
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 78

TESTING AND VERIFICATION OF SOFTWARE MODEL THROUGH

FORMAL SEMANTICS: A SYSTEMATIC REVIEW

Deepak Arora
1
, Bramah Hazela

2

1
Professor, Computer Science & Engg, Amity University, Lucknow

2
Assistant Professor, Computer Science & Engg, Amity University, Lucknow

Abstract
UML is a standard language used in business modeling for specifying, visualizing and constructing artifact for software and non

software systems. It provides the capability to explore the static structure as well as dynamic behaviour of any large and complex

software system. It consists of different software design patterns, templates and frameworks with unique diagrams to represent

different aspect of software design during its development phase. Model based verification has been a key area to be explored to

establish the model consistency and validation formalization. Through massive survey it is found that still the literature is lacking

the well formed rules and semantics for UML model verification at the early stages of any software development. This research

work emphasises the development of novel techniques for the verification and validation of different UML models. It also focus on

automated test case generations using formal semantics based on different pre-established mathematical theories related to

graphs. Testing of any software can be broadly classified into three parts: test case generation, test execution and evaluation.

Various tools and techniques have already been proposed by many researchers for automation of model verification specifically

for object oriented software designs. In this paper authors have summarized and analyzed different approaches and

methodologies related to automated verification of UML models and formalization of rules and semantics in order to automate the

test case generation and its evaluation.

Keywords: UML, Formalization, Automatic Test Case Generation, Model Based Verification and Testing.

---***---

INTRODUCTION

Software modelling can be best described by the use of

formal semantics. Selection of a proper model is the basis of

modelling. There are various methods for modelling a

software system that includes Unified modelling language

(UML), Graph Transformation system (GTS), Abstract State

Machine (ASM), State Diagrams. Unified modelling

language provides broader range of language construct

specifications to be constructed. A key areas in successfully

using UML2 is understanding the semantics of the

augmented language construct. For example, what is the

meaning of a class diagram in terms of a component

diagram, or what is the meaning of a state machine in terms

of an activity diagram. Is there any approach for

transformation of UML behavioural diagrams that will help

in software testing and verification? These are not easy

questions to answer and involve understanding the

semantics of each individual construct.

All phases of software development starting from

requirements analysis, design, implementation is discuss and

maintain by UML diagram. The main goal is to model the

software system before you build it. UML 2 specification

defines two major kinds of UML diagram: structural

diagrams and behavioural diagrams. Structure diagrams

show the static structure of the system and how they are

related to each other. The elements in a structure diagram

represent the meaningful concepts of a software system, and

may include abstract, real world and implementation

concepts. Behavioural diagrams show the dynamic aspect of

the objects in a system, which can be described as a series of

changes to the system over time.

UML models are important source of information for design

of test cases and verification. Model-based test case

generation can be planned at an early stage of the software

development life cycle, allowing to carry out coding and

testing in parallel. Software testing is an important method

to assure software quality. Traditional testing method based

on handwork is low efficiency and cause the increase of test

cost and time. With the development of testing technology,

it advances high demand for to automate software system.

The automated test cases generation is viewed as a

guarantee to carry out effective and maintainable software

testing. Model-based test case generation and verification

technique becomes an obvious choice in software industries

and is the focus of this work.

This survey aims at summarizing the automated testing and

verification by covering the research queries below. The

research queries aims at finding the efficient procedures for

automated testing and verification of software model in

practice. The queries are:

RQ1- What are the various approaches for transformation of

UML diagrams to other graphical structure?

RQ2-Which is the most widely used technique?

RQ3-What are the broad areas covered by these

transformation techniques?

RQ4- What is the need of formalization of UML diagrams?

RQ5- What are the benefits of using various techniques?

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 79

2. SOURCES OF INFORMATION

This paper presents a systematic review of the work done in

the field of automatic generation of test case particularly

related to UML based automated test case generation and

verification of software system. In order to gain a broader

perspective, various papers and journals were searched. The

following six databases were covered:

I. ACM Digital Library (www.portal.acm.org).

II. IEEE Xplore (www.ieeexplore.ieee.org).

III. Springer LNCS (www.springer.com/lncs)

IV. Science Direct (www.sciencedirect.com).

V. Journal of Object technology (www.jot.fm)

VI. Google Scholar (www.googlescholar.com)

3. SEARCH CRITERIA

The initial search criteria was kept broad in order to include

the articles with different uses of terminology. The key

words used were <transformation> and (UML or <UML

Diagrams>) and <finite state machine> and <generation of

grammar> and <software testing and verification), and the

database fields of title and abstract were searched. The start

year was set to 1990 to ensure that most relevant research

within the field would be included, and the last date for

inclusion is publications within 2014.

The ultimate goal of software testing is to help designers,

developers, and managers construct systems with high

quality. Thus, research and development on testing aim at

efficiently performing effective testing to find more errors in

requirement, design and implementation. Progress toward

this destination requires fundamental research, and the

creation, refinement, extension, and popularization of better

methods. The evolution of definition and targets of software

testing has directed the research on testing and verification

techniques.

4. DATA COLLECTION

The list of journals and conference proceedings with no. of

paper referred is given below,

I. IEEE Transactions of Software Engineering: 14

II. Journal of system and software: 02

III. Software testing verification and reliability: 03

IV. ACM computing surveys: 05

V. IBM system of journals: 01

VI. IEEE Computer and application software: 05

VII. Computer and Information sciences: 04

VIII. Journal of object technology: 01

IX. International workshop of automation on software test:

02

X. IEEE conference on software maintenance: 06

XI. Proceedings of International conference on UML: 06

XII. Software engineering & Advanced applications: 02

XIII. Software reliability engineering: 02

XIV. ACM SIGSOFT software engineering: 07

XV. Computer science and Information technology: 03

XVI. Others: 06

The Unified Modeling Language (UML) [47] is a visual

modeling language that comprises fourteen types of diagram

representations to show structural and behavioural

characteristics of any system. Now a days, there are many

studies that are focused on test cases generation from UML

specification and can be found in [20, 22, 25 26].

5. RESULTS

The following section reflects the results related to the

research question.

5.1 RQ1- What are the Various Approaches for

Transformation of UML Diagrams to other

Graphical Structure?

There are various approaches for transformation of UML

diagrams to FSM (Finite state machine), Abstract state

machine (ASM) and other graphical structure which would

be helpful for further verification of software system.

5.2 RQ2: Which is the Most Widely used

Technique?

The most widely used techniques involve Model based

software testing. One of the oldest approaches for model

based testing is by using Use Case, class and State diagram.

In these approaches, the models are transformed into its

equivalent usage models to describe behaviour and usage of

software system. Kansomkeat [41] proposed an approach

using only state chart diagrams. The main advantage of this

approach was the capability of automation.

5.3 RQ3- What are the Broad Areas Covered by

these Transformation Techniques?

The broad areas covered by these techniques includes

Compiler construction tool, real time embedded systems,

artificial intelligence planning, spread sheets, OO systems,

SOA interacting services.

5.4 RQ4- What is the need of Formalization of

UML Diagrams?

Formalization of UML has become a prominent domain of

research for the last few years. In this research query we will

discuss a few works done in this domain related to

formalization of UML static and dynamic models.

In all research works, UML diagrams have been Formalized

using other formal languages. A context free grammar can

be generated for widely used UML diagrams that are used in

the design phase of the software life cycle namely Class,

Sequence and State Chart diagram. In [69], we propose a

Context Free Grammar for the analysis phase to establish

traceability of requirements and consistency verification of

UML Use case, Activity and Class Diagram. A UML

compiler has been proposed in [68] that is a framework for

syntactic and semantic verification of UML diagram. This

http://www.googlescholar.com/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 80

work proposes a grammar for Class and Sequence diagram.

Here, we have taken into consideration the State Chart

diagram also because the State Chart diagram depicts the

state change of an object at runtime. We can also formalized

other behaviour UML diagrams.

5.5 RQ5- What are the Benefits of using Various

Techniques?

Each technique has its own advantages and disadvantages. A

UML State chart [39] covers various test criteria such as

transition coverage, full predicate coverage, transition pair

coverage and complete sequence coverage. It also helps in

performing class level testing. Activity Diagrams on the

other hand can represent both conditional and parallel

activities. A fork construct is used for concurrent activities

in activity diagram. Sequence diagrams [44] describe

sequence of actions that generate in a system over time. It

captures invocation of methods from each object and order

in which it occurs. Collaboration Diagrams [67] covers the

dynamic aspect of testing better than any other UML model.

Therefore, it can easily represent dynamic behaviour of the

system along with good graphical representation of system

scope requirements.

6. CONCLUSIONS

Unified Modeling Language (UML) has now become a de

facto standard in the field of software testing and

verification. New formalization techniques for the

generation of test case from these UML diagrams need to be

explored.

The overall objective of the study was to gather sufficient

data to understand the nature of the various testing

techniques available. These techniques will be more

effective with formalized UML diagram.

The number of techniques proposed for test case generation

is very large. We need to better understand the difference

between these techniques and explore new methods for

further improvements.

FUTURE WORK

Hence, the next step in this field of research will involve

surveying and finding new possibilities in this area. Further,

possibility of automation in test case generation via UML

diagrams will also be explored simultaneously. Other

possibilities include the improvements in testing techniques

from UML diagrams. Further possibility is to automate test

case generation and to explore other methods of using

formal methods in software testing and verification.

REFERENCES

[1]. Heumann J. (2001) Generating Test Cases from Use

Cases, Rational Software, IBM,

[2]. Bird, D. L. Munoz, C. U. (1983) Automatic generation

of random self-checking test cases, IBM Systems Journal

[3]. Tsai, W.T. Volovik, D. Keefe, T.F. Fayad, M.E. (1988)

Automatic test case generation from relational algebra

queries, Computer Software and Applications Conference.

[4]. Tsai, W.T. Volovik, D. Keefe, T.F. (1990) Automated

test case generation for programs specified by relational

algebra queries, Software Engineering, IEEE Transactions

on software engineering

[5]. Wang, C.J. Liu, M. (1993) Automatic test case

generation for Estelle. International Conference on formal

engineering methods, Network Protocols

[6]. Ammann, P.E. Black, P.E. Majurski, W. (1998) Using

model checking to generate tests from specifications,

Second International Conference on Formal Engineering

Methods

[7]. Memon, A.M. Pollack, M.E. Soffa, M.L (1999) Using a

goal-driven approach to generate test cases for GUIs,

International Conference on Software Engineering

[8]. Cunning, S.J. Rozenblit, J.W. (1999) Automatic test

case generation from requirements specifications for real-

time embedded systems, IEEE International Conference on

Systems, Man, and Cybernetics, vol 4, pp345-378

[9]. Gutierez J., Escalona M.J. and Torres M.M. (2006) An

Approach to Generate Test Cases from Use Cases,

Proceedings of the 6th International Conference on Web

Engineering, pp. 113-114.

[10]. Hui L. and Hee B.K.T. (2006) Automated Verification

and Test Case Generation for Input Validation, International

Workshop on Automation on Software Test (AST‟06), pp.

29-35.

[11]. Nebut C, Fleurey F, Traon Y.L. and Jezequel J.M.

(2006) Automatic Test Generation: A Use Case Driven

Approach, IEEE Transactions on Software Engineeering,

Vol 32, No. 3, pp. 140-155.

[12]. Wee K.L., Siau C.K. and Yi S. (2004) Automated

Generation of Test Programs from Closed Specifications of

Classes and Test Cases, Proceedings of the 26th

International Conference on Software Engineering

(ICSE‟04)

[13]. Wei-Tek Tsai, Yinong Chen (2005) WSDL-Based

Automatic Test Case Generation for Web Services Testing,

IEEE International Workshop on Service-Oriented System

Engineering

[14]. Bor-Yuan Tsai, (2002) An Automatic Test Case

Generator Derived from State-Based Testing, IEEE Trans.

on Software Engineering, vol 7, pp781-812

[15]. Chow, Tsun S. (1978, May) Testing Software Design

Modelled by Finite-State Machines, IEEE Trans. on

Software Engineering, Vol. SE-4, No. 3

[16]. Turner, C. D.; Robson D. J. (1993) The State based

Testing of Object-Oriented Programs, Conference on

Software Maintenance

[17]. Hoffman, D; Strooper, P., ClassBench (1996-2003) A

methodology and framework for automated class testing,

SVRC, University of Queensland; Software-Practice &

Experience, Technical Report

[18]. Proceedings of the Fourth International Conference on

Quality Software (QSIC‟04).

[19]. Frohlick P. and Link J. (2004) Automated Test cases

Generation from Dynamic Models, in the Proceedings of the

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 81

European Conference on Object-Oriented Programming,

Springer Verlag, LNCS 1850, pp. 472-491

[20]. A. Bertolino, F. Basanieri, (2000) A practical approach

to UML-based derivation of integration tests, in:

Proceedings of the Fourth International Software Quality

Week Europe and International Internet Quality Week

Europe (QWE), Brussels, Belgium.

[21]. Riebisch M., Philippow I, and Gotze M. (2003)

UMLBased Statistical Test Case Generation, in the

Proceeding of ECOOP 2003, Springer Verlag, LNCS 2591,

pp. 394-411.

[22]. Hartmann J., Vieira M., Foster H., Ruder A. (2005) A

UML-based Approach to System Testing, Journal of

Innovations System Software Engineering, Vol. 1, PP. 12-24

[23]. Valdivino Santiago1, Ana Silvia Martins do Amaral1,

N. L. Vijaykumar (2008) QSEE project

[24]. F. Basanieri, A. Bertolino, E. Marchetti (2002) The

cow suit approach to planning and deriving test suites in

UML projects Proceedings of the Fifth International

conference on the UML, LNCS, 460, springer-Verlag

GmbH, Dresden, Germany, pp. 383–397.

[25.] Offutt J., Abdurazik A. (1999) Generating tests from

U.ML specifications. Proc. 2nd Int. Conf. UML, Lecture

Notes in Computer Science, Fort Collins, TX, Springer-

Verlag GmbH, vol. 1723, pp. 416– 429.

[26]. Offutt J., LIU S., Abdurazik A. (2003) „Generating test

data from state-based specifications‟, Software, Testing,

Verification, Reliability, Vol 13, pp. 25–53.

[27]. Kansomkeat S., Rivepiboon W (2003) “Automated-

generating test case using UML statechart diagrams”. Proc.

SAICSIT 2003, ACM, pp. 296– 300.

[28]. Cavarra A., Crichton C., Davies J. (2004) “A method

for the automatic generation of test suites from object

models‟, Information and Software Technology, 46, (5), pp.

309–314.

[29]. Hartmann J., Imoberdorf C., Meisinger M. (2000)

UML-based integration testing, ACM SIGSOFT Software

Engineering Notes, Proceedings International Symposium,

Software Testing and Analysis, vol. 25.

[30]. Kim Y.G., Hong H.S., Bae D.H.(1999), “Test cases

generation from UML state diagram”, Proc.

Software 146, (4), pp. 187–192.

[31]. Zhenyu Dai, Mei-Hwa Chen (2007) Automatic Test

Case Generation for Multi-tier Web Applications, 9th IEEE

International Workshop on Web Site Evolution.

[32]. Shengbo Chen, Huaikou Miao, Zhongsheng Qian

(2007) Automatic Generating Test Cases for Testing Web

Applications, International Conference on Computational

Intelligence and Security Workshops.

[33]. P. Samuel R. Mall A.K. Bothra (2008) Automatic test

case generation using unified modeling language (UML)

state diagrams, The Institution of Engineering and

Technology.

[34]. Yuan-Hsin Tung, Shian-Shyong Tseng, Tsung-Ju Lee,

and Jui-Feng Weng (2010) A Novel Approach to Automatic

Test Case Generation for Web Applications, 10th

International Conference on Quality Software.

[35]. Cao Xizhen Qian Hongbing (2010) Research on test

cases automatic generation technique based on AADL

model, 3rd International Conference on Advanced Computer

Theory and Engineering (ICACTE).

[36]. Shahzad, A. Raza, S. Azam, M.N. Bilal, K. Inam-ul-

Haq Shamail, S (2009) Automated optimum test case

generation using web navigation graphs International

Conference on Emerging Technologies.

[37]. Shaoying Liu Nakajima, S. (2010) A Decompositional

Approach to Automatic Test Case Generation Based on

Formal Specifications, Fourth International Conference on

Secure Software Integration and Reliability Improvement

(SSIRI)

[38]. Baikuntha Narayan Biswal (2008) A Novel Approach

for Scenario-Based Test Case Generation, International

Conference on Information Technology, vol 43, PP 244-247

[39]. Philip Samuel Rajib Mall (2009) Slicing-Based Test

Case Generation from UML Activity Diagrams, ACM

SIGSOFT Software Engineering Notes, Volume 34 Number

6, Page 1

[40]. Santosh Kumar Swain (2010) Test Case Generation

from Behavioral UML Models, International Journal of

Computer Applications, Vol 6, No.8.

[41]. Kansomkeat (2010) Generating Test Cases from UML

Activity Diagrams using the Condition-Classification Tree

Method, 2nd International Conference on Software

Technology and Engineering (ICSTE)

[42]. Xi Wang, Liang Guo, Huaikou Miao (2008) An

Approach to Transforming UML Model to FSM Model for

Automatic Testing, International Conference on Computer

Science and Software Engineering, IEEE, vol 34

[43]. Binder R. V., Testing Object-Oriented System Models,

Patterns, and Tools, Addison-Wesley, NY, 1999

[44]. Emanuela G. Cartaxo, Francisco G. O. Neto and

Patreıcia D. L. Machado (2007) Test Case Generation by

means of UML Sequence Diagrams and Labeled Transition

Systems,

[45]. Byoungju Choi, Hoijin Yoon, Jin-Ok Jeon (1999) A

UML-based Test Model for Component Integration Test,

Workshop on Software Architecture and Component, Japan,

pp63-70

[46]. Zhang Mei, Liu Chao, Sun Chang-ai (2001)

Automated Test Case Generation Based on UML Activity

Diagram Model, Journal of Beijing University of

Aeronautics and Astronautics(in Chinese), vol. 27 No. 4, pp

433-437

[47]. Grade Booch, James Rumbaugh, Ivar Jacobson (2001)

The Unified Modeling Language User Guide, Addison-

Wesley

[48]. Beizer (1995) Black-box Testing: Techniques for

functional testing of software and systems, John Wiley &

Sons, Inc, New York

[49]. Paul C. Jorgrnsen (1995) Software Testing: A

Craftsman’s Approach , CRC Press Inc

[50]. B. A. Kitchenham (2002) Preliminary guidelines for

empirical research in software engineering,IEEE Test

Selection from UML Statecharts, vol 28, pp 721-734

[51]. M. Sarma, R. Mall (2009) Automatic generation of test

case specification for coverage of system state transition,

Information on software Technology, vol 51, pp 418-432

[52]. Stefania Gnesi (2004) Formal Test Case generation for

UML state charts, Proceedings of 9th International

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 82

Conference on engineering complex computer system

navigating complexity, vol 34, pp 1050-4729

[53]. Shinpei ogata and Saeko Matsuura (2010) A Method of

Automatic Integration Test Case Generation from UML-

based Scenario WSEAS transactions on information science

and applications, Issue 4, Volume 7,

[54]. Chen Minsong (2006) Automatic test case generation

for UML activity diagram, AST, vol 78, pp456-478

[55]. X. Hou (2010) Integration testing system scenario

generation based on UML, International conference on

computer, mechatronics, control and electronic engineering,

vol 72, pp 271-273

[56]. Li Liuying Qi Zhichang {1999) Test Selection from

UML Statecharts, IEEE Test Selection from UML

Statecharts, vol 99, pp 198-264

[57]. Andreas Heinecke, Tobias Bruckmann, Tobias Griebe,

Volker Gruhn (2010) Generating Test Plans for Acceptance

Tests from UML Activity Diagrams, 17th IEEE

International Conference and Workshops on Engineering of

Computer-Based Systems, vol 14, pp 425-654

[58]. Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun,

Li Xuandong and Zheng Guoliang (2004) Generating Test

Cases from UML Activity Diagram based on Gray-Box

Method, Proceedings of the 11th Asia-Pacific Software

Engineering Conference (APSEC‟04), pp 1362-1530

[59]. Tsai, W.T. Volovik, D. Keefe, T.F. Fayad, M.E. (1988)

Automatic test case generation from relational algebra

queries, Computer Software and Applications Conference.

[60]. D. Gelperin and B. Hetzel (1988) The Growth of

Software Testing, Communications of the ACM, Volume 31

Issue 6, pp. 687-695

[61]. Shireesh Asthana, Saurabh Tripathi, and Sandeep

Kumar Singh (2010) Novel Approach to Generate Test

Cases Using Class and Sequence Diagrams, Springer

Verlag, CCIS 95, pp 155-167

[62]. Supaporn Kansomkeat, Phachayanee Thiket, Jeff

Offutt (2010) Generating Test Cases from UML Activity

Diagrams using the Condition Classification Tree Method,

2nd International Conference on Software Technology and

Engineering(ICSTE), vol 45, pp 456-489

[63]. Briand L. and Labiche Y. (2002) A UML-Based

Approach to System Testing, in the Journal of Software and

Systems Modeling, Springer Verlag, Vol. 1, pp. 10-42

[64]. Matthew Kaplan, Tim Klinger, Amit M. Paradkar,

Avik Sinha, Clay Williams, Cemal Yilmaz (2008) Less is

More: A Minimalistic Approach to UML Model-Based

Conformance Test Generation, International Conference on

Software Testing, Verification, and Validation, IEEE, vol

69, pp 82-93

[65]. Baikuntha Narayan Biswal (2008) A Novel Approach

for Scenario-Based Test Case Generation, International

Conference on Information Technology, vol 43, PP 244-247

[66]. B. Beizer (1999) Software Testing Techniques, Second

Edition, Van Nostrand Reinhold Company Limited, ISBN 0-

442-20672-0

[67]. Abdurazik, A. Offutt, J. Using UML Collaboration

Diagrams for Static Checking and Test Generation UML

2000 - The Unified Modeling Language. Advancing the

Standard. Third International Conference, York, UK,

October 2000, Proceedings, Springer, 2000, vol 1939, pp

383-3

[68]. J. Chanda , A. Kanjilal, S. Sengupta , “UML-Compiler:

A Framework for Syntactic and Semantic Verification of

UML Diagrams” Proceedings of ICDCIT 2010,

Bhubhaneswar, India

[69]. Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta,

Swapan Bhattacharya, “Traceability of Requirements and

Consistency Verification of UML Use case, Activity and

Class Diagram: A Formal Approach”, Proceedings of IEEE

ICM2CS New Delhi, Dec 14-15, 2009.

