

number of control registers. Over all the designed equivalent

Sl. No CRITERIA MFNN with

direct

Multiplying

components

MFNN

with ESPM

implementat

ion

1 Calculation Zj(h)* Wij(h) Zj(h) * Wij
(h)

2 Implementation Multiplier (4 X

4)

Shifter

3 Area (No of

gates)

126 87

4 Delay (s) 6.2 1.8

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 12 | ICAESA - 2014 | Jun-2014, Available @ http://www.ijret.org 47

multiplier is capable of reducing the chip area approximately

by 31% which is a desired outcome of this work.

REFERENCES

[1] A. Muthuramalingam, S. Himavathi, E. Srinivasan,

“Neural Network Implementation Using FPGA:Issues

and Application” International Journal of Information

Technology Volume 4 Number 2,2007

[2] Prashant D.Deotale, Lalit Dole, “Implementation of

FPGA based Multilayer Perceptron using VHDL” ,

International Journal of Advanced Research in

Computer Science and Software Engineering, Volume

4, Issue 2, February 2014.

[3] Amit Garg,Sanjai Kumar Agarwal, “Dynamic

Stability Enhancement of Power Transmission System

using Artificial Neural Network Controlled Static Var

Compensator” International Journal of Computer

Applications, Volume 53– No.9, September 2012.

[4] Esraa Zeki Mohammed and Haitham Kareem Ali,

“Hardware Implementation of Artificial Neural

Network using Field Programmable Gate Array”

International Journal of Computer Theory and

Engineering, Vol. 5, No. 5, October 2013.

[5] Leonardo Maria Reyneri “Implementation Issues of

Neuro-Fuzzy Hardware: Going Towards HW/SW

Codesign” IEEE Transactions on Neural Networks,

vol.14, no.1, pp. 176-194, 2003.

[6] Y.J.Chen, Du Plessis, “Neural Network

Implementation on a FPGA ”, Proceedings of IEEE

Africon, vol.1, pp. 337-342, 2002.

[7] Sund Su Kim, Seul Jung, “Hardware Implementation

of Real Time Neural Network Controller with a DSP

and an FPGA ”, IEEE International Conference on

Robotics and Automation,vol. 5, pp. 3161-3165, April

2004.

[8] Turner.R.H, Woods.R.F, “Highly Efficient Limited

Range Multipliers For LUT-based FPGA

Architectures”, IEEE Transactions on Very Large

Scale Integration Systems, Vol.15, no.10, pp. 1113-

1117, Oct 2004.

